This commit is contained in:
Anton Lydike 2024-11-19 17:04:58 +00:00
parent ae0e14b5fb
commit c29681b4ba
18 changed files with 266 additions and 843 deletions

1
.gitignore vendored
View File

@ -86,3 +86,4 @@ report/mlp-cw2-template.bbl
report/mlp-cw2-template.blg
venv
saved_models

Binary file not shown.

Binary file not shown.

File diff suppressed because one or more lines are too long

View File

@ -79,6 +79,7 @@ class ExperimentBuilder(nn.Module):
print("Total number of conv layers", num_conv_layers)
print("Total number of linear layers", num_linear_layers)
print(f"Learning rate: {learning_rate}")
self.optimizer = optim.Adam(
self.parameters(),
amsgrad=False,

View File

@ -0,0 +1,101 @@
train_acc,train_loss,val_acc,val_loss
0.027410526315789472,4.440032,0.0368,4.238186
0.0440842105263158,4.1909122,0.0644,4.1239405
0.05604210526315791,4.0817885,0.0368,4.495799
0.0685263157894737,3.984858,0.0964,3.8527937
0.08345263157894738,3.8947835,0.09080000000000002,3.8306112
0.09391578947368423,3.8246264,0.10399999999999998,3.7504945
0.10189473684210527,3.760145,0.1124,3.6439042
0.11197894736842108,3.704831,0.0992,3.962508
0.12534736842105265,3.6408415,0.1404,3.516474
0.1385894736842105,3.5672796,0.1444,3.5242612
0.14873684210526317,3.5145628,0.12960000000000002,3.5745378
0.16103157894736844,3.4476008,0.1852,3.3353982
0.16846315789473681,3.399858,0.15600000000000003,3.453797
0.1760210526315789,3.3611393,0.1464,3.5799885
0.18625263157894736,3.3005812,0.196,3.201007
0.19233684210526317,3.26565,0.17439999999999997,3.397586
0.19625263157894737,3.2346153,0.212,3.169959
0.20717894736842105,3.174345,0.2132,3.0981174
0.2136,3.1425776,0.2036,3.2191591
0.2217684210526316,3.094137,0.236,3.0018876
0.23069473684210529,3.0539455,0.20440000000000003,3.1800296
0.23395789473684211,3.0338168,0.22599999999999998,3.0360818
0.24463157894736842,2.9761615,0.2588,2.8876188
0.25311578947368424,2.931479,0.2,3.242481
0.25795789473684216,2.900163,0.28320000000000006,2.830947
0.26789473684210524,2.8484874,0.2768,2.8190458
0.2709263157894737,2.833472,0.2352,3.0098538
0.2816421052631579,2.7842317,0.29560000000000003,2.7288156
0.28764210526315787,2.745757,0.2648,2.8955112
0.2930315789473684,2.7276495,0.27680000000000005,2.8336413
0.3001263157894737,2.6826382,0.316,2.6245823
0.3068421052631579,2.658441,0.27,2.9279957
0.30909473684210526,2.638565,0.31160000000000004,2.637653
0.3213263157894737,2.5939283,0.31799999999999995,2.627816
0.3211157894736843,2.579544,0.25079999999999997,2.9502957
0.3259999999999999,2.5540712,0.3332,2.569941
0.3336421052631579,2.5239582,0.278,2.7676308
0.3371368421052632,2.5109046,0.2916,2.725589
0.34404210526315787,2.4714804,0.34120000000000006,2.4782379
0.3500631578947368,2.4545348,0.30600000000000005,2.6625924
0.34976842105263156,2.4408882,0.342,2.5351026
0.3586315789473684,2.4116046,0.3452,2.450749
0.3568421052631579,2.4133172,0.3288,2.5647113
0.3630947368421052,2.3772728,0.36519999999999997,2.388074
0.37069473684210524,2.3505116,0.324,2.5489926
0.37132631578947367,2.352426,0.33680000000000004,2.5370462
0.37606315789473677,2.319005,0.3712,2.3507965
0.3800210526315789,2.3045664,0.33,2.6327293
0.38185263157894733,2.2965574,0.3764,2.364877
0.38785263157894734,2.269467,0.37799999999999995,2.330837
0.3889684210526316,2.26941,0.3559999999999999,2.513778
0.3951789473684211,2.2413251,0.3888,2.2839465
0.3944421052631579,2.2319226,0.35919999999999996,2.4310353
0.4,2.220305,0.3732,2.348543
0.4051157894736842,2.1891508,0.39440000000000003,2.2730627
0.40581052631578945,2.1873925,0.33399999999999996,2.5648093
0.4067789473684211,2.1817088,0.4044,2.2244952
0.41555789473684207,2.1543047,0.39759999999999995,2.220972
0.4170526315789474,2.14905,0.33399999999999996,2.6612198
0.41762105263157895,2.1321266,0.3932,2.2343464
0.42341052631578946,2.1131704,0.37800000000000006,2.327929
0.4212842105263158,2.112597,0.376,2.3302126
0.4295157894736842,2.0925663,0.4100000000000001,2.175698
0.4299368421052632,2.0846903,0.3772,2.3750577
0.43134736842105265,2.075184,0.4044,2.1888158
0.43829473684210524,2.045202,0.41239999999999993,2.1673117
0.43534736842105265,2.0590534,0.37440000000000007,2.3269994
0.4417684210526316,2.0356588,0.42,2.1668334
0.4442736842105263,2.028207,0.41239999999999993,2.2346516
0.44581052631578943,2.021492,0.40519999999999995,2.2030904
0.44884210526315793,2.0058675,0.4296,2.0948715
0.45071578947368424,1.993417,0.39,2.2856123
0.45130526315789476,1.9970801,0.43599999999999994,2.110219
0.45686315789473686,1.9651922,0.4244,2.1253593
0.4557263157894737,1.9701725,0.3704,2.4576838
0.4609684210526315,1.956996,0.4412,2.0626938
0.4639789473684211,1.9407912,0.398,2.3076272
0.46311578947368426,1.9410807,0.4056,2.2181008
0.4686736842105263,1.918824,0.45080000000000003,2.030652
0.4650315789473684,1.924879,0.3948,2.2926931
0.46964210526315786,1.9188553,0.43599999999999994,2.107239
0.47357894736842104,1.8991861,0.43119999999999997,2.067097
0.47212631578947367,1.8987728,0.41359999999999997,2.1667569
0.4773263157894737,1.8892545,0.46,2.0283196
0.4802526315789474,1.8736148,0.41960000000000003,2.1698954
0.47406315789473685,1.8849738,0.43399999999999994,2.1001608
0.48627368421052636,1.8492608,0.45520000000000005,1.9936249
0.48589473684210527,1.8534511,0.38439999999999996,2.354954
0.48667368421052637,1.8421199,0.44120000000000004,2.0467849
0.4902736842105263,1.8265136,0.45519999999999994,2.0044358
0.4879789473684211,1.838593,0.3984,2.3019247
0.49204210526315795,1.8199797,0.4656,1.9858631
0.4945894736842105,1.805858,0.436,2.1293921
0.4939578947368421,1.8174701,0.4388,2.0611947
0.4961684210526316,1.7953233,0.4612,1.9728945
0.49610526315789477,1.7908033,0.42440000000000005,2.1648548
0.4996,1.7908286,0.4664,1.9897026
0.5070105263157895,1.7658812,0.452,2.0411723
0.5027368421052631,1.7692825,0.4136000000000001,2.280331
0.5062315789473685,1.7649119,0.4768,1.9493303
1 train_acc train_loss val_acc val_loss
2 0.027410526315789472 4.440032 0.0368 4.238186
3 0.0440842105263158 4.1909122 0.0644 4.1239405
4 0.05604210526315791 4.0817885 0.0368 4.495799
5 0.0685263157894737 3.984858 0.0964 3.8527937
6 0.08345263157894738 3.8947835 0.09080000000000002 3.8306112
7 0.09391578947368423 3.8246264 0.10399999999999998 3.7504945
8 0.10189473684210527 3.760145 0.1124 3.6439042
9 0.11197894736842108 3.704831 0.0992 3.962508
10 0.12534736842105265 3.6408415 0.1404 3.516474
11 0.1385894736842105 3.5672796 0.1444 3.5242612
12 0.14873684210526317 3.5145628 0.12960000000000002 3.5745378
13 0.16103157894736844 3.4476008 0.1852 3.3353982
14 0.16846315789473681 3.399858 0.15600000000000003 3.453797
15 0.1760210526315789 3.3611393 0.1464 3.5799885
16 0.18625263157894736 3.3005812 0.196 3.201007
17 0.19233684210526317 3.26565 0.17439999999999997 3.397586
18 0.19625263157894737 3.2346153 0.212 3.169959
19 0.20717894736842105 3.174345 0.2132 3.0981174
20 0.2136 3.1425776 0.2036 3.2191591
21 0.2217684210526316 3.094137 0.236 3.0018876
22 0.23069473684210529 3.0539455 0.20440000000000003 3.1800296
23 0.23395789473684211 3.0338168 0.22599999999999998 3.0360818
24 0.24463157894736842 2.9761615 0.2588 2.8876188
25 0.25311578947368424 2.931479 0.2 3.242481
26 0.25795789473684216 2.900163 0.28320000000000006 2.830947
27 0.26789473684210524 2.8484874 0.2768 2.8190458
28 0.2709263157894737 2.833472 0.2352 3.0098538
29 0.2816421052631579 2.7842317 0.29560000000000003 2.7288156
30 0.28764210526315787 2.745757 0.2648 2.8955112
31 0.2930315789473684 2.7276495 0.27680000000000005 2.8336413
32 0.3001263157894737 2.6826382 0.316 2.6245823
33 0.3068421052631579 2.658441 0.27 2.9279957
34 0.30909473684210526 2.638565 0.31160000000000004 2.637653
35 0.3213263157894737 2.5939283 0.31799999999999995 2.627816
36 0.3211157894736843 2.579544 0.25079999999999997 2.9502957
37 0.3259999999999999 2.5540712 0.3332 2.569941
38 0.3336421052631579 2.5239582 0.278 2.7676308
39 0.3371368421052632 2.5109046 0.2916 2.725589
40 0.34404210526315787 2.4714804 0.34120000000000006 2.4782379
41 0.3500631578947368 2.4545348 0.30600000000000005 2.6625924
42 0.34976842105263156 2.4408882 0.342 2.5351026
43 0.3586315789473684 2.4116046 0.3452 2.450749
44 0.3568421052631579 2.4133172 0.3288 2.5647113
45 0.3630947368421052 2.3772728 0.36519999999999997 2.388074
46 0.37069473684210524 2.3505116 0.324 2.5489926
47 0.37132631578947367 2.352426 0.33680000000000004 2.5370462
48 0.37606315789473677 2.319005 0.3712 2.3507965
49 0.3800210526315789 2.3045664 0.33 2.6327293
50 0.38185263157894733 2.2965574 0.3764 2.364877
51 0.38785263157894734 2.269467 0.37799999999999995 2.330837
52 0.3889684210526316 2.26941 0.3559999999999999 2.513778
53 0.3951789473684211 2.2413251 0.3888 2.2839465
54 0.3944421052631579 2.2319226 0.35919999999999996 2.4310353
55 0.4 2.220305 0.3732 2.348543
56 0.4051157894736842 2.1891508 0.39440000000000003 2.2730627
57 0.40581052631578945 2.1873925 0.33399999999999996 2.5648093
58 0.4067789473684211 2.1817088 0.4044 2.2244952
59 0.41555789473684207 2.1543047 0.39759999999999995 2.220972
60 0.4170526315789474 2.14905 0.33399999999999996 2.6612198
61 0.41762105263157895 2.1321266 0.3932 2.2343464
62 0.42341052631578946 2.1131704 0.37800000000000006 2.327929
63 0.4212842105263158 2.112597 0.376 2.3302126
64 0.4295157894736842 2.0925663 0.4100000000000001 2.175698
65 0.4299368421052632 2.0846903 0.3772 2.3750577
66 0.43134736842105265 2.075184 0.4044 2.1888158
67 0.43829473684210524 2.045202 0.41239999999999993 2.1673117
68 0.43534736842105265 2.0590534 0.37440000000000007 2.3269994
69 0.4417684210526316 2.0356588 0.42 2.1668334
70 0.4442736842105263 2.028207 0.41239999999999993 2.2346516
71 0.44581052631578943 2.021492 0.40519999999999995 2.2030904
72 0.44884210526315793 2.0058675 0.4296 2.0948715
73 0.45071578947368424 1.993417 0.39 2.2856123
74 0.45130526315789476 1.9970801 0.43599999999999994 2.110219
75 0.45686315789473686 1.9651922 0.4244 2.1253593
76 0.4557263157894737 1.9701725 0.3704 2.4576838
77 0.4609684210526315 1.956996 0.4412 2.0626938
78 0.4639789473684211 1.9407912 0.398 2.3076272
79 0.46311578947368426 1.9410807 0.4056 2.2181008
80 0.4686736842105263 1.918824 0.45080000000000003 2.030652
81 0.4650315789473684 1.924879 0.3948 2.2926931
82 0.46964210526315786 1.9188553 0.43599999999999994 2.107239
83 0.47357894736842104 1.8991861 0.43119999999999997 2.067097
84 0.47212631578947367 1.8987728 0.41359999999999997 2.1667569
85 0.4773263157894737 1.8892545 0.46 2.0283196
86 0.4802526315789474 1.8736148 0.41960000000000003 2.1698954
87 0.47406315789473685 1.8849738 0.43399999999999994 2.1001608
88 0.48627368421052636 1.8492608 0.45520000000000005 1.9936249
89 0.48589473684210527 1.8534511 0.38439999999999996 2.354954
90 0.48667368421052637 1.8421199 0.44120000000000004 2.0467849
91 0.4902736842105263 1.8265136 0.45519999999999994 2.0044358
92 0.4879789473684211 1.838593 0.3984 2.3019247
93 0.49204210526315795 1.8199797 0.4656 1.9858631
94 0.4945894736842105 1.805858 0.436 2.1293921
95 0.4939578947368421 1.8174701 0.4388 2.0611947
96 0.4961684210526316 1.7953233 0.4612 1.9728945
97 0.49610526315789477 1.7908033 0.42440000000000005 2.1648548
98 0.4996 1.7908286 0.4664 1.9897026
99 0.5070105263157895 1.7658812 0.452 2.0411723
100 0.5027368421052631 1.7692825 0.4136000000000001 2.280331
101 0.5062315789473685 1.7649119 0.4768 1.9493303

View File

@ -0,0 +1,2 @@
test_acc,test_loss
0.46970000000000006,1.9579598
1 test_acc test_loss
2 0.46970000000000006 1.9579598

View File

@ -0,0 +1,101 @@
train_acc,train_loss,val_acc,val_loss
0.04040000000000001,4.2986817,0.07600000000000001,3.9793916
0.07663157894736841,3.948711,0.09840000000000002,3.8271046
0.1072842105263158,3.7670445,0.0908,3.8834984
0.14671578947368422,3.544252,0.1784,3.3180876
0.18690526315789474,3.3382895,0.1672,3.4958847
0.2185684210526316,3.1613564,0.23240000000000002,3.0646808
0.2584,2.9509778,0.2904,2.7620668
0.2886736842105263,2.7674758,0.2504,3.083242
0.3186736842105263,2.6191177,0.34600000000000003,2.5320892
0.3488421052631579,2.4735146,0.3556,2.463249
0.36701052631578945,2.3815694,0.32480000000000003,2.6590502
0.39258947368421054,2.2661598,0.41200000000000003,2.215237
0.40985263157894736,2.1811035,0.3644,2.4625826
0.42557894736842106,2.1193688,0.3896,2.2802749
0.4452,2.0338347,0.45080000000000003,2.0216491
0.45298947368421055,1.9886738,0.3768,2.4903286
0.4690105263157895,1.9385177,0.46519999999999995,1.9589043
0.48627368421052636,1.8654134,0.46199999999999997,1.9572229
0.4910947368421053,1.836772,0.3947999999999999,2.371203
0.5033052631578947,1.7882212,0.4864,1.8270072
0.515578947368421,1.7451773,0.418,2.2281988
0.5166526315789474,1.7310464,0.4744,1.9468222
0.532,1.6639497,0.5176,1.7627875
0.534821052631579,1.6504371,0.426,2.2908173
0.5399578947368422,1.6263881,0.5092,1.7892419
0.5538105263157893,1.5786182,0.5184,1.7781507
0.5530526315789474,1.5743873,0.45480000000000004,2.052206
0.5610526315789474,1.5367776,0.5404000000000001,1.6886607
0.5709263157894736,1.508275,0.5072000000000001,1.8317349
0.5693894736842106,1.5026951,0.49760000000000004,1.9268813
0.5827368421052632,1.4614111,0.5484,1.6791071
0.583557894736842,1.4580216,0.4744,2.084504
0.5856842105263159,1.4402864,0.5468,1.6674811
0.5958105263157895,1.4054152,0.5468,1.7081916
0.5964631578947368,1.4043275,0.4988,1.8901508
0.6044631578947368,1.3692447,0.548,1.6456038
0.6065473684210526,1.3562685,0.5448,1.7725601
0.6055578947368421,1.3638091,0.52,1.803752
0.6169684210526316,1.3224502,0.5688,1.6048553
0.6184421052631579,1.3228824,0.4772,2.0309162
0.6193894736842105,1.312684,0.5496,1.6357917
0.6287368421052631,1.2758818,0.5552,1.7120187
0.6270105263157894,1.2829372,0.4872000000000001,1.9630791
0.6313473684210527,1.2609128,0.5632,1.6049384
0.6374736842105263,1.2429903,0.5516,1.7101723
0.6342947368421055,1.2540665,0.5272,1.8112053
0.642778947368421,1.2098345,0.5692,1.5996393
0.6447368421052632,1.217454,0.5056,2.087292
0.6437052631578949,1.2123955,0.5660000000000001,1.6426488
0.6533263157894735,1.1804259,0.5672,1.6429158
0.6521052631578947,1.1856273,0.5316000000000001,1.8833923
0.658021052631579,1.1663536,0.5652,1.6239171
0.6622947368421054,1.1522906,0.5376000000000001,1.8352613
0.6543789473684212,1.1700194,0.5539999999999999,1.7920883
0.6664,1.1246897,0.5828,1.5657492
0.6645473684210526,1.1307288,0.5296,1.8285477
0.6647157894736843,1.1294464,0.5852,1.59438
0.6713473684210526,1.1020554,0.5647999999999999,1.6256377
0.6691368421052631,1.1129124,0.5224,1.9497899
0.6737684210526315,1.0941163,0.5708,1.5900868
0.6765473684210527,1.0844595,0.55,1.7522817
0.6762947368421053,1.0832069,0.5428000000000001,1.8020345
0.6799789473684209,1.0637755,0.5864,1.5690281
0.6808421052631578,1.066873,0.5168,1.9964217
0.6843157894736842,1.0618489,0.5720000000000001,1.6391727
0.6866736842105262,1.0432214,0.5731999999999999,1.6571078
0.6877684210526315,1.0442319,0.5192,2.0341485
0.6890105263157895,1.0338738,0.5836,1.5887364
0.693642105263158,1.0206536,0.5456,1.8537303
0.6905894736842106,1.0271776,0.5548000000000001,1.8022745
0.6981263157894737,1.001102,0.5852,1.5923084
0.6986105263157896,1.0052379,0.512,2.011443
0.698042105263158,0.9990784,0.5744,1.638558
0.7031578947368421,0.977477,0.5816,1.5790274
0.7013473684210526,0.98766434,0.5448000000000001,1.8414693
0.7069684210526315,0.9691622,0.59,1.5866013
0.7061894736842105,0.9620083,0.55,1.7695292
0.7050526315789474,0.9689725,0.5408,1.8329593
0.7101052631578948,0.95279986,0.5852,1.5835829
0.7122315789473684,0.9483001,0.5224,1.9749893
0.7115157894736842,0.94911486,0.5808,1.6965445
0.7166315789473684,0.9338312,0.5788,1.6249495
0.7120631578947368,0.9428737,0.5224,1.9721117
0.7197263157894737,0.92057914,0.5960000000000001,1.6235417
0.7258315789473684,0.9071854,0.528,2.0651033
0.7186947368421053,0.922529,0.5628,1.7508049
0.7257684210526316,0.9007169,0.5980000000000001,1.5797865
0.7254105263157896,0.89657074,0.5472,1.8673587
0.7229263157894736,0.90324384,0.5771999999999999,1.6998875
0.7308842105263157,0.8757633,0.5856,1.6750972
0.7254947368421052,0.8956531,0.5479999999999999,1.9809356
0.7302105263157894,0.8803156,0.5960000000000001,1.6343199
0.7353473684210525,0.8630421,0.56,1.9686066
0.732021052631579,0.8823739,0.5632,1.8139118
0.7324631578947367,0.8676047,0.5952000000000001,1.6235788
0.7366526315789473,0.85581774,0.5392,1.9346147
0.7340210526315789,0.8636227,0.5868,1.6743768
0.7416631578947368,0.84529686,0.5836,1.6691054
0.734757894736842,0.85352796,0.516,2.227477
0.7435368421052632,0.83374214,0.582,1.697568
1 train_acc train_loss val_acc val_loss
2 0.04040000000000001 4.2986817 0.07600000000000001 3.9793916
3 0.07663157894736841 3.948711 0.09840000000000002 3.8271046
4 0.1072842105263158 3.7670445 0.0908 3.8834984
5 0.14671578947368422 3.544252 0.1784 3.3180876
6 0.18690526315789474 3.3382895 0.1672 3.4958847
7 0.2185684210526316 3.1613564 0.23240000000000002 3.0646808
8 0.2584 2.9509778 0.2904 2.7620668
9 0.2886736842105263 2.7674758 0.2504 3.083242
10 0.3186736842105263 2.6191177 0.34600000000000003 2.5320892
11 0.3488421052631579 2.4735146 0.3556 2.463249
12 0.36701052631578945 2.3815694 0.32480000000000003 2.6590502
13 0.39258947368421054 2.2661598 0.41200000000000003 2.215237
14 0.40985263157894736 2.1811035 0.3644 2.4625826
15 0.42557894736842106 2.1193688 0.3896 2.2802749
16 0.4452 2.0338347 0.45080000000000003 2.0216491
17 0.45298947368421055 1.9886738 0.3768 2.4903286
18 0.4690105263157895 1.9385177 0.46519999999999995 1.9589043
19 0.48627368421052636 1.8654134 0.46199999999999997 1.9572229
20 0.4910947368421053 1.836772 0.3947999999999999 2.371203
21 0.5033052631578947 1.7882212 0.4864 1.8270072
22 0.515578947368421 1.7451773 0.418 2.2281988
23 0.5166526315789474 1.7310464 0.4744 1.9468222
24 0.532 1.6639497 0.5176 1.7627875
25 0.534821052631579 1.6504371 0.426 2.2908173
26 0.5399578947368422 1.6263881 0.5092 1.7892419
27 0.5538105263157893 1.5786182 0.5184 1.7781507
28 0.5530526315789474 1.5743873 0.45480000000000004 2.052206
29 0.5610526315789474 1.5367776 0.5404000000000001 1.6886607
30 0.5709263157894736 1.508275 0.5072000000000001 1.8317349
31 0.5693894736842106 1.5026951 0.49760000000000004 1.9268813
32 0.5827368421052632 1.4614111 0.5484 1.6791071
33 0.583557894736842 1.4580216 0.4744 2.084504
34 0.5856842105263159 1.4402864 0.5468 1.6674811
35 0.5958105263157895 1.4054152 0.5468 1.7081916
36 0.5964631578947368 1.4043275 0.4988 1.8901508
37 0.6044631578947368 1.3692447 0.548 1.6456038
38 0.6065473684210526 1.3562685 0.5448 1.7725601
39 0.6055578947368421 1.3638091 0.52 1.803752
40 0.6169684210526316 1.3224502 0.5688 1.6048553
41 0.6184421052631579 1.3228824 0.4772 2.0309162
42 0.6193894736842105 1.312684 0.5496 1.6357917
43 0.6287368421052631 1.2758818 0.5552 1.7120187
44 0.6270105263157894 1.2829372 0.4872000000000001 1.9630791
45 0.6313473684210527 1.2609128 0.5632 1.6049384
46 0.6374736842105263 1.2429903 0.5516 1.7101723
47 0.6342947368421055 1.2540665 0.5272 1.8112053
48 0.642778947368421 1.2098345 0.5692 1.5996393
49 0.6447368421052632 1.217454 0.5056 2.087292
50 0.6437052631578949 1.2123955 0.5660000000000001 1.6426488
51 0.6533263157894735 1.1804259 0.5672 1.6429158
52 0.6521052631578947 1.1856273 0.5316000000000001 1.8833923
53 0.658021052631579 1.1663536 0.5652 1.6239171
54 0.6622947368421054 1.1522906 0.5376000000000001 1.8352613
55 0.6543789473684212 1.1700194 0.5539999999999999 1.7920883
56 0.6664 1.1246897 0.5828 1.5657492
57 0.6645473684210526 1.1307288 0.5296 1.8285477
58 0.6647157894736843 1.1294464 0.5852 1.59438
59 0.6713473684210526 1.1020554 0.5647999999999999 1.6256377
60 0.6691368421052631 1.1129124 0.5224 1.9497899
61 0.6737684210526315 1.0941163 0.5708 1.5900868
62 0.6765473684210527 1.0844595 0.55 1.7522817
63 0.6762947368421053 1.0832069 0.5428000000000001 1.8020345
64 0.6799789473684209 1.0637755 0.5864 1.5690281
65 0.6808421052631578 1.066873 0.5168 1.9964217
66 0.6843157894736842 1.0618489 0.5720000000000001 1.6391727
67 0.6866736842105262 1.0432214 0.5731999999999999 1.6571078
68 0.6877684210526315 1.0442319 0.5192 2.0341485
69 0.6890105263157895 1.0338738 0.5836 1.5887364
70 0.693642105263158 1.0206536 0.5456 1.8537303
71 0.6905894736842106 1.0271776 0.5548000000000001 1.8022745
72 0.6981263157894737 1.001102 0.5852 1.5923084
73 0.6986105263157896 1.0052379 0.512 2.011443
74 0.698042105263158 0.9990784 0.5744 1.638558
75 0.7031578947368421 0.977477 0.5816 1.5790274
76 0.7013473684210526 0.98766434 0.5448000000000001 1.8414693
77 0.7069684210526315 0.9691622 0.59 1.5866013
78 0.7061894736842105 0.9620083 0.55 1.7695292
79 0.7050526315789474 0.9689725 0.5408 1.8329593
80 0.7101052631578948 0.95279986 0.5852 1.5835829
81 0.7122315789473684 0.9483001 0.5224 1.9749893
82 0.7115157894736842 0.94911486 0.5808 1.6965445
83 0.7166315789473684 0.9338312 0.5788 1.6249495
84 0.7120631578947368 0.9428737 0.5224 1.9721117
85 0.7197263157894737 0.92057914 0.5960000000000001 1.6235417
86 0.7258315789473684 0.9071854 0.528 2.0651033
87 0.7186947368421053 0.922529 0.5628 1.7508049
88 0.7257684210526316 0.9007169 0.5980000000000001 1.5797865
89 0.7254105263157896 0.89657074 0.5472 1.8673587
90 0.7229263157894736 0.90324384 0.5771999999999999 1.6998875
91 0.7308842105263157 0.8757633 0.5856 1.6750972
92 0.7254947368421052 0.8956531 0.5479999999999999 1.9809356
93 0.7302105263157894 0.8803156 0.5960000000000001 1.6343199
94 0.7353473684210525 0.8630421 0.56 1.9686066
95 0.732021052631579 0.8823739 0.5632 1.8139118
96 0.7324631578947367 0.8676047 0.5952000000000001 1.6235788
97 0.7366526315789473 0.85581774 0.5392 1.9346147
98 0.7340210526315789 0.8636227 0.5868 1.6743768
99 0.7416631578947368 0.84529686 0.5836 1.6691054
100 0.734757894736842 0.85352796 0.516 2.227477
101 0.7435368421052632 0.83374214 0.582 1.697568

View File

@ -0,0 +1,2 @@
test_acc,test_loss
0.6018000000000001,1.5933747
1 test_acc test_loss
2 0.6018000000000001 1.5933747

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -44,20 +44,25 @@ Our results suggest that the increased capacity of VGG38 does not translate into
}
%% Question 3:
% In this coursework, we didn't incorporate residual connections to the downsampling layers. Explain and justify what would need to be changed in order to add residual connections to the downsampling layers. Give and explain 2 ways of incorporating these changes and discuss pros and cons of each.
\newcommand{\questionThree} {
\youranswer{Question 3 - In this coursework, we didn't incorporate residual connections to the downsampling layers. Explain and justify what would need to be changed in order to add residual connections to the downsampling layers. Give and explain 2 ways of incorporating these changes and discuss pros and cons of each.
\youranswer{
Our work does not incorporate residual connections across the downsampling layers, as this creates a dimensional mismatch between the input and output feature maps due to the reduction in spatial dimensions. To add residual connections, one approach is to use a convolutional layer with a kernel size of $1\times 1$, stride, and padding matched to the downsampling operation to transform the input to the same shape as the output. Another approach would be to use average pooling or max pooling directly on the residual connection to downsample the input feature map, matching its spatial dimensions to the output, followed by a linear transformation to align the channel dimensions.
The difference between these two methods is that the first approach using a $1\times 1$ convolution provides more flexibility by learning the transformation, which can enhance model expressiveness but increases computational cost, whereas the second approach with pooling is computationally cheaper and simpler but may lose fine-grained information due to the fixed, non-learnable nature of pooling operations.
}
}
%% Question 4:
% Question 4 - Present and discuss the experiment results (all of the results and not just the ones you had to fill in) in Table 1 and Figures 4 and 5 (you may use any of the other Figures if you think they are relevant to your analysis). You will have to determine what data are relevant to the discussion, and what information can be extracted from it. Also, discuss what further experiments you would have ran on any combination of VGG08, VGG38, BN, RC in order to
% \begin{itemize}
% \item Improve performance of the model trained (explain why you expect your suggested experiments will help with this).
% \item Learn more about the behaviour of BN and RC (explain what you are trying to learn and how).
% \end{itemize}
%
% The average length for an answer to this question is approximately 1 of the columns in a 2-column page
\newcommand{\questionFour} {
\youranswer{Question 4 - Present and discuss the experiment results (all of the results and not just the ones you had to fill in) in Table 1 and Figures 4 and 5 (you may use any of the other Figures if you think they are relevant to your analysis). You will have to determine what data are relevant to the discussion, and what information can be extracted from it. Also, discuss what further experiments you would have ran on any combination of VGG08, VGG38, BN, RC in order to
\begin{itemize}
\item Improve performance of the model trained (explain why you expect your suggested experiments will help with this).
\item Learn more about the behaviour of BN and RC (explain what you are trying to learn and how).
\end{itemize}
The average length for an answer to this question is approximately 1 of the columns in a 2-column page
\youranswer{test1
}
}
@ -80,13 +85,12 @@ The length of this question description is indicative of the average length of a
%% Question Figure 3:
\newcommand{\questionFigureThree} {
\youranswer{Question Figure 3 - Replace this image with a figure depicting the average gradient across layers, for the VGG38 model.
\textit{(The provided figure is correct, and can be used in your analysis. It is partially obscured so you can get credit for producing your own copy).}
%
% Question Figure 3 - Replace this image with a figure depicting the average gradient across layers, for the VGG38 model.
%\textit{(The provided figure is correct, and can be used in your analysis. It is partially obscured so you can get credit for producing your own copy).}
\youranswer{
\begin{figure}[t]
\centering
\includegraphics[width=\linewidth]{figures/gradplot_38_watermarked.pdf}
\includegraphics[width=\linewidth]{figures/gradplot_38.pdf}
\caption{Gradient Flow on VGG38}
\label{fig:avg_grad_flow_38}
\end{figure}
@ -94,26 +98,26 @@ The length of this question description is indicative of the average length of a
}
%% Question Figure 4:
% Question Figure 4 - Replace this image with a figure depicting the training curves for the model with the best performance \textit{across experiments you have available (you don't need to run the experiments for the models we already give you results for)}. Edit the caption so that it clearly identifies the model and what is depicted.
\newcommand{\questionFigureFour} {
\youranswer{Question Figure 4 - Replace this image with a figure depicting the training curves for the model with the best performance \textit{across experiments you have available (you don't need to run the experiments for the models we already give you results for)}. Edit the caption so that it clearly identifies the model and what is depicted.
%
\youranswer{
\begin{figure}[t]
\centering
\includegraphics[width=\linewidth]{example-image-duck}
\caption{Training curves for ? ? ?}
\includegraphics[width=\linewidth]{figures/VGG38_BN_RC_accuracy_performance.pdf}
\caption{Training curves for 38 layer CNN with batch normalisation and residual connections, trained with LR of $0.01$}
\label{fig:training_curves_bestModel}
\end{figure}
}
}
%% Question Figure 5:
% Question Figure 5 - Replace this image with a figure depicting the average gradient across layers, for the model with the best performance \textit{across experiments you have available (you don't need to run the experiments for the models we already give you results for)}. Edit the caption so that it clearly identifies the model and what is depicted.
\newcommand{\questionFigureFive} {
\youranswer{Question Figure 5 - Replace this image with a figure depicting the average gradient across layers, for the model with the best performance \textit{across experiments you have available (you don't need to run the experiments for the models we already give you results for)}. Edit the caption so that it clearly identifies the model and what is depicted.
%
\youranswer{
\begin{figure}[t]
\centering
\includegraphics[width=\linewidth]{example-image-duck}
\caption{Gradient Flow on ? ? ?}
\includegraphics[width=\linewidth]{figures/gradplot_38_bn_rc.pdf}
\caption{Gradient Flow for 38 layer CNN with batch normalisation and residual connections, trained with LR of $0.01$}
\label{fig:avg_grad_flow_bestModel}
\end{figure}
}
@ -122,13 +126,13 @@ The length of this question description is indicative of the average length of a
%% - - - - - - - - - - - - TABLES - - - - - - - - - - - -
%% Question Table 1:
% Question Table 1 - Fill in Table 1 with the results from your experiments on
% \begin{enumerate}
% \item \textit{VGG38 BN (LR 1e-3)}, and
% \item \textit{VGG38 BN + RC (LR 1e-2)}.
% \end{enumerate}
\newcommand{\questionTableOne} {
\youranswer{
Question Table 1 - Fill in Table 1 with the results from your experiments on
\begin{enumerate}
\item \textit{VGG38 BN (LR 1e-3)}, and
\item \textit{VGG38 BN + RC (LR 1e-2)}.
\end{enumerate}
%
\begin{table*}[t]
\centering
@ -138,11 +142,11 @@ Question Table 1 - Fill in Table 1 with the results from your experiments on
\midrule
VGG08 & 1e-3 & 60 K & 1.74 & 51.59 & 1.95 & 46.84 \\
VGG38 & 1e-3 & 336 K & 4.61 & 00.01 & 4.61 & 00.01 \\
VGG38 BN & 1e-3 & ? & ? & ? & ? & ? \\
VGG38 BN & 1e-3 & 339 K & 1.76 & 50.62 & 1.95 & 47.68 \\
VGG38 RC & 1e-3 & 336 K & 1.33 & 61.52 & 1.84 & 52.32 \\
VGG38 BN + RC & 1e-3 & 339 K & 1.26 & 62.99 & 1.73 & 53.76 \\
VGG38 BN & 1e-2 & 339 K & 1.70 & 52.28 & 1.99 & 46.72 \\
VGG38 BN + RC & 1e-2 & ? & ? & ? & ? & ? \\
VGG38 BN + RC & 1e-2 & 339 K & 0.83 & 74.35 & 1.70 & 58.20 \\
\bottomrule
\end{tabular}
\caption{Experiment results (number of model parameters, Training and Validation loss and accuracy) for different combinations of VGG08, VGG38, Batch Normalisation (BN), and Residual Connections (RC), LR is learning rate.}

View File

@ -1 +1 @@
python pytorch_mlp_framework/train_evaluate_image_classification_system.py --batch_size 100 --seed 0 --num_filters 32 --num_stages 3 --num_blocks_per_stage 5 --experiment_name VGG_38_experiment --use_gpu True --num_classes 100 --block_type 'conv_bn' --continue_from_epoch -1
python pytorch_mlp_framework/train_evaluate_image_classification_system.py --batch_size 100 --seed 0 --num_filters 32 --num_stages 3 --num_blocks_per_stage 5 --experiment_name VGG38_BN --use_gpu True --num_classes 100 --block_type 'conv_bn' --continue_from_epoch -1

View File

@ -1 +1 @@
python pytorch_mlp_framework/train_evaluate_image_classification_system.py --batch_size 100 --seed 0 --num_filters 32 --num_stages 3 --num_blocks_per_stage 5 --experiment_name VGG_38_experiment --use_gpu True --num_classes 100 --block_type 'conv_bn_rc' --continue_from_epoch -1 --learning-rate 0.01
python pytorch_mlp_framework/train_evaluate_image_classification_system.py --batch_size 100 --seed 0 --num_filters 32 --num_stages 3 --num_blocks_per_stage 5 --experiment_name VGG38_BN_RC --use_gpu True --num_classes 100 --block_type 'conv_bn_rc' --continue_from_epoch -1 --learning-rate 0.01