diff --git a/mlp/data_providers.py b/mlp/data_providers.py index ebea079..3d26d5e 100644 --- a/mlp/data_providers.py +++ b/mlp/data_providers.py @@ -35,23 +35,54 @@ class DataProvider(object): """ self.inputs = inputs self.targets = targets - self.batch_size = batch_size - assert max_num_batches != 0 and not max_num_batches < -1, ( - 'max_num_batches should be -1 or > 0') - self.max_num_batches = max_num_batches + if batch_size < 1: + raise ValueError('batch_size must be >= 1') + self._batch_size = batch_size + if max_num_batches == 0 or max_num_batches < -1: + raise ValueError('max_num_batches must be -1 or > 0') + self._max_num_batches = max_num_batches + self._update_num_batches() + self.shuffle_order = shuffle_order + self._current_order = np.arange(inputs.shape[0]) + if rng is None: + rng = np.random.RandomState(DEFAULT_SEED) + self.rng = rng + self.new_epoch() + + @property + def batch_size(self): + """Number of data points to include in each batch.""" + return self._batch_size + + @batch_size.setter + def batch_size(self, value): + if value < 1: + raise ValueError('batch_size must be >= 1') + self._batch_size = value + self._update_num_batches() + + @property + def max_num_batches(self): + """Maximum number of batches to iterate over in an epoch.""" + return self._max_num_batches + + @max_num_batches.setter + def max_num_batches(self, value): + if value == 0 or value < -1: + raise ValueError('max_num_batches must be -1 or > 0') + self._max_num_batches = value + self._update_num_batches() + + def _update_num_batches(self): + """Updates number of batches to iterate over.""" # maximum possible number of batches is equal to number of whole times # batch_size divides in to the number of data points which can be # found using integer division - possible_num_batches = self.inputs.shape[0] // batch_size + possible_num_batches = self.inputs.shape[0] // self.batch_size if self.max_num_batches == -1: self.num_batches = possible_num_batches else: self.num_batches = min(self.max_num_batches, possible_num_batches) - self.shuffle_order = shuffle_order - if rng is None: - rng = np.random.RandomState(DEFAULT_SEED) - self.rng = rng - self.reset() def __iter__(self): """Implements Python iterator interface. @@ -63,27 +94,36 @@ class DataProvider(object): """ return self - def reset(self): - """Resets the provider to the initial state to use in a new epoch.""" + def new_epoch(self): + """Starts a new epoch (pass through data), possibly shuffling first.""" self._curr_batch = 0 if self.shuffle_order: self.shuffle() + def __next__(self): + self.next() + + def reset(self): + """Resets the provider to the initial state.""" + inv_perm = np.argsort(self._current_order) + self._current_order = self._current_order[inv_perm] + self.inputs = self.inputs[inv_perm] + self.targets = self.targets[inv_perm] + self.new_epoch() + def shuffle(self): """Randomly shuffles order of data.""" - new_order = self.rng.permutation(self.inputs.shape[0]) - self.inputs = self.inputs[new_order] - self.targets = self.targets[new_order] - - def __next__(self): - return self.next() + perm = self.rng.permutation(self.inputs.shape[0]) + self._current_order = self._current_order[perm] + self.inputs = self.inputs[perm] + self.targets = self.targets[perm] def next(self): """Returns next data batch or raises `StopIteration` if at end.""" if self._curr_batch + 1 > self.num_batches: - # no more batches in current iteration through data set so reset - # the dataset for another pass and indicate iteration is at end - self.reset() + # no more batches in current iteration through data set so start + # new epoch ready for another pass and indicate iteration is at end + self.new_epoch() raise StopIteration() # create an index slice corresponding to current batch number batch_slice = slice(self._curr_batch * self.batch_size, @@ -93,7 +133,6 @@ class DataProvider(object): self._curr_batch += 1 return inputs_batch, targets_batch - class MNISTDataProvider(DataProvider): """Data provider for MNIST handwritten digit images.""" diff --git a/mlp/errors.py b/mlp/errors.py index 712fe59..5ef95f7 100644 --- a/mlp/errors.py +++ b/mlp/errors.py @@ -23,9 +23,9 @@ class SumOfSquaredDiffsError(object): targets: Array of target outputs of shape (batch_size, output_dim). Returns: - Scalar error function value. + Scalar cost function value. """ - raise NotImplementedError() + return 0.5 * np.mean(np.sum((outputs - targets)**2, axis=1)) def grad(self, outputs, targets): """Calculates gradient of error function with respect to outputs. @@ -35,10 +35,142 @@ class SumOfSquaredDiffsError(object): targets: Array of target outputs of shape (batch_size, output_dim). Returns: - Gradient of error function with respect to outputs. This should be - an array of shape (batch_size, output_dim). + Gradient of error function with respect to outputs. """ - raise NotImplementedError() + return (outputs - targets) / outputs.shape[0] def __repr__(self): - return 'SumOfSquaredDiffsError' + return 'MeanSquaredErrorCost' + + +class BinaryCrossEntropyError(object): + """Binary cross entropy error.""" + + def __call__(self, outputs, targets): + """Calculates error function given a batch of outputs and targets. + + Args: + outputs: Array of model outputs of shape (batch_size, output_dim). + targets: Array of target outputs of shape (batch_size, output_dim). + + Returns: + Scalar error function value. + """ + return -np.mean( + targets * np.log(outputs) + (1. - targets) * np.log(1. - ouputs)) + + def grad(self, outputs, targets): + """Calculates gradient of error function with respect to outputs. + + Args: + outputs: Array of model outputs of shape (batch_size, output_dim). + targets: Array of target outputs of shape (batch_size, output_dim). + + Returns: + Gradient of error function with respect to outputs. + """ + return ((1. - targets) / (1. - outputs) - + (targets / outputs)) / outputs.shape[0] + + def __repr__(self): + return 'BinaryCrossEntropyError' + + +class BinaryCrossEntropySigmoidError(object): + """Binary cross entropy error with logistic sigmoid applied to outputs.""" + + def __call__(self, outputs, targets): + """Calculates error function given a batch of outputs and targets. + + Args: + outputs: Array of model outputs of shape (batch_size, output_dim). + targets: Array of target outputs of shape (batch_size, output_dim). + + Returns: + Scalar error function value. + """ + probs = 1. / (1. + np.exp(-outputs)) + return -np.mean( + targets * np.log(probs) + (1. - targets) * np.log(1. - probs)) + + def grad(self, outputs, targets): + """Calculates gradient of error function with respect to outputs. + + Args: + outputs: Array of model outputs of shape (batch_size, output_dim). + targets: Array of target outputs of shape (batch_size, output_dim). + + Returns: + Gradient of error function with respect to outputs. + """ + probs = 1. / (1. + np.exp(-outputs)) + return (probs - targets) / outputs.shape[0] + + def __repr__(self): + return 'BinaryCrossEntropySigmoidError' + + +class CrossEntropyError(object): + """Multi-class cross entropy error.""" + + def __call__(self, outputs, targets): + """Calculates error function given a batch of outputs and targets. + + Args: + outputs: Array of model outputs of shape (batch_size, output_dim). + targets: Array of target outputs of shape (batch_size, output_dim). + + Returns: + Scalar error function value. + """ + return -np.mean(np.sum(targets * np.log(outputs), axis=1)) + + def grad(self, outputs, targets): + """Calculates gradient of error function with respect to outputs. + + Args: + outputs: Array of model outputs of shape (batch_size, output_dim). + targets: Array of target outputs of shape (batch_size, output_dim). + + Returns: + Gradient of error function with respect to outputs. + """ + return -(targets / outputs) / outputs.shape[0] + + def __repr__(self): + return 'CrossEntropyError' + + +class CrossEntropySoftmaxError(object): + """Multi-class cross entropy error with Softmax applied to outputs.""" + + def __call__(self, outputs, targets): + """Calculates error function given a batch of outputs and targets. + + Args: + outputs: Array of model outputs of shape (batch_size, output_dim). + targets: Array of target outputs of shape (batch_size, output_dim). + + Returns: + Scalar error function value. + """ + probs = np.exp(outputs) + probs /= probs.sum(-1)[:, None] + return -np.mean(np.sum(targets * np.log(probs), axis=1)) + + def grad(self, outputs, targets): + """Calculates gradient of error function with respect to outputs. + + Args: + outputs: Array of model outputs of shape (batch_size, output_dim). + targets: Array of target outputs of shape (batch_size, output_dim). + + Returns: + Gradient of error function with respect to outputs. + """ + probs = np.exp(outputs) + probs /= probs.sum(-1)[:, None] + return (probs - targets) / outputs.shape[0] + + def __repr__(self): + return 'CrossEntropySoftmaxError' diff --git a/mlp/layers.py b/mlp/layers.py index e2e871b..cc4cdda 100644 --- a/mlp/layers.py +++ b/mlp/layers.py @@ -73,7 +73,18 @@ class LayerWithParameters(Layer): """Returns a list of parameters of layer. Returns: - List of current parameter values. + List of current parameter values. This list should be in the + corresponding order to the `values` argument to `set_params`. + """ + raise NotImplementedError() + + @params.setter + def params(self, values): + """Sets layer parameters from a list of values. + + Args: + values: List of values to set parameters to. This list should be + in the corresponding order to what is returned by `get_params`. """ raise NotImplementedError() @@ -86,8 +97,7 @@ class AffineLayer(LayerWithParameters): def __init__(self, input_dim, output_dim, weights_initialiser=init.UniformInit(-0.1, 0.1), - biases_initialiser=init.ConstantInit(0.), - weights_cost=None, biases_cost=None): + biases_initialiser=init.ConstantInit(0.)): """Initialises a parameterised affine layer. Args: @@ -113,7 +123,26 @@ class AffineLayer(LayerWithParameters): Returns: outputs: Array of layer outputs of shape (batch_size, output_dim). """ - raise NotImplementedError() + return inputs.dot(self.weights.T) + self.biases + + def bprop(self, inputs, outputs, grads_wrt_outputs): + """Back propagates gradients through a layer. + + Given gradients with respect to the outputs of the layer calculates the + gradients with respect to the layer inputs. + + Args: + inputs: Array of layer inputs of shape (batch_size, input_dim). + outputs: Array of layer outputs calculated in forward pass of + shape (batch_size, output_dim). + grads_wrt_outputs: Array of gradients with respect to the layer + outputs of shape (batch_size, output_dim). + + Returns: + Array of gradients with respect to the layer inputs of shape + (batch_size, input_dim). + """ + return grads_wrt_outputs.dot(self.weights) def grads_wrt_params(self, inputs, grads_wrt_outputs): """Calculates gradients with respect to layer parameters. @@ -127,13 +156,104 @@ class AffineLayer(LayerWithParameters): list of arrays of gradients with respect to the layer parameters `[grads_wrt_weights, grads_wrt_biases]`. """ - raise NotImplementedError() + + grads_wrt_weights = np.dot(grads_wrt_outputs.T, inputs) + grads_wrt_biases = np.sum(grads_wrt_outputs, axis=0) + return [grads_wrt_weights, grads_wrt_biases] @property def params(self): """A list of layer parameter values: `[weights, biases]`.""" return [self.weights, self.biases] + @params.setter + def params(self, values): + self.weights = values[0] + self.biases = values[1] + def __repr__(self): return 'AffineLayer(input_dim={0}, output_dim={1})'.format( self.input_dim, self.output_dim) + + +class SigmoidLayer(Layer): + """Layer implementing an element-wise logistic sigmoid transformation.""" + + def fprop(self, inputs): + """Forward propagates activations through the layer transformation. + + For inputs `x` and outputs `y` this corresponds to + `y = 1 / (1 + exp(-x))`. + + Args: + inputs: Array of layer inputs of shape (batch_size, input_dim). + + Returns: + outputs: Array of layer outputs of shape (batch_size, output_dim). + """ + return 1. / (1. + np.exp(-inputs)) + + def bprop(self, inputs, outputs, grads_wrt_outputs): + """Back propagates gradients through a layer. + + Given gradients with respect to the outputs of the layer calculates the + gradients with respect to the layer inputs. + + Args: + inputs: Array of layer inputs of shape (batch_size, input_dim). + outputs: Array of layer outputs calculated in forward pass of + shape (batch_size, output_dim). + grads_wrt_outputs: Array of gradients with respect to the layer + outputs of shape (batch_size, output_dim). + + Returns: + Array of gradients with respect to the layer inputs of shape + (batch_size, input_dim). + """ + return grads_wrt_outputs * outputs * (1. - outputs) + + def __repr__(self): + return 'SigmoidLayer' + + +class SoftmaxLayer(Layer): + """Layer implementing a softmax transformation.""" + + def fprop(self, inputs): + """Forward propagates activations through the layer transformation. + + For inputs `x` and outputs `y` this corresponds to + + `y = exp(x) / sum(exp(x))`. + + Args: + inputs: Array of layer inputs of shape (batch_size, input_dim). + + Returns: + outputs: Array of layer outputs of shape (batch_size, output_dim). + """ + exp_inputs = np.exp(inputs) + return exp_inputs / exp_inputs.sum(-1)[:, None] + + def bprop(self, inputs, outputs, grads_wrt_outputs): + """Back propagates gradients through a layer. + + Given gradients with respect to the outputs of the layer calculates the + gradients with respect to the layer inputs. + + Args: + inputs: Array of layer inputs of shape (batch_size, input_dim). + outputs: Array of layer outputs calculated in forward pass of + shape (batch_size, output_dim). + grads_wrt_outputs: Array of gradients with respect to the layer + outputs of shape (batch_size, output_dim). + + Returns: + Array of gradients with respect to the layer inputs of shape + (batch_size, input_dim). + """ + return (outputs * (grads_wrt_outputs - + (grads_wrt_outputs * outputs).sum(-1)[:, None])) + + def __repr__(self): + return 'SoftmaxLayer' diff --git a/mlp/models.py b/mlp/models.py index 86a0472..5e35dbc 100644 --- a/mlp/models.py +++ b/mlp/models.py @@ -59,9 +59,75 @@ class SingleLayerModel(object): """ return self.layer.grads_wrt_params(activations[0], grads_wrt_outputs) - def params_cost(self): - """Calculates the parameter dependent cost term of the model.""" - return self.layer.params_cost() - def __repr__(self): return 'SingleLayerModel(' + str(layer) + ')' + + +class MultipleLayerModel(object): + """A model consisting of multiple layers applied sequentially.""" + + def __init__(self, layers): + """Create a new multiple layer model instance. + + Args: + layers: List of the the layer objecst defining the model in the + order they should be applied from inputs to outputs. + """ + self.layers = layers + + @property + def params(self): + """A list of all of the parameters of the model.""" + params = [] + for layer in self.layers: + if isinstance(layer, LayerWithParameters): + params += layer.params + return params + + def fprop(self, inputs): + """Forward propagates a batch of inputs through the model. + + Args: + inputs: Batch of inputs to the model. + + Returns: + List of the activations at the output of all layers of the model + plus the inputs (to the first layer) as the first element. The + last element of the list corresponds to the model outputs. + """ + activations = [inputs] + for i, layer in enumerate(self.layers): + activations.append(self.layers[i].fprop(activations[i])) + return activations + + def grads_wrt_params(self, activations, grads_wrt_outputs): + """Calculates gradients with respect to the model parameters. + + Args: + activations: List of all activations from forward pass through + model using `fprop`. + grads_wrt_outputs: Gradient with respect to the model outputs of + the scalar function parameter gradients are being calculated + for. + + Returns: + List of gradients of the scalar function with respect to all model + parameters. + """ + grads_wrt_params = [] + for i, layer in enumerate(self.layers[::-1]): + inputs = activations[-i - 2] + outputs = activations[-i - 1] + grads_wrt_inputs = layer.bprop(inputs, outputs, grads_wrt_outputs) + if isinstance(layer, LayerWithParameters): + grads_wrt_params += layer.grads_wrt_params( + inputs, grads_wrt_outputs)[::-1] + grads_wrt_outputs = grads_wrt_inputs + return grads_wrt_params[::-1] + + def __repr__(self): + return ( + 'MultiLayerModel(\n ' + + '\n '.join([str(layer) for layer in self.layers]) + + '\n)' + ) diff --git a/mlp/optimisers.py b/mlp/optimisers.py index 01dd8b6..8222807 100644 --- a/mlp/optimisers.py +++ b/mlp/optimisers.py @@ -121,6 +121,7 @@ class Optimiser(object): and the second being a dict mapping the labels for the statistics recorded to their column index in the array. """ + start_train_time = time.clock() run_stats = [list(self.get_epoch_stats().values())] for epoch in range(1, num_epochs + 1): start_time = time.clock() @@ -130,5 +131,7 @@ class Optimiser(object): stats = self.get_epoch_stats() self.log_stats(epoch, epoch_time, stats) run_stats.append(list(stats.values())) - return np.array(run_stats), {k: i for i, k in enumerate(stats.keys())} + finish_train_time = time.clock() + total_train_time = finish_train_time - start_train_time + return np.array(run_stats), {k: i for i, k in enumerate(stats.keys())}, total_train_time diff --git a/notebooks/01_Introduction.ipynb b/notebooks/01_Introduction.ipynb index cfe69a1..a25d342 100644 --- a/notebooks/01_Introduction.ipynb +++ b/notebooks/01_Introduction.ipynb @@ -138,12 +138,37 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": { - "collapsed": false, "scrolled": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Hello world!\n", + "Hello again!\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Alarming hello!\n" + ] + }, + { + "data": { + "text/plain": [ + "'And again!'" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "from __future__ import print_function\n", "import sys\n", @@ -206,14 +231,24 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": { - "collapsed": false, "nbpresent": { "id": "2bced39d-ae3a-4603-ac94-fbb6a6283a96" } }, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAEPCAYAAADI01d4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlcVPX+x/HXd4YdBERQEXcFcgfXLCsst8q0zDWtLMv8\n3cxsu+237bbvtpuVlrmlmVqZpcm1Mndx33AHd5B9n/n+/jhTkYEyCnNm4PN8PObhmZlzZt58HeDD\nOd9Faa0RQgghhDiTxewAQgghhHBPUiQIIYQQokxSJAghhBCiTFIkCCGEEKJMUiQIIYQQokxSJAgh\nhBCiTFIkCCGEEKJMUiQIIYQQokxSJAghhBCiTF5mB3AHoaGhumXLlmbHcEu5ubkEBgaaHcMtSduU\nT9qmfNI25ZO2KV9lt8369etPaa0jzrWfFAlAvXr1WLdundkx3FJiYiIJCQlmx3BL0jblk7Ypn7RN\n+aRtylfZbaOUOliR/eRygxBCCCHKJEWCEEIIIcokRYIQQgghyiRFghBCCCHKJEWCEEIIIcrklkWC\nUupTpdQJpdTWcp5XSqlJSqlkpdRmpVTHUs/dqpTa47jd6rrUQgghRPXilkUCMBXod5bnrwaiHbex\nwAcASqkw4CmgG9AVeEopVbtKkwohhBDVlFvOk6C1XqGUanqWXQYCn2utNbBKKRWqlIoEEoCftNbp\nAEqpnzCKjZlnez///CMw8ybwCQCfQPANhtDGULsZ1G4KoY3Ay7cSvjLhDJtdcyg9jyMZ+RzJyOdY\nZgFHswrIzC+mxGan2KYpttmx2TWBvl6E+Hv/eYuo5UuLiCBaRAQSFuiDUsrsL0cIIVyjpAgyD8Pp\nA8Yt4yAUZEJRHhTnQVFuhV/KLYuECogCDpe6n+J4rLzH/0EpNRbjLASdIi2w67ty30yjyAuIIis4\nhqzgWLKCY8kLaIy2WC/wy3B/OTk5JCYmVvn7aK05nqdJzrBxINPOwSw7h7LtFNou/LUDvSEy0EKL\nEAsxYVZialup5XPhRYOr2sYTSduUT9qmfNI25Su3bbSNwNwUgrN2/XkLyEtFYa+U9/XUIuGCaa0n\nA5MB2rRspBn63l8VVn46ZBxyVGEHUZkpBOYZt8hjPxsv4FMLWl4JsddCdG8ICDPvi6lCVTkDWl5R\nCav2pZG46ySJu05yKD3/H/tEhvjRKCyABiF+1A/xJzLEj9AAb3ysFrytFrysCqtFkVtYQmZ+8Z+3\noxkF7D2Zw76TuWQXlpCcYSc5w86SgyUARNcN4pIWdejXNpKuzcKwWpwvGmR2uPJJ25RP2qZ80jbl\n+1vb5GdA8lLY9T3sWQqFmX/fWVkguDHUbmLcQptCQG3wCQLvAOOs+TO9K/S+nlokpAKNSt1v6Hgs\nFeOSQ+nHE8/1YiXWAGg94Cw7FMHxrZCyDlLWQMpao4DYvsC4KSs07g5trod2Q8A/1PmvqIYosdlZ\nseck89an8tOO4xSV/FXthgZ4c3GzOrRrGEK7qBDaNAimTtCFXebRWnMyp5Bdx7JZd+A0a/ans+HQ\nafacyGHPiRym/X6Q8CAf+rSpzzVtI+neos55FQxCCFGVrCV5sH4qbP0aDv4G9pK/ngxpDA07Q6Ou\n0LAL1G9XaZfIPbVIWAiMV0rNwuikmKm1PqqUWgK8UKqzYh/g0Qt+Ny8fiOpo3LqNNR7LOAS7FhuV\n3IFf4aDj9uMT0Pp66HSrUTjItXAAdh/PZs7aw3yTdIRTOYWA0TQdGoZwRWxdEmIj6NAwtNJ/QSul\nqFvLj7q1/Lgs2ljLpKjEzuaUDJbtPMH3W45yMC2PGasPMWP1IaJC/bmpW2OGdm5ERC3phyKEMJHW\nxh+lG6Zxyaa5YC8wHldWaHoZxF5t3MKaV1kEtywSlFIzMc4IhCulUjBGLHgDaK0/BL4HrgGSgTzg\nNsdz6Uqp54C1jpd69o9OjJUutDF0u8u45WfAnh9h43TY/z/YPMu4hcdA97uhw4ga2fFRa83KvWlM\nXrGP/+0++efjzSMCubFjQ26Ij6JBqL/Lc/l4WejcNIzOTcP4d99YdhzNZvHWoyxIOsKh9DxeXbKL\nt5bupl/bSEZf0oROTarnpSQhhJuyFcOWr2DlO3BiOwBWgCaXQtxIozBw0SVutywStNYjzvG8Bu4u\n57lPgU+rIle5/EOh/VDjlr7PKBY2fgmndsOieyHxJbjkHuh4K/gGuTSaGUpsdr7bcpTJK/ax7UgW\nAP7eVgZ1jGJI50Z0aBjiNqMNlFK0bhBM6wbB3Ncrhl+STzF91UGW7TjOok1HWLTpCN2b1+HeXtFc\n3LyO2XGFENVZcT5s+AJWTjJGJwAEhEPcTawuiaXbNaNcHsktiwSPFtYcrvoPJDwG27+BX143KsEl\nj8GKV6H7eOPsgrfr/4Kualprftx+nFeX7CL5RA4A4UE+jL6kKSO7NaF2oI/JCc/OYlFcERPBFTER\npGbkM2P1QT7//SC/70vj98lpdGsWxr29ounevI7bFDlCiGqgpBDWTIbf3oZcx1nX8BjocR+0HQxe\nPuSbNOpDioSqYvWCdoOhzSDYs8QoFlLWws/PwbpPjUKi3VCwuOt8Vs5Zsz+dlxbvYMOhDAAahwXw\nfwktuCE+Cj9vzxsqGhXqz0N9L2Ls5S2Y+tsBPvl1H6v3p3PTx6u5LDqc//RvbXZEIYSn0xq2zYel\nTxtzGQBExsFlD8BF/d3i94MUCVXNYjGuH8X0g32J8NOTcGwLzL8LVn0AfZ+Hpj3MTnneDqfn8cyi\n7SzdcRyAOoE+TLgqmhFdG+PjZf4H/EKF+Htzb69obuvRlKm/HeDjX/bxy55T9Hv7F65sZCW+azEh\nAd5mxxRCeJrDa2DJ48aIOYCIi6D3sxDdx606vEuR4CpKQYue0Ox/sGmWcUbhaBJMvdY4o9DvRQgM\nNztlhRXb7Ez5ZT9vL9tNQbGdQB8rd17enDsua06Qb/X7WAX7eTPhqmhGdmvMGz/tZuaaQ/x0sISE\n15bzQJ9YburaGIsMnRRCnEv+afjxSdj4hXE/MAJ6PgbxtxhnoN2M+yWq7ixWiB9pzKmw8l349Q3Y\nMseYGKPvC9BhuFtVkWVZsz+dJ77Zwu7jRr+D6zo04MlrW1E32M/kZFWvTpAvz9/QjpHdmnD/9N/Y\nmV7ME99sZWHSEV4e3J5m4YFmRxRCuKM/Li0sfhhyT4DVx+jQ3uM+8K1ldrpySZFgFp9ASHgY2g+B\nRRONoZPfjIPNs6H/mxDWzOyE/5BfZOPFxTv4/Hfj2lmTOgE8N7Atl8dEmJzM9Vo3CObhLn7k1bmI\npxZuY82BdPq9tYIH+8Rye49mMiGTEOIvmSnw3QOw+wfjfuPucN3bEBFrbq4K8PyLxp4urDncsgAG\nvg/+tWHfcviwhzGEUmuz0/0p6XAG1076hc9/P4i3VTHhypYsmXh5jSwQ/qCU4tr2kSy9/3IGdYyi\nsMTO89/vYNAHK/8c3SGEqOG2zIX3LzEKBN9g44/A0d97RIEAUiS4B6WMSxB3rzVmayzKgQX/grm3\nGdevTGSza95euocbP1jJvlO5xNQL4pu7L+X+PrEeOWqhKoQG+PDG0Dg+G92F+sF+bDqcwXXv/Mqc\ndYfRblToCSFcqDAb5v8fzBtjrK0QczXcvQY63+4WoxYqynOS1gRBETBkqnFWwTvQuH71QQ848Jsp\ncVIz8nlhdQFvLt2Nza65o0czFo7vQZsGIabkcXc9L6rLj/dfzg3xUeQX2/j33M3cOyuJ7IJis6MJ\nIVwpZZ1xRnjTDPDyh2vfgBEzITjS7GROkyLB3fxxVmHcL9CgI2SlGCMgVrwK9spZ+rMi/rf7JP0n\n/cLeTDuRIX7MuKMbT/RvLWcPziHYz5s3h8Xx+pAOBPhYWbjpCP3f+ZXNKRlmRxNCVDWt4ff34JM+\nxiKA9drBXf+DLmPcvkN6eaRIcFd1WsCYH41JNQB+/i/MHgUFmWc/7gLZ7Zq3lu5m9GdrOJ1XTLtw\nK99PuIxLWnrO8Ex3cGOnhiy6pwetI4M5mJbHjR+sZNaaQ2bHEkJUlaJc49LCksdA2+Diu+HOZR7T\n96A8UiS4M6u3MTPjTbPBLwR2fQcfXwkndlbJ253OLWL01LW8tXQPAPf3juG+Tr5uP52yu2oREcTX\n/7qEW7o3odimeeTrLTz5zda/LY8thKgG0vbClF6wdR74BMHQz6HfC9ViYT8pEjxBTF8Ymwh120Ba\nMky5CrYvrNS3SD6Rw/Xv/8aK3SepHeDNtNu6MuGqaCweeorMXfh5W3l2YFteGdweH6uFL1YdZNSU\n1ZzMLjQ7mhCiMuz+ESb3NNboqRMNd/4MrQeanarSSJHgKcKawx0/GYt9FOXAnJvh1zcrZZjkr3tO\nccP7v3EwLY82DYL5dsJlNXpoY1UY2rkRs++6mHrBvqw5kM6Ad39la2rVXjoSQlSx1R/BzGHG6IWL\n+hsFgodfXjiTFAmexCcQbpwCvZ8DlLEoyKIJxtrj52n6qoPc+tkasgtK6NO6Hl+N605UaPVbodId\nxDeuzaLxPejYOJSjmQUM/eh3lu88YXYsIYSz7DZj5sTF/wZth4RHYdh08As2O1mlc8siQSnVTym1\nSymVrJR6pIzn31RKJTluu5VSGaWes5V6rnLPybsDpeDSCcY1Ly9/2PA5fDnY6Q6Ndrvm2UXbeeKb\nrdjsmv9LaMGHozoR4COTcFalusF+zBx7MYPio8grsnHH5+uYsVo6NArhMQpzYNZIWP2hMbXyDZMh\n4RGPHb1wLm73G0EpZQXeA3oDKcBapdRCrfX2P/bRWt9Xav97gPhSL5GvtY5zVV7TtB4AwVHGqa59\nicaQm5FzIbTROQ8tLLHxwJxNfLv5KN5WxQs3tGNI53MfJyqHr5eV14d2IKq2P+/8nMxj87eQmpHH\ng31iUdX0B40Q1UL2MfhyCBzbbMyQO+xLaHqp2amqlDueSegKJGut92mti4BZwNl6gYwAZrokmbtp\n2AnuWGYsMXpyJ3zaF07uPushOYUljJm6jm83HyXI14tpt3eVAsEESike6BPLi4PaYbUo3lu+l/vn\nbKLYJiMfhHBL6fuNn7HHNht9xMYsrfYFArhnkRAFHC51P8Xx2D8opZoAzYCfSz3sp5Rap5RapZS6\nvupiuonaTeD2JdDoYshKhc/6wZGNZe6allPITR+v4tfkU4QH+TJr7MVc0kLmPzDTiK6NmXJrZwJ8\nrMzfmMq4L9ZTUGwzO5YQorTj2+DTfsYESZFxMOYnCG9pdiqXUO42t7xSajDQT2t9h+P+zUA3rfX4\nMvZ9GGiotb6n1GNRWutUpVRzjOLhKq313jKOHQuMBYiIiOg0Z86cqvmCXMRiK6TNtpepk76eEqs/\nW9s+Tkbtdn8+fyrfzmtrCziWp4nwVzzUxY+6AeeuEXNycggKCqrK6B6rMttmf6aN19cVkFMMrcIs\nTOjoh7+X5156kM9N+aRtyueObROcuZN2W57FuySX06Ft2dr2cWxeAS7PUdlt07Nnz/Va687n2s8d\ni4TuwNNa676O+48CaK1fLGPfjcDdWuuV5bzWVOBbrfXcs71nbGys3rVr14VGN19JkbHc9NZ5YPU1\n1oG46BoOpuVy08erSc3Ip3VkMFNv70LdWn4VesnExEQSEhKqNLanquy22X08m1FTVnMiu5C4RqFM\nva0LoQGeOZGVfG7KJ21TPrdrm+Rlxky3xXkQew0M/gy8K/azs7JVdtsopSpUJLjj5Ya1QLRSqplS\nygcYDvxjlIJS6iKgNvB7qcdqK6V8HdvhwKXA9jOPrba8fGDQx9B5DNgKYc7NHFs1m2EfrSI1I59O\nTWoz666LK1wgCNeKqVeLr8Z1p2Ftf5IOZzB88ipOZBeYHUuImmn3jzBzuFEgdLgJhn5hWoFgJrcr\nErTWJcB4YAmwA5ijtd6mlHpWKTWg1K7DgVn676dCWgHrlFKbgOXAS6VHRdQIFitc+zpcOhHsJYT/\nMI6OOYl0bRbGtNu7EuznbXZCcRZN6gTy1bjutIgIZOexbEZIoSCE6+36AWaPBFsRdLkTBr4HVrcb\nDOgSblckAGitv9dax2itW2itn3c89h+t9cJS+zyttX7kjONWaq3baa07OP79xNXZ3YJS7Gx7P5+o\nQXhh5x2fd/miWwpBvjXzQ+5pIkP8mX1Xdy6qX4u9J41LRTKNsxAusvN74xKDrQi6jYNrXgWLW/6q\ndIma+5VXY7uOZTPi49U8l38jC4JHYsWO74KxsOWsXTOEGwkP8uXLO7oRW68WySdyuOnjVZzKkUJB\niCq141uYcwvYi+Hif0G/l6rtJEkVJUVCNbP3ZA4jp6zidF4xPWPr0nf8JLjiEWPq0K/vNDo1Co9Q\nJ8iXL+/sRky9IPY4CoU0KRSEqBq7FsNXtxoFQvfx0PeFGl8ggBQJ1cqhtDxGfryaUzlFXBYdzgej\nOuHn4wU9HzXmFtd2+Hqs8c0gPEJ4kC8z7ryY6LpB7D6ew00fr+Z0bpHZsYSoXvYud5xBKIFL7oE+\n/5UCwUGKhGoiNSOfER+v4lhWAV2bhTH55s74eVv/2uGKh//szMicW42pnIVH+KNQaFk3iF3Hsx0L\ncp3/ol5CiFIOrYJZNxl9ELqONRbQkwLhT1IkVAMnsgoY+bExzDG+cSifju6Cv4/17zspBb2eNnrq\n2gph5gjjm0N4hIhaRh+FRmH+bE7J5I5p62RmRiEu1JGNxloMxXkQNxL6vSwFwhmkSPBwmXnF3PzJ\nGg6k5dE2Kpipt3UtfxSDUnD1K8Y3Q3Ge8c1xJMm1gcV5qxfsx5djLqZuLV9W70/n7i83yFoPQpyv\nEzvgi0FQmAWtr4cB79ToUQzlkRbxYPlFNsZMW8uu49m0rBvE57d3I8T/HPMgWCxw3SRoPdD45pg+\nCE4luyawuGCN6wQw/Y5u1A7wZtnOE9w/ZxM2u3vNmiqE2zt9ED6/HvLTIbqvMQmdxXru42ogKRI8\nVLHNzt0zNrDu4GkahPjx+e1dCQus4BS+Vi8YNAVa9oK8NJh+g7EEqvAIMfVqMe1244zRok1HeGrh\nVtxtenUh3FZumvHHUc4xaNIDhk4zZqsVZZIiwQNprXlk3hZ+3nmC2gHefD6mGw1C/Z17ES8fGPo5\nRHWCjEMwfTAUZFZNYFHp2jcMZcqtnfHxsjB91SHeWy5ng4Q4p6JcmDEE0pKhXlsYMQO8nfzZWcNI\nkeCBXlq8k3kbUgjwsfLZbV1pWfc8VwbzCYSbvoI6LeH4Fpg1EoplCmBPcXHzOkwaHodS8NqPu/lq\n3eFzHyRETWUrNkZ2pa6HkMYwci74hZidyu1JkeBhPvttPx+t2Ie3VfHhqE7ENQq9sBcMrAOjvoag\n+nDgF5g/FuzSa95T9GsbydPXtQHgka+3sHzXCZMTCeGGtIaF90DyT+AfBjd/DcGRZqfyCFIkeJAl\n247x7LfGelWvDu7A5TERlfPCtZvAqHngGwzbF8CSxyrndYVL3HpJU/4voQU2u+Zf0zew6XCG2ZGE\ncC8/PwebZoJ3gHEGITza7EQeQ4oED7Hx0GkmzNyI1vBgnxiuj4+q3Deo3xZGzASLN6z+EFZ9WLmv\nL6rUv/vGMig+ivxiG7dPXcuhtDyzIwnhHjZ8Ab+8Dspq9MNq2MnsRB5FigQPcDAtlzumraOwxM7w\nLo24u2fLqnmjpj2MJVEBfnjEWA1NeASlFC8Pbs9l0eGk5RZx29Q1ZObLrIyihtu7HL6daGxf+xpE\n9zY3jweSIsHNnc4tYvRna0nLLeLymAieu74tqipnBOswDBIeAzTMG0NQtvSa9xTeVgvvjexITL0g\n9p7M5V9frpfJlkTNdXx7qfUYJkDn281O5JGkSHBjRSV27pq+nv2ncmkVGcz7IzvibXXBf9kV/4YO\nN0FxHu22/NcYIik8QrCfN5+O7kJ4kC+/JafxxHyZQ0HUQNnHYMZQx2yKA6HXM2Yn8lhuWSQopfop\npXYppZKVUo+U8fxopdRJpVSS43ZHqeduVUrtcdxudW3yyqO15vH5W1izP516wb58NrpL+dMtVzal\n4Lq3oell+BadhhnDoCDLNe8tLljD2gFMubUzvl4WZq87zIf/22d2JCFcpygPZg6HzMPQsAvc8JFM\nt3wB3K7llFJW4D3gaqA1MEIp1bqMXWdrreMctymOY8OAp4BuQFfgKaVUbRdFr1Qf/7KPr9an4Odt\nYcotXagf4ufaAF4+MOwLcgMawont8PWdMjTSg8Q1CuXNYXEAvPzDThZvOWpyIiFcQGtYcLexcFNo\nExg+UyZLukBuVyRg/HJP1lrv01oXAbOAgRU8ti/wk9Y6XWt9GvgJ6FdFOavM0u3HeXHxTgDeGBpH\nu4YmTfjhX5utbZ8Av1DY/QMsk1N2nuSadpE83O8iAO6bk8TWVJlRU1RzK16FbV+DTy24aTYEVdIw\n8RrMHYuEKKD01HEpjsfOdKNSarNSaq5SqpGTx7qtHUezuHfWX0Mdr2ln7oQf+QGRxrAhixf89jYk\nzTA1j3DOuCuac2PHhhQU2xn7+TpOZheaHUmIqrF9ASx/HlAw+BOo28rsRNWCiy5yV7pFwEytdaFS\n6i5gGnClMy+glBoLjAWIiIggMTGx0kM6K6tQ88zv+eQWabpHWmmjUkhMTDU1U05ODomHgmjQ4g5i\n9nyIfcE9JB3MJCtEvgFzcnLc4nNzLn3raJJCLOzNLGDEez/zcFc/vC1VOEIGz2kbM0jblO982yYo\nex/xGx/GCuxtfiuHj/jCEedfx52Z9blxxyIhFWhU6n5Dx2N/0lqnlbo7BXil1LEJZxybWNabaK0n\nA5MBYmNjdUJCQlm7uUyxzc7IKatJK8gjvnEon915MX7e5i9dmpiYiNE2CfCdDcvaj+m4+3W4czmE\nNjrH0dXbX23j/uK6FjDw3d9Izijgx7QwXhncvkqH0npS27iatE35zqttso/Dx/8CexHEjaLFwLdo\nUZXDxE1i1ufGHS83rAWilVLNlFI+wHBgYekdlFKlz8EPAHY4tpcAfZRStR0dFvs4HnN7zy7a/udI\nho9GdXKLAuEf+r0EzRMg9yTMHgnF+WYnEhVUt5YfH9/SGT9vC1+tT+HT3w6YHUmIC1dSZMyFkJUK\njS6G/m8Yo7NEpXG7IkFrXQKMx/jlvgOYo7XeppR6Vik1wLHbBKXUNqXUJmACMNpxbDrwHEahsRZ4\n1vGYW5u15hBfrDqIj9XCh6M6UTfYxSMZKsrqBYM/g9pN4egmWHSv0ZtYeIS2USG8NqQDAM9/t51f\n95wyOZEQF+iHh+HwKgiOgmFfgJev2YmqHbcrEgC01t9rrWO01i201s87HvuP1nqhY/tRrXUbrXUH\nrXVPrfXOUsd+qrVu6bh9ZtbXUFHrD6bz5IKtADx/Q1viG7v5iM2AMBg+A7wDYfNsWPW+2YmEE/q3\nb8A9V7bErmH8zA0cTpc1HoSHWj8V1n0KVl8YNh2C6pqdqFpyyyKhpjiWWcC46RsotmlGX9KUIZ09\n5Bp/vTZwvaM4+PFJ2JdoahzhnIm9YugZG0FGXjF3fbGe/CKZ/0J4mEOr4bsHje3r3oKojubmqcak\nSDBJYYmNcdPXczK7kO7N6/D4tR42WqDN9XDZA6Bt8NVtcPqg2YlEBVktireGx9O0TgDbj2bx6Neb\nZepm4TmyjsKcm8FeDN3GQdxNZieq1qRIMMmzi7aTdDiDqFB/3nPVmgyVrefj0LI35KcbHRmL5NS1\npwjx9+ajmzsT4GPlm6QjfCYdGYUn+KOjYs5xaNID+vzX7ETVngf+ZvJ8X607zJerD+HjZeGDUR0J\nC/QxO9L5sVjhxikQ1hyObYHv7peOjB4ktn6tvzoyfr+D3/emneMIIUy25DFIWQPBDWHIVLB6m52o\n2pMiwcW2pmby+DdGR8XnBrahfcNQkxNdIP9Qo9OQlz9smml0JBIe45p2kYy7ogU2u+aemRs4lllg\ndiQhyrZpNqz9GKw+xiywMuWyS0iR4EKnc4sYN309RSV2RnRtxLAujc2OVDnqtYEBk4ztxQ9Dyjpz\n8winPNQ3lktb1uFUThF3z9hAUYnd7EhC/N2xrcaQa4CrX4GGnczNU4NIkeAiNrvm3tlJpJzOp0PD\nEJ4e0MbsSJWr/VDoOtboTDTnFsiVMfiewmpRTBoeT2SIH+sPnubFxTvOfZAQrpKfAbNHQUk+xI2E\nTqPNTlSjSJHgIu/8vIcVu08SFujD+6M64evlhjMqXqg+z0PDrsbsZ3Nvl6WlPUidIF9HB1rFZ78d\nYNGmI2ZHEgLsdpg/Dk7vh/rt4NrXZUZFF5MiwQVW7D7J28v2oBS8PTyOqNBqur65lw8MnQaBEbD/\nf44V2YSn6Ni4Nk9c2xqAh+dtJvlEtsmJRI3321uwezH4hcDQL8C7mv7sdGNSJFSxo5n5TJydhNYw\n8aoYLouu5p1tghvA4E9BWeCX12HPT2YnEk64pXsTBsY1IK/Ixl1frCensMTsSKKmOvAr/PycsT3o\nYwhrZm6eGkqKhCpUbLNz95cbSM8t4vKYCO65sqXZkVyj2eXGHAoAX98JGYfNzSMqTCnFi4PaEVMv\niL0nc3l8/haZaEm4XvZx45KltkOP+yGmr9mJaiwpEqrQS4t3suFQBpEhfrw1LA6LpQZdS+txv2Oi\npdMw9zZjEhThEQJ8vHh/ZEcCfKwsSDrCjDWHzI4kahK7DeaN+WvCpD/+4BCmkCKhiizecpRPft2P\nl0Xx7k0ePGHS+bJYYNBkY9KTlLWw9CmzEwkntKxbixcHtQPgmUXb2ZqaaXIiUWMkvggHfoHAujD4\nE2P1WWEaKRKqwKG0PP49dzMAj17Tik5N3Hxlx6oSEGbMimbxNlaL3L7A7ETCCQPjohjRtTFFJXbu\nnrGBrIJisyOJai4sbQOseNXo0zT4E6hV3+xINZ4UCZWssMTG3TM2kF1YQr829bn90qZmRzJXoy7Q\nx9H5aMF4SN9nbh7hlKeua03ryGAOpuXx8FxZCEpUocxUWu14w9ju+ZjRt0mYToqESvbi9zvZkppJ\nozB/Xh7cHiVjeo2V2lpdB4VZxoqRJYVmJxIV5Odt5f2RHQny9WLx1mNMXXnA7EiiOrKVwLwxeJdk\nQ4uroMevURnFAAAgAElEQVQDZicSDm5ZJCil+imldimlkpVSj5Tx/P1Kqe1Kqc1KqWVKqSalnrMp\npZIct4WuzL14y1GmrjyAt1Xx7oiOhPjL4iOAMfnJgHchtDEcTYKf/mN2IuGEpuGBvDK4PQAvfL+D\nzSkZJicS1U7iC3Dodwp9woy+TBa3/NVUI7nd/4RSygq8B1wNtAZGKKVan7HbRqCz1ro9MBd4pdRz\n+VrrOMdtgEtC8/d+CI9d04oOjTx84abK5h8Kg6ca/RNWfwjbXVq/iQt0TbtIbunehGKbZvyMjdI/\nQVSe5KXGnCrKwvbWD0JguNmJRCluVyQAXYFkrfU+rXURMAsYWHoHrfVyrXWe4+4qoKGLM/5N6X4I\nfdvUY/QlTc2M474adoLezxjbC8bD6QOmxhHOeeyaVrSODOZQeh6Pfi3zJ4hKkHUUvr7L2E54jMzQ\naramTTWg3O0bXSk1GOintb7Dcf9moJvWenw5+78LHNNa/9dxvwRIAkqAl7TW35Rz3FhgLEBERESn\nOXPmnHfmGTsK+fFgCeH+imcu8SfQu/r0Q8jJySEoKKjyXlBr2m59gfC0NWTVimZj/Itoi2delqn0\ntvEAx3LtPL0ynwIbjG7jQ0Kjsv/vamLbVJS0jUHZbXTY9B9CM7eSXrsDm9s/RU5uvrRNOSr7c9Oz\nZ8/1WuvO59rPowegKqVGAZ2BK0o93ERrnaqUag78rJTaorXee+axWuvJwGSA2NhYnZCQcF4Zlm4/\nzo8/rMPLophy+yXEVbPLDImJiZxv25SrWwf46HKCM/dwRXEi9PXMNR6qpG08gH9UKvfOSmLmrhKG\n9epGq8jgf+xTU9umIqRtHJa/CJlbIageYWPmkhBUV9rmLMxqG3e83JAKNCp1v6Hjsb9RSvUCHgcG\naK3/7C6vtU51/LsPSATiqyrokYx8Hpy7CYB/94utdgVClQkIc6zvYIXf34XdP5qdSDhhYFwUw7s0\notAxf0KurO8gnLX/F1jxCqCMdRmC6pqdSJTDHYuEtUC0UqqZUsoHGA78rZebUioe+AijQDhR6vHa\nSilfx3Y4cCmwvSpCltjsTJyVREZeMQmxEdzRo3lVvE311agrXPmEsf3NOOPapPAYT13Xhph6Qew7\nmctTC7eZHUd4ktw0Y00XbYfLH4TmV5z7GGEatysStNYlwHhgCbADmKO13qaUelYp9cdohVeBIOCr\nM4Y6tgLWKaU2Acsx+iRUSZEwadke1hxIp24tX14b0qFmrctQWS6dCM17Qp7jh4bdZnYiUUH+Plbe\nvakjft4W5q5P4ZuN/zjZJ8Q/aQ3f/B9kH4VGF8MV/xjhLtyM2xUJAFrr77XWMVrrFlrr5x2P/Udr\nvdCx3UtrXe/MoY5a65Va63Za6w6Ofz+pinwr957ineXJKAVvDYsjPMi3Kt6m+vtjfYfAusZc7b+8\nYXYi4YSYerV46jqjN/rj87dw4FSuyYmE21v1AexZAn6hcOMUWZfBA7hlkeDO0nOLmDgrCa3hnp4t\nuaSljOm9IEF1YdBHxnbiC3Bwpbl5hFOGd2nEte0iyS2ycc/MjRSV2M2OJNzVkY1/TaQ28D0IbXT2\n/YVbkCLBCVprHvpqEyeyC+nStDYTroo2O1L10OJK6HGfcY1y3h2Ql252IlFBSileGNSOhrX92ZKa\nySs/7DQ7knBHhdkw93awF0PXsdCqv9mJRAVJkeCEqSsPsGznCUL8vXlreDxeVmm+StPzcWjYBbJS\nYeE9xrVL4RFC/L2ZNCIeq0Ux5df9/LzzuNmRhLv57kFjcbd67aD3c2anEU6Q33IVtO1IJi9+b/yV\n9PKN7YgK9Tc5UTVj9TauUfoGw85vYd2nZicSTujYuDYP9okF4MGvNpNRIJcdhMOmWbB5FngHGEOf\nvf3MTiScIEVCBeQVlRjXW212RnZrTL+2kWZHqp5qN4Xr3jK2lzwGx6tkYIqoIndd3pweLcNJzy3i\n4y2F2O1yNqjGS9sL3zlWdLz6ZYiIMTePcJoUCRXw9MJt7DuZS0y9IJ7sf+ZaU6JStb0R4kZBSYFx\nDbM43+xEooIsFsUbQzsQFujDtjQ7k3/ZZ3YkYaaSIpg3BopyoM0NEH+z2YnEeZAi4RwWbTrCnHUp\n+HpZHOPCrWZHqv6ufhnqtISTO2DJ42anEU6oG+zHa0OMZaVfW7KLTYdlWeka6+fnjBENIY2h/1vG\nkvHC40iRcBaH0/N4bP4WAJ7s35qYerVMTlRD+AYZ1y6tPrDuE9ixyOxEwglXXlSP3k28KLFrJsza\nSI5M21zzJC+DlZOMqddvnGIsFS88khQJ5Six2Zk4O4nsghL6tK7HyG6NzY5Us0R2gF6OZaUX3gOZ\nMqOfJxkS40OryGAOpuXxn2+2mh1HuFLOSZg/zthOeBQadzM3j7ggUiSUY9LPyaw/eJr6wX68fGN7\nlJwqc71u46BlL8g/DfPvkmmbPYiPVfHOiDj8vC18vTFVpm2uKbSGBf+C3BPQpAdcdr/ZicQFkiKh\nDGv2p/Puz3tQCt4cFkftQB+zI9VMFgtc/8Ff0zb/+qbZiYQTWtb9a9rmJ77ZyqG0PJMTiSq3+iPY\n86Mx7fKgj8Aifbg8nRQJZ8jMK2birI3YNfwroQXdW9QxO1LNFlTXKBQAlr8Ah9eam0c4ZXiXRlzd\ntj45hSVMmLWRYpvMn1BtHdsCPz1pbA94B0IamptHVAopEkrRWvPI15s5kllAXKNQJvaSMb1uIboX\nXHw3aJsxpKogy+xEooKUUrw4qB2RIX4kHc7g7aV7zI4kqkJRHswdA7Yi6DQaWg845yHCM0iRUMrs\ntYdZvPUYQb5eTBoej7dMu+w+ej0F9dtDxsG/JmcRHiE0wIe3hsWhFLyXmMyqfWlmRxKVbcljcGoX\nhMdC3xfNTiMqkfwWdEg+kcMzi4wZ/p6/oS2N6wSYnEj8jZevY0rXANgyBzbNNjuRcEK35nUY37Ml\nWsN9s5PIyCsyO5KoLDsWwfrPjCHLgz8BH/nZWZ2cs0hQSo1wRZAz3rOfUmqXUipZKfVIGc/7KqVm\nO55frZRqWuq5Rx2P71JK9a3I+2ng3lkbyS+2MSg+ioFxUZX2tYhKFB4N/V4ytr97wFgwRniMCVdF\nE984lKOZBTw8bzNaFvHyfJmOBdkAej8L9duZm0dUuoqcSZimlPpZKdWqytMASikr8B5wNdAaGKGU\nOnMu5DHAaa11S+BN4GXHsa2B4UAboB/wvuP1zup0gWbbkSwahwXwzMA2lffFiMrX8RZoNQCKsmHe\nnWArNjuRqCBvq4VJw+Op5evFkm3HmbX2sNmRxIWw24yhyfmnoWVvY8iyqHYqUiR0AryBJKXUa0qp\noCrO1BVI1lrv01oXAbOAgWfsMxCY5tieC1yljIkMBgKztNaFWuv9QLLj9c4qq0hjtSjeHh5HLT/v\nSvtCRBVQCgZMguCGkLoOEl8yO5FwQqOwAP57Q1sAnlm0jeQTOSYnEuftt7eNocmBEXD9+zLtsgfJ\nL6r4nDPnLBK01lu01pcBY4FRwK4qvgQRBZT+EyPF8ViZ+2itS4BMoE4Fjy3T/b1jiG9c+zwjC5fy\nrw2DJgMKfnkdDvxqdiLhhIFxUQyKj6Kg2M6EmRspLJFJsjxOynpY/ryxff2HxlBl4TGe/77iK+x6\nVXRHrfU0pdQ3wAvAF0qpscB4rfU25yOaz5F/LEBAvaa04jCJiSkmp3I/OTk5JCYmmh2jTE2bDKHp\nwTkUzLyFdZ3fpsTbtWtruHPbmO1cbdO7juYXf8X2o1lMmLKUERf5ui6cyTz9c2MtyaPzuvvwt5dw\nuOEA9qZ6QWpipby2p7dNVaqsttlwvITpGwsrvH+FiwQArXUmcLdSagrwObBRKfUO8LTWOtuppOVL\nBRqVut/Q8VhZ+6QopbyAECCtgscCoLWeDEwGaBkTq6/s2bNSwlc3iYmJJCQkmB2jbJddCp/txy9l\nLT3SZ8PQL1x6ytOt28ZkFWmbyNgMBn+wkiUHSrjpyo5cERPhmnAm8/jPzfz/g4JjUK8djUZPoZFX\n5RV4Ht82Vagy2uZYZgET317h1DEVGgKplPJWSnVVSk1QSs0A5mF0DvQC7gZ2KqUqa/aMtUC0UqqZ\nUsoHoyPiwjP2WQjc6tgeDPysja7SC4HhjtEPzYBoYM253tAql9I8k9XbWGHON9gYhrXhc7MTCSfE\nNQrlvt7GhGUPzNnEqZyK/3UjTLJlLmyaAV7+xnDHSiwQRNWy2bVj+HExlztRkFdkCOTvQBbwO/A6\nEAMsAoZh/KVeF6Nz4Vyl1AV3b3X0MRgPLAF2AHO01tuUUs+WKkQ+AeoopZKB+4FHHMduA+YA24Ef\ngLu11nLBszqr3RSufcPY/uEROLnb1DjCOeOuaMHFzcM4lVPIQ19tkmGR7uz0Afj2PmO734sQEWtq\nHOGcySv28fu+NMKDfHh9SIcKH1eRMwlZwItAHyBUa91Za32v1vorrfURrXWW1voB4AngsfNKfwat\n9fda6xitdQut9fOOx/6jtV7o2C7QWg/RWrfUWnfVWu8rdezzjuNitdaLKyOPcHPth0D74VCcZ0zb\nXCJ/kXoKq0Xx5rA4QgO8Wb7rJFNXHjA7kiiLrcQYclyYBRf1N6ZeFh5j0+EMXv9xFwCvDu5ARK2K\nnwGqyOiGvlrrZ7XWy7TWuWfZdQXGmQUhXO+aV42zCsc2w7JnzU4jnBAZ4s9Lg9oD8OL3O9l+RNbm\ncDsrXoGUNVCrgbF4kwx39Bg5hSXcO2sjJXbNbZc2pedFzo1EqcxpmTfxz/kMhHANv2C48ROweMHv\n70LyUrMTCSf0a1ufm7o1pshmZ8KsjU6N4xZV7OBKWPEqoIzlnwPCzE4knPDUgm0cSMvjovq1eLjf\nRU4fX2lFgtY6X2u9qLJeTwinNewMPR1XvOb/H+ScNDePcMqT17amZd0gkk/k8Nx3FR/HLapQ/mnj\nMoO2w2X3Q7PLzU4knLAgKZV5G1Lw87bwzoh4/LzPOQHxP8gCT6J6uXQiNL0Mck/AN/8HdrvZiUQF\n+ftYmTQ8Hh+rhRmrD/HD1mNmR6rZtIZF90JWCkR1goRHzU4knHA4PY8n5m8F4Mn+rYmud37zyEiR\nIKoXixVu+MiYlTH5J1j9odmJhBNaNwjmkauNU6IPz9vMkYx8kxPVYBs+h+0LwKeWMdTYKlPWe4pi\nx2W77MIS+rWpz01dG5/3a0mRIKqfkCgY8K6xvfQpOLrJ3DzCKbdd2pSesRFk5hdz3+wkbHYZFuly\nJ3fB4oeN7f5vQFhzc/MIp0xatoeNhzKIDPHjpRvboS6go6kUCaJ6atUfOo8BWxHMHQNFZxuYI9yJ\nUopXh3QgPMiX1fvTeX95stmRapbiAuN7piTfGFrcfqjZiYQTVu1L493lySiFY3ixzwW9nhQJovrq\n+zxEtIK0PcZES8JjhAf58uYwY8KXt5btYf3BdJMT1SBLn4bjW6B2M7j2NbPTCCeczi1i4qwktIbx\nPVtycfM6F/yaUiSI6svbMXWs1de4vrr1a7MTCSdcFh3BXZc3x2bXTJiZRGZ+sdmRqr/dP8LqD4yh\nxIM/AV/XLpomzp/Wmn/P28yxrAI6Ng7l3quiK+V1pUgQ1Vu9NsYZBYBFE+H0QXPzCKc80CeW9g1D\nSM3I57H5W2Ta5qqUdRS+ccysf+UTxogG4TGmrzrIT9uPU8vPi7eHx+NlrZxf71IkiOqvyx3GVLKF\nmca0zTb5i9RT+HhZmDQ8nkAfK99tPsrstYfNjlQ92W0wfyzkpUHznnDJvWYnEk7YcTSL577bAcBL\ng9rTKCyg0l5bigRR/SllTCUbHAUpa2H5C2YnEk5oGh7Ic9e3BeDpRdvYc7yyVqUXf/r1Tdi/AgLC\njSHEFvnV4Cnyi2zcM3MjRSV2RnRtxLXtIyv19eWTIGqGgDAY9DEoi/EDcV+i2YmEEwZ1bMigjlEU\nFNu5Z+ZGCopl2uZKc3jNX4XzDR9BrXrm5hFOefbbbSSfyKFl3SD+079Npb++FAmi5mh6KVz+b0DD\n13dB7imzEwknPDewLc3CA9l5LJv/yrTNlSM/wxjuqG3QfTxE9zI7kXDCd5uPMnPNYXy8jGmX/X2c\nn3b5XKRIEDXL5Q9B40sg5xjMHyfTNnuQQF8v3hlhTNs8fdUhfth61OxInu2PaZczD0GDeLjqKbMT\nCSccSsvjkXmbAXji2la0igyukveRIkHULFYvuPHjv6ZtXvWe2YmEE9pGhfw5bfO/524m5XSeyYk8\n2PrPYPs34BNkrKDqdWGT7gjXKSqxc49j2uW+bepx88VNquy93KpIUEqFKaV+Ukrtcfxbu4x94pRS\nvyultimlNiulhpV6bqpSar9SKslxi3PtVyA8QkhDGPi+sb30aUhZb2oc4ZzbLm3KVRfVJaughHtn\nJVFsk7NBTju2FX5wLNh03dtQp4W5eYRTXvtxF5sOZxAV6s8rN3a4oGmXz8WtigTgEWCZ1joaWOa4\nf6Y84BatdRugH/CWUiq01PMPaa3jHLekqo8sPNJF10C3/wN7CcwdbVybFR7hj2mb6wf7sf7gad74\nabfZkTxLUS7MvQ1KCiD+Zmg32OxEwgnLd51g8op9WC2KSSPiCAmo2oW33K1IGAhMc2xPA64/cwet\n9W6t9R7H9hHgBBDhsoSi+uj9DETGQcYhWDTBuEYrPEJYoA+TRsRjUfBB4l7+t/uk2ZE8x/cPwand\nEHERXP2K2WmEE45lFvDAHGPBugf6xNCpSViVv6e7FQn1tNZ/9EY6Bpx1LI5SqivgA+wt9fDzjssQ\nbyqlfKsop6gOvHxhyGfGUrjbF8C6T81OJJzQtVkY9/eOAeD+2UkczyowOZEH2DQLkr4EL38YMhV8\nKm/SHVG17FozcfZG0nOLuCw6nHGXu+YSkXL1NKdKqaVA/TKeehyYprUOLbXvaa31P/olOJ6LBBKB\nW7XWq0o9dgyjcJgM7NVaP1vO8WOBsQARERGd5syZc95fU3WWk5NDUFCQ2TGqVN3jK2i943Xsypv1\nnV4lN6hZhY6rCW1zvlzVNnateX1dAdvS7FwUZuHfXfywVOH12cpg1ufGPy+FzusewGovYGfseI5F\n9nZ5hnOR76nyzd6Ww+LDimAfxbOX+hHqe2F/4/fs2XO91rrzufZzeZFwNkqpXUCC1vroH0WA1jq2\njP2CMQqEF7TWc8t5rQTgQa11/3O9b2xsrN61a9cFZa+uEhMTSUhIMDtG1Vs4ATZMgzotYWxihRa2\nqTFtcx5c2TYnsgu45u1fOZVTyMRe0UzsFeOS9z1fpnxuivNhSi84vhXaDoYbpxgzkboZ+Z4q2697\nTnHzJ6tBwZdjunFJy/ALfk2lVIWKBHe73LAQuNWxfSuw4MwdlFI+wHzg8zMLBEdhgTK6el4PbK3S\ntKL6uPplqNsG0pKNhaDcqHgWZ1e3lh9vDYtDKXh72R5WJsskWf+w+GGjQAhrAf3fdMsCQZTtRFYB\nE2dvRAP3XhVdKQWCM9ytSHgJ6K2U2gP0ctxHKdVZKTXFsc9Q4HJgdBlDHb9USm0BtgDhwH9dG194\nLG9/GDoNvANh61xjDLnwGD2iwxnfsyVaw4RZSZzIlv4Jf9o8xzhL5uVnfMb9qmbSHVH5bHbNhFkb\nOZVTRKswC/dcWTnLPzvDrYoErXWa1voqrXW01rqX1jrd8fg6rfUdju3pWmvvUsMc/xzqqLW+Umvd\nTmvdVms9SmudY+bXIzxMeLQxZhxg8SNwdJO5eYRTJvaK4eLmYZzKKWTCzI3Y7HI2iJO7jTNjYJwt\nq9/O3DzCKW8v28OqfemEB/lyVwdfrBbXnwFyqyJBCNO1HwKdRoOtEL4aDQVZZicSFWS1KCYNjyc8\nyJdV+9J5a2kNnz+hKA++uhWKc6HdEOh467mPEW7j1z2neOfnPSgFk4bHXXBHxfMlRYIQZ+r3EtRr\nB+n7YOE90j/Bg9QN9mPSiDgsCt5dnlyz509Y/BCc2A51oqH/W9IPwYMczcxnwqyNxuWzK13fD6E0\nKRKEOJP3H2PIg4y57ddMNjuRcMIlLcK5r1cMWsN9s5M4mplvdiTX2zjduHk5+tr4yrBCT1FsszN+\nxl/zIUy4yvX9EEqTIkGIsoS3hIHvGttLHofDa83NI5xyd8+WXB4TQXpuEffM2Fiz1nc4uhm+e8DY\nvvZ1qNfG3DzCKS8v3sn6g6epH2yM2jGjH0JpUiQIUZ42NzjWdyg2ru3mytA6T2GxKN4caqzvsO7g\naV78fqfZkVwjPwPm3GKsy9DxFogfaXYi4YQfth5lyq/78bIo3hsZT50g8ycNliJBiLPp/Sw07ApZ\nqTDvDrDbzE4kKqhOkC/vj+qIt1Xx6W/7+XbzEbMjVS2tYcHdcHo/1G8PV79qdiLhhAOncnnoq80A\nPHpNK5esy1ARUiQIcTZePkb/hIA6sG85/O9lsxMJJ3RsXJsnrm0NwMNzN5N8ItvkRFVo5STY+S34\nhcDQz8Hbz+xEooLyi2z835cbyC4s4eq29bn90qZmR/qTFAlCnEtIFNz4CaDgf6/AnqVmJxJOuKV7\nEwZ0aEBukY1x0zeQW1hidqTKd+A3WPqMsX3DRxBWsfVHhPm01jw2fws7jmbRLDyQlwe3R7nRSBQp\nEoSoiBY9oefjgIZ5YyB9v9mJRAUppXhxUDui6waRfCKHh+dtxp3WrLlgWUeMPjPaBj3ug9irzU4k\nnPD57weZvzEVf28rH47qRLCft9mR/kaKBCEq6rIHIOZqKMiA2TdjsRWanUhUUKCvFx+M6kSgj5Vv\nNx/lk1+rSZFXUmh0VMw9Cc2ugJ5PmJ1IOGHdgXSe+3Y7AK8Mbk9s/XMvLOdqUiQIUVEWCwz6yFgk\n5/gWYne9JxMteZCWdYN4bUgHAF5cvJOVe6vBaJXFD0PKWghpBIM/A6uX2YlEBZ3ILuBfX26gxK4Z\n06MZ13VoYHakMkmRIIQz/EJg2HTwDqTeif/B6o/MTiSccHW7SP6V0AKbXTN+xkZSMzx4oqUNnxsL\nkVl9YdgXEFjH7ESigoptdsZ/uZET2YV0bRbGI1dfZHakckmRIISz6rX+a6KlHx83Oo0Jj/FAn9g/\nJ1oa98V6Coo9cFhr6nr47kFju/+b0CDe3DzCKf/9djtrDqRTL9iXd2+Kx9vqvr+K3TeZEO6s7SAO\nNboB7CVGp7HMFLMTiQoyFoKKo1GYP1tSM3ls/hbP6siYcwJm32IsQtZ5jEyY5GHmrD3MtN8P4mO1\n8P7ITtSt5d5DVaVIEOI87W92s9FZLPckzBoJxR586rqGCQ3wYfLNnfH3tvL1hlSmrTxgdqSKKSmC\n2TdDVooxyVe/l8xOJJyw4dBpnvhmKwDPXd+GTk1qm5zo3KRIEOI8aYvVmGipdlM4mgQLxktHRg/S\nKjKYlwe3B+C573awMtnNOzJqDd8/CIdXQa0GRt8YLx+zU4kKOp5VwLgv1lNks3NL9yYM69LY7EgV\n4lZFglIqTCn1k1Jqj+PfMssspZRNKZXkuC0s9XgzpdRqpVSyUmq2Ukq+g0TVCgiD4TPBOxC2zoXf\n3jI7kXDCgA4NGHeF0ZHxXzM2cDAt1+xI5Vs7BTZMAy8/GP4l1KpndiJRQQXFNu76Yj0nsgvp1iyM\nJ/u3NjtShblVkQA8AizTWkcDyxz3y5KvtY5z3AaUevxl4E2tdUvgNDCmauMKgdGRcZBjlMPSZ2D3\nj+bmEU55qG8sV15Ul4y8Yu6Yto7sgmKzI/3T/l+M4Y4AA96BqI7m5hEVprXmiW+2knQ4g6hQf94f\n2dGtOyqeyd2SDgSmObanAddX9EBlzGN5JTD3fI4X4oK0ug4SHuPPGRlP7jY7kaggq0Xx9vA4WtYN\nYs+JHCbOSsJmd6PLRqcPGBMmaRtcMgHaDzU7kXDC5BX7mLs+BT9vCx/d3MktVnZ0hrsVCfW01kcd\n28eA8s6n+Sml1imlViml/igE6gAZWus/JmZPAaKqMKsQf3f5Q9BqABRmwYyhkJdudiJRQbX8vJly\nS2dC/L1ZtvMEr/+4y+xIhoJMmDEc8tOhZW/o9bTZiYQTftp+nJd+MJYpf2NoHG2jQkxO5Dzl6qE/\nSqmlQP0ynnocmKa1Di2172mt9T/6JSilorTWqUqp5sDPwFVAJrDKcakBpVQjYLHWum05OcYCYwEi\nIiI6zZkz5wK/suopJyeHoKAgs2O4pbLaxmIrIH7jo9TK2UdGSBs2dXgGbXGvudhdwVM/N9vTbLy2\nrgC7hjvb+XBpVOX/31W0bZTdRtut/6VO+gZyAxqyMf5lSrw9r02d4amfm7Iczrbz31X5FNpgULQ3\nA1pcWBe5ym6bnj17rtdadz7Xfi4vEs5GKbULSNBaH1VKRQKJWuvYcxwzFfgWmAecBOprrUuUUt2B\np7XWfc/1vrGxsXrXLjf5y8HNJCYmkpCQYHYMt1Ru22SmwpSrIPsoxI2Ege+BG63q5gqe/Ln5/PcD\n/GfBNrytiuljutGteeXOZFjhtvn+IVgz2Vim/I5lNWJlR0/+3JR2MruQ69/7jdSMfK6Pa8Cbw+Iu\neGXHym4bpVSFigR3u9ywELjVsX0rsODMHZRStZVSvo7tcOBSYLs2qp3lwOCzHS9ElQuJghEzwcsf\nkr6UEQ8e5pbuTRl9SVOKbZq7pq9n/ykTRjysnmwUCFYfGPZljSgQqouCYhtjv1hHakY+8Y1DeelG\n91r62VnuViS8BPRWSu0Bejnuo5TqrJSa4tinFbBOKbUJoyh4SWu93fHcw8D9SqlkjD4Kn7g0vRB/\naBAPgyYb20ufhu0Lz7q7cC9P9m/NVY4RD7dPXcvp3CLXvfmepfDDHyMZ3oUm3V333uKC2O2aB77a\nxMZDxkiGyTd3xs/banasC+JWRYLWOk1rfZXWOlpr3Utrne54fJ3W+g7H9kqtdTutdQfHv5+UOn6f\n1rqr1rql1nqI1lrW8hXmaT3gr45mX4+FlHVmphFOsFoUk0bE0zoymP2ncrlr+noKS1ywxsOxrfDV\naFZwCgMAACAASURBVNB2oyNsh2FV/56i0rz8w06+23yUWr5efDK6MxG1PGskQ1ncqkgQotq5dCLE\nj4KSfJgxDNL2mp1IVFCg4wd9vWBf1uxP55F5VbzGQ2YKfDkYirKhzSDHkFrhKb74/QAfrdiHl0Xx\nwf+3d+dxUZZrA8d/9wwgIAiyuCSoGGoa7gupgaDmcrRU0rLUNLc6lXVOeyfr5Hnt5Dnvq9l2THMn\nM7UyrTTTFJfct8Q1CbVQFFcE2eF+/3hGjxoIJczzANf385mP82wz19wOM9fc65A23FGrmtkhlQpJ\nEoQoS0pBnylwe1fIOGt8CVy2+PS/4qraPh7MHNYOTzc7S3af4N8ry6iDc+ZF+HiA0dm1XifoNxVs\n8vFcXqw+cJq/L9sPwFsxzbi7YYDJEZUeeRcKUdbsrvDAXKjVHM4nGjUKORlmRyVKKKyOD/8Z3Bq7\nTTE17ufSXwwqLxsWDoEzByGgsTHlsqu1VwYU/7U36SJjF+ymQMMzXRsysG2w2SGVKkkShHCGKt4w\neDH41IUTO4xZGQuc0MYtSkVU4xpMjGkGwBtf7WdFfHIxV5RQQQF8+Wc4tgG8asGQz8DD+isDCsPR\ns5cZMWc7mbn53N86iL90a2h2SKVOkgQhnMXb8SXg7guHl8M3z8mqkeXIwLbBvNCjMVrDMwv3sO3o\nLc6oqTWseg32fQ5uXkYS6Vs+VgYUxqqOQ2du5Wx6DhENA3grplm5HupYFEkShHCmwMbw0KfGSn47\nZ8Oa/zE7IvE7PBF1O0PuqktOXgGj5m7n8Km0P/5gGyfD5vfB5goPzIPazUsvUFGmUjNzGTZrG0kX\nMmkR7MuHQ9rg5lIxv04r5qsSwsrqdYCBc0DZYcMk2PS+2RGJElJKMf6+MLo3rcmlrDyGzNz6x5aX\n3jELvv8HoIwVREO7lnqsomxk5eYzau52Dp1Ko0FgVWYPb0fVKi5mh1VmJEkQwgyNe0G//xj3v3sV\ndn9sbjyixK7ModChgT9n0rIZPGMrp1KzSnx9YMoG+PpZY6P3JAi7v4wiFaUtL7+Apz7ZxfZjF6hV\nzZ3YkeH4Vb21NRmsTpIEIczSYhD0/Jdxf9lYOPi1ufGIEnN3tfPRsLa0CPYl6UImQ2Zu5XxJZmVM\nWE2Tg1MADV1eg3YjyzxWUTryHbMprj6Ygo+HK7Ej21PH18PssMqcJAlCmOmux6HzS8YMe589Cgmr\nzY5IlJBXFRfmPtqOxjW9SUhJZ9isbaRl5RZ9wbEfYOFQbDoPOjwFEc85L1hxSwoKNK98sZele05S\n1c3O7Efb0bCmt9lhOUXFbUi5Rbm5uSQlJZGVVfJqxIrIx8eHo0ePEhQUhKtr5Vvy2CmiXjEm09k2\nDT4dDA8vggadzY5KlICvpxuxI9sz4MPNxJ9IZeScHcx+tJA26l+2wPyBkJtBcq1u1O4+odKtDFpe\naa35+7L9LNqRhLurjVnD29G6buUZpipJQhGSkpLw9vamfv36FXJYS0ldunSJnJwckpKSCAmRlejK\nhFLQ61+Qn2OMeFgwCAZ/BvU7mR2ZKIEa1dyZPyqcgR9uZtux84yYs53Zj7bD083x8Zq0w5hNMfcy\nNH+Qw9UfpHYl/kwpT7TW/HP5QWK3HMfNxcZHj7Qt9aXDrU6aG4qQlZWFv79/pU4QwOjN7e/vX+lr\nVMqcUtB7MrQcArkZxq/OX7aYHZUooWA/TxaMuYua1aqw9aiRKGTk5MHJ3RAb89/1GPr+xxjVIixP\na82k737iow1HjfUYBrcmomGg2WE5nSQJN1HZE4QrpBycxGaD+96F5oOMX50fD4Bft5sdlSihkICq\nLBh9FzW8q7Al8Tz/+Gghel4/yE6FJvcZS4fbpfK2PNBa8++Vh3l/bQJ2m+K9h1rRtUlNs8MyhSQJ\nQliJzW4MjQy73/j1GdvP6PAmyoUGgV4sGHMXUVV/4ZWU51FZF8lv2Avun2ms4SEsT2vNm98cZGrc\nz7jYFO8OakWvZrXNDss0kiQIYTU2O/SfDs0GQk46fHw//LzG7KhECd2esZdZtgn4qAxW5rdl6KU/\nk5YntXHlQUGB5o1l+5mx8SiudsUHg1vTu3nlTRDAYkmCUspPKbVKKXXE8e9vupAqpaKVUnuuuWUp\npfo5js1RSh295lhL57+KstexY8diz8nMzKRz587k5xe9iFBOTg6RkZHk5eWVZniiNNhdoP80aDUU\n8jKNlSMPrzA7KlGcn9dAbAy23HTSGvblfzxeZNPxdB7+qITzKAjTFBRoXv1yH3M3H8fNbmPa0Db0\nuLOW2WGZzlJJAvAy8L3WuiHwvWP7OlrrtVrrllrrlkAXIAP47ppTXrhyXGu9xylRO9mmTZuKPWfW\nrFnExMRgtxfdScrNzY2uXbuycOHC0gxPlBabHe59F9qPMUY+LBwC+74wOypRlMMrjGQuLxNaDsH7\nodkseDyCev6exJ9I5cFpmzl9SToAW1FOXgF/XbSHBdt+oYqLjRnD2tLljsrZB+FGVksS+gJzHffn\nAv2KOX8AsEJrnVGmUZnk8uXL9O7dmxYtWhAWFnb1y9zLy4tjx47RpEkTRo8ezZ133kn37t3JzMy8\neu38+fPp27fv1e3o6GhWrVoFwLhx4xg7diwA/fr1Y/78+U58VeJ3sdmg17+h0zNQkGcsMb19ptlR\niRvtWWAkcfk50G403Pce2OwE+3my+LEONKrpxZGUdAZ+uJkzGQVmRyuucTk7j5Fzt183UVJko8o3\niqEoSltoqVql1EWtta/jvgIuXNku4vw1wGSt9deO7TlAByAbR02E1jq7iGvHAGMAAgMD2yxatOi6\n4z4+PoSGhgLQ7M31t/bCihD/auRNjy9dupTVq1fz3nvvAZCamoqPjw+1a9dmy5YttGzZknXr1tG8\neXOGDRtGr169GDRoEDk5OTRt2pSEhISrj/XDDz/w5ptvMmzYMBYvXszChQux2+3k5+cTGhrK0aNH\nC40hPz8fu91OQkICqamppffiK4D09HS8vLyc82RaU+/4YkKOGQndsXoPcKz+w5adkMepZWMmran7\ny+c0OBoLwC/BMSQ2eOQ3/y/pOZpJO7I4eqmAam6a59p6UK+aDIW8kbPfN2k5mrd3ZpGYWoC3GzzX\nxp36Ptb8fyntsomOjt6ptW5b3HlOH4+jlFoNFNbQ8+q1G1prrZQqMoNRStUGmgErr9n9CnAKcAOm\nAy8B/yjseq31dMc5NG7cWEdFRV13/ODBg3h7l+20m8U9fvv27Rk3bhwTJkygT58+REREXD3m5eVF\nSEgInToZE+6Eh4dz+vRpvL29OXnyJNWrV7/u8Xv27Mlbb73F1KlTiYuLu+5YlSpViownLS0Nb29v\n3N3dadWq1S293oomLi6OG983ZSsadobD13+h/vFF1Pdzgz5TLNlr3vllY4KCfPj2ZTgaCyjoOZG6\ndz1O3SJO7xyZy5h5O9mceI5/78jlg8HNiGpcw5kRW54z3zdJFzJ4ZNY2ElMLCKruQezIcEICqjrl\nuf8Is/6mnJ4kaK27FXVMKXVaKVVba53sSAJSbvJQDwBLtNZXJ0vXWic77mYrpWYDz5dGzMcm9i6N\nh/ndGjVqxK5du1i+fDnjxo2ja9euvP7661ePX/lyB7Db7VebGzw8PH4z+VF8fDzJycn4+/v/JhnI\nzs7G3d29DF+JKDVthoFXTVg83Fg5Mj3FWHbazbofbhVSbhZ8MRoOLgO7m9HJNCzmppd4u7syZ0Q7\nhn2wii3J+Yycu4N/9g/jwXZFpRWirOxNusiouTtIScvmjlrezBvRnhrV5DOwMFbrk7AMGOa4PwxY\nepNzHwIWXLvDkVhcaaroB+wrgxid5uTJk3h6ejJkyBBeeOEFdu3aVaLrqlevTn5+/tVEITk5mcGD\nB7N06VK8vLz49ttvr5577tw5AgICZF2G8qRxTxj2FXj4wZHvYHYvSE0yO6rKI+00zL3XSBCq+MCQ\nL4pNEK6o4mJnTPMqPBF1O/kFmpc+j2fyd4exUrNvRbc8PpkHpm0mJS2b8BA/Fj7WQRKEm7BakjAR\nuEcpdQTo5thGKdVWKTXjyklKqfpAMLDuhuvnK6XigXggAJjghJjLTHx8PO3bt6dly5aMHz+ecePG\nlfja7t27s3HjRjIyMoiJiWHSpEk0adKE1157jfHjx189b+3atfTubU5NibgFwe1g5CqoHgLJP8L0\naJmd0RmSf4SPoiFpG1QLghErICSi+OuuYVOKF3vewZv9w7ApeHdNAk8t2G1M4yzKjNaa99cc4Yn5\nu8jKLeCBtkHEjgzHx0N+IN2MpeYI1VqfA7oWsn8HMOqa7WNAnULO61KW8Tlbjx496NGjx2/2p6en\nA7Bv338rSp5//vqWlSeffJK3336bbt26sXnz5qv7IyMjr9v+5JNPmDhxYmmHLpwhIBRGr4HFw+Do\nepjzJ2PIZMuHzI6sYtq/BJb82RjiGBwOD34MXn+8T8Hg8HrU9nHn6QV7+GZvMj+npPPRI20J9vMs\nxaAFQFZuPq98Ec+S3SdQCl7pdQejIxrIlPMlYLWaBFFKWrduTXR0dLGTKfXr149GjRo5MTJRqjz9\njOrudqON4XdfPg7fjYN8+VVaagoKYO0/jX4gjjkQGPbVLSUIV3S5oyZfPtmRkICqHDqVxn3vb2RT\nwtlbj1lc9ev5DAZ8uIklu0/g6WZn+tC2jIm8XRKEEpIkoQIbMWJEsZMpPfLII06MSJQJuyv0/j/o\n8zbYXGDTezDvPriUXPy14ubSz8DHMbDuX6Bs0OOf0Pd9cKlS/LUlFFrDmy+f7ERU40AuZOQydNY2\nZmxIlH4KpWDNodP0eW8j+05cItjPg8WPd+CepjJJ0u8hSYIQFUXbEfDIMvCqBcd/gA/vljUfbsWx\nH2BaBCSuBU9/GPwZdHiyTOam8PFwZeawdlc7NE745iCj5u6QqZz/oPwCzf+tPMyIOTtIzcylW5Ma\nfP1UBHfe5mN2aOWOJAlCVCT1O8HjG6BBFGSchdgYWPOmMaZflExBAWyYBHP7QFoy1O0Ij2+E0N90\nlypVdpvRofHDIW2o5u7C94dS6PXOerYknivT561oTl7MZMiMrby/NgGbghd7Nmb60Lb4eEoHxT9C\nkgQhKhqvGkY/hai/Gdvr/w2z/wTnfjY3rvLg4i8Q2xe+/wfoArj7r0b/g2q3OS2EnmG1WP5MBG3q\nVef0pWwe/mgLk1f9RF6+TOdcnKV7TtBjyno2J54jwMuNj0eG80RUKDab9D/4oyRJEKIistkh6iV4\nZKnR/PDrFqP5Yet045eyuJ7WsHMu/KejMVLE0x8eXgzd3jBW5HSyoOqeLBxzF09Fh6KBd78/QszU\nTRw6dcnpsZQHFzNyGLtgN898uoe0rDy6NanBimci6RgaYHZo5Z4kCUJUZA06wxObodlAyM2AFS8Y\nv5QvHDc7Muu4dBLmD4SvnoacNGhyLzyxFRp1NzUsF7uN53s0Zv7IcG7zcWdvUir3vreRd1YfISdP\nEr0rVh04Tc8pG/jqx5N4utmZGNOMjx5pS6B36XUurcwkSRCiovP0g/tnwAOx4Blg/FKe2hF+eBfy\nc4u/vqLKz4Ot0+CDuyBhFbj7QoyjnLysswpgx9AAVv41kiF31SU3X/P26p+47/2N7E26aHZopjpx\nMZPR83Ywet4OTl3Kok296qx4JoJB7evK8MZSJEmCEJVF0/vgiS3QtC/kpMOq12BqJ0i8ceLSSuD4\nZpjeGVa8CNmp0KinUTbNB1pyZU1vd1cm9GvGJ6PDqevnyaFTafT94Ade/nwvZ9MLXei2wsrNL2D6\n+p/pNmkdqw6cxquKC2/c25RFj3Wgnr+sYVLaJEmo4DIzM+ncuXOxkypFRkaSlycT8FR4XoHwwDwY\n/Dn4NYCzh405FRYPh4u/mh1d2buUDF88BrN7wul94FMXBn0CD30K1WqbHV2xOt4ewLd/iWB0RAh2\npfh0+69E/28cH61PrPBNEFprVh04zZ/e2cA/lx8iMzef3s1q8/1znRneKQS7dE4sE5IkVHCzZs0i\nJiam2EmVunbtysKFC50YmTBVw27GL+cu48DFw5hy+L3WsPxFYwGjiubyWVj5KrzbEvZ+CvYqEPki\nPLkV7uhtydqDoni6ufBq76as/GskUY0DScvO483lB+kxZT1f/XiS/IKKNwnTjmPnGfjhZkbP28GR\nlHTq+nky+9F2fDC4NTVlcaYyJUmCxc2bN4/mzZvTokULhg4dCsDkyZMJCwsjLCyMKVOmAHD58mV6\n9+5NixYtCAsLu/qFP3/+fPr27Xv18aKjo1m1ahUA48aNY+zYsQD069eP+fPnO/OlCbO5VIHIF+Cp\n7RB2vzGt87Zp8E4LWPU6ZJw3O8Jbl3kR1kwwXtPm9yEvy+iY+OQW6PIquJXfdRJuD/RizqPtmT28\nHQ0CqnL07GXGLthNjynrWbrnRIVIFq4s6Tzgw83sOH4Bv6pu/P3epqx6NpLoxrc+LbYonqUWeLKs\nN8polq43Um96eP/+/UyYMIFNmzYREBDA+fPn2blzJ7Nnz2br1q1orQkPD6dz584kJiZy22238c03\n3wCQmppKTk4OiYmJ1K9f/+pjjh8/ntdff52UlBR2797NsmXLAAgLC2P7dllFsFLyDYYBs+DuZyHu\nLTj0NfzwDmyfCS0HQ/hj4H+72VH+PheOGcM9d8dCtmPYYMPuEP03uK2VqaGVtug7atApNIDPdibx\nwdoEElLSeebTPbz7/RH+HBVKn+a1cXctuibRagoKNHE/pTBtXSJbjxqJqqebnVF3hzA6sgHe7jIp\nkjNJkmBha9asYeDAgQQEGGN9/fz8iI2NpX///lStanTQiYmJYcOGDfTs2ZPnnnuOl156iT59+hAR\nEcHJkyfx9fW97jEjIyPRWjN58mTi4uKuNkPY7Xbc3NxIS0vD29vbuS9UWEOtMBg0H07sNBY0Slht\n1Cxsm258wd71ODSItm7VvNZwbCNs/RAOLzcmQwKoH2E0q9S9y9z4ypCbi42Hw+syoE0QX+xK4v21\nCfx85jLPL/6RN785wANtgxkcXo+6/tatOUnNzGXtL7lMmLKehBRjpVvvKi48FF6XUREh1PCWZgUz\nSJJQEsX84reCRo0asWvXLpYvX864cePo2rUrY8eOJSsr67rz4uPjSU5Oxt/f/zfJQHZ2Nu7u8odY\n6dVpA0M+h1P7jC/cvYvgyErj5lsPmg2AsAFQs6nZkRrO/AT7PoP4z+C8Y1ZJu5vRhBL+WIWrObgZ\nNxcbg9rX5f42QXy5+wRzNx9j34lLTFufyPQNiUQ2DKR/qzp0aVKDahb4RZ6XX8CGhLN8vjOJ7w6c\ndnS+zKG2jzsjOoXwYPtgS8RZmVkqSVBKDQTeAJoA7bXWO4o4ryfwDmAHZmitJzr2hwCfAv7ATmCo\n1rrcrpDSpUsX+vfvz7PPPou/vz/nz58nIiKC4cOH8/LLL6O1ZsmSJcTGxnLy5En8/PwYMmQIvr6+\nzJgxg+rVq5Ofn09WVhbu7u4kJyczePBgli5dytNPP823335Lz549ATh37hwBAQG4usofpHCoFWas\neNhtPOycDTtmwcXjxroGGyZBjTshrD/c3hVqtzBmeXSGggI4HW8sXrXvCzi197/HvGpCm0eNxa68\nK+9qf652GwPbBjOgTRA/JqUSu/k4X+09ybqfzrDupzO42W3c3TCAXmG16NqkJn5V3ZwW26WsXH44\ncpZ1P53h+0MpnEkzhnAqBU38bDx2T3N6N6+Nq126zFmBpZIEYB8QA0wr6gSllB34ALgHSAK2K6WW\naa0PAP8C3tZaf6qU+hAYCUwt+7DLxp133smrr75K586dsdvttGrVijlz5jB8+HDat28PwKhRo2jV\nqhUrV67khRdewGaz4erqytSpxsvu3r07GzdupGPHjsTExDBp0iSaNGnCa6+9xksvvXQ1SVi7di29\ne/c27bUKC6vqD5HPG+sYHN8E8YvhwFJI2Q9r9hsdA919jGr9BlEQ1BZbfimO3c/NMoZqnthpzOlw\ndD1kXtOpsoqP0Rmx2QAjBhOmUbYqpRQtg31pGezLuN5NWPbjSVbsS2bb0fOsOZTCmkMpADSq6UX7\nED/ah/jTrn51alVzL7UJiVIuZbHvZCrxSZf44eez7Dp+gbxrOlWGBFTl/tZ16N86iCN7thLVqk6p\nPK8oHcqKa5YrpeKA5wurSVBKdQDe0Fr3cGy/4jg0ETgD1NJa59143s00btxYHz58+Lp9Bw8epEmT\nJrf2Qixg165dvP3228TGxt70vJiYGCZOnEijRo2u23+lj0JFKY/SFBcXR1RUlNlhmCMvB37+Hg6v\ngKPrjI6C19DYUP4NoEZTCGxs/MKvGmjcvGoYIytufLzLZ+ByCqQ7bmd/gpQDxsJU+oZ5PnyCjSmn\nG/WE0HvAtfw0k1nhfXMmLZvvDpxiRfwpth87T/YNcyxUc3ehQaAXDQKrcnugF3V8PfDxcKWahys+\nHq54u7tQoDW5eZqc/ALyCgq4mJHLqdQsklOzOJWaya8XMtl3IpWUtOsTRrtN0aZudTo3DqRzo0Du\nvK3a1YTECmVjVaVdNkqpnVrrtsWdVx5T7jrAtbO+JAHhGE0MF7XWedfsr/QpaevWrYmOjiY/P7/I\nuRJycnLo16/fbxIEIYrk4gaNexk3MJKExHVwbAOcijf6CZxLMG4Hb/G5lA38G0KtZhASASGdjYmg\nrNqBshwI9K7C4PB6DA6vR3ZePvFJqWw9ep5tR8+z65cLXMrKY8+vF9nz661P/exdxYU761SjWR0f\nWtWtTqfQAHw8pFmzvHB6TYJSajVQq5BDr2qtlzrOiaPomoQBQE+t9SjH9lCMJOENYIvWOtSxPxhY\nobUOKyKOMcAYgMDAwDaLFi267riPjw+hoaF/5CVWKFeSi4SEBFJTrd+B05nS09Px8vIyOwxLyrh0\ngRrqAlUvH8cjMxm3nIu45qZe/ddWcP3snlrZyXHzIdfVlxw3X3LcfMj0qM3lqvXI8AyiwF5xFuux\n+vtGa01qjubUZU1yegGnLhdwIVuTkQcZuZrLuZrMPI1NKVxsYFfgYgMPF4Wfu3Gr7m7Dz10R7G2j\nhqfCVsKEzuplY6bSLpvo6Ghr1iRorbvd4kOcAIKv2Q5y7DsH+CqlXBy1CVf2FxXHdGA6GM0NN1bj\nHDx4UIYC8t/mBnd3d1q1qjy9xEtCqkaLFhcXR9uo/r/rGo8yisVq5H1TNCmboplVNuWx++h2oKFS\nKkQp5QYMApZpo0pkLTDAcd4wYKlJMQohhBDlnqWSBKVUf6VUEtAB+EYptdKx/zal1HIARy3BU8BK\njNbORVrr/Y6HeAl4VimVgNFHYeatxGPFTp1mkHIQQojKyVIdF7XWS4Alhew/Cfzpmu3lwPJCzksE\n2pdGLO7u7pw7dw5/f/9KvTa51ppz587JJEtCCFEJWSpJsJKgoCCSkpI4c+aM2aGYKisrC19fX4KC\ngswORQghhJNJklAEV1dXQkJCzA7DdHFxcdJhUQghKilL9UkQQgghhHVIkiCEEEKIQkmSIIQQQohC\nWXLtBmdTSqUBh4s9sXIKAM6aHYRFSdkUTcqmaFI2RZOyKVppl009rXVgcSdJx0XD4ZJMT1kZKaV2\nSNkUTsqmaFI2RZOyKZqUTdHMKhtpbhBCCCFEoSRJEEIIIUShJEkwTDc7AAuTsimalE3RpGyKJmVT\nNCmboplSNtJxUQghhBCFkpoEIYQQQhSqUicJSqmeSqnDSqkEpdTLZsdjJUqpWUqpFKXUPrNjsRKl\nVLBSaq1S6oBSar9S6hmzY7ISpZS7UmqbUupHR/mMNzsmK1FK2ZVSu5VSX5sdi9UopY4ppeKVUnuU\nUjvMjsdKlFK+SqnPlFKHlFIHlVIdnPbclbW5QSllB34C7gGSgO3AQ1rrA6YGZhFKqUggHZintQ4z\nOx6rUErVBmprrXcppbyBnUA/ed8YlLFkalWtdbpSyhXYCDyjtd5icmiWoJR6FmgLVNNa9zE7HitR\nSh0D2mqtZZ6EGyil5gIbtNYzlFJugKfW+qIznrsy1yS0BxK01ola6xzgU6CvyTFZhtZ6PXDe7Dis\nRmudrLXe5bifBhwE6pgblXVoQ7pj09Vxq5y/RG6glAoCegMzzI5FlB9KKR8gEpgJoLXOcVaCAJU7\nSagD/HrNdhLyYS9+B6VUfaAVsNXcSKzFUaW+B0gBVmmtpXwMU4AXgQKzA7EoDXynlNqplBpjdjAW\nEgKcAWY7mqpmKKWqOuvJK3OSIMQfppTyAj4H/qK1vmR2PFaitc7XWrcEgoD2SqlK31yllOoDpGit\nd5odi4XdrbVuDfQCnnQ0eQpjZuTWwFStdSvgMuC0PnSVOUk4AQRfsx3k2CfETTna2j8H5mutvzA7\nHqtyVImuBXqaHYsFdALuc7S7fwp0UUp9bG5I1qK1PuH4NwVYgtEkLIxa7qRrauQ+w0ganKIyJwnb\ngYZKqRBHR5BBwDKTYxIW5+iYNxM4qLWebHY8VqOUClRK+True2B0DD5kblTm01q/orUO0lrXx/is\nWaO1HmJyWJahlKrq6AiMoyq9OyAjqwCt9SngV6VUY8euroDTOkpX2gWetNZ5SqmngJWAHZiltd5v\ncliWoZRaAEQBAUqpJODvWuuZ5kZlCZ2AoUC8o90d4G9a6+UmxmQltYG5jtFDNmCR1lqG+4ni1ASW\nGDk4LsAnWutvzQ3JUsYC8x0/aBOBR531xJV2CKQQQgghbq4yNzcIIYQQ4iYkSRBCCCFEoSRJEEII\nIUShJEkQQgghRKEkSRBCCCFEoSRJEEIIIUShJEkQQgghRKEkSRBCCCFEoSRJEEI4jVIqVCmVq5T6\nxw37pyql0pRSbc2KTQjxW5IkCCGcRmudAMwA/qKU8gdQSr0OjAD6a613mBmfEOJ6Mi2zEMKplFK1\ngQTgP8BhYBrwkNZ6kamBCSF+o9Iu8CSEMIfWOlkpNQV4DuMz6GlJEISwJmluEEKY4QhQBdisE8kL\naAAAAM1JREFUtf7A7GCEEIWTJEEI4VRKqa4YTQybgU5KqeYmhySEKIIkCUIIp1FKtQaWYHRejAJ+\nAd4yMyYhRNEkSRBCOIVSKhRYAXwHjNVa5wDjgT8ppSJNDU4IUSgZ3SCEKHNKqVrAJoyagx5a62zH\nfjuwD7igte5oYohCiEJIkiCEEEKIQklzgxBCCCEKJUmCEEIIIQolSYIQQgghCiVJghBCCCEKJUmC\nEEIIIQolSYIQQgghCiVJghBCCCEKJUmCEEIIIQolSYIQQgghCvX/HKAMJPNFL3QAAAAASUVORK5C\nYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# use the matplotlib magic to specify to display plots inline in the notebook\n", "%matplotlib inline\n", @@ -269,14 +304,48 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": { - "collapsed": false, "nbpresent": { "id": "978c1095-a9ce-4626-a113-e0be5fe51ecb" } }, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJIAAACPCAYAAAARM4LLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAABJhJREFUeJzt3b8vc28cxvH28UwMJonVYCAmET8WImYxCZGYkEgkgj/A\nImH1IxKiasJGYrAYxCQ2LAaxECo2BoPFd/mm6eeTtNXH1Zue835NvXLk9ESu3L17nx9Nfn5+JoDv\n+vPTB4BooEiQoEiQoEiQoEiQoEiQoEiQoEiQoEiQ+Bv4/VhGrzzJr/wRIxIkKBIkKBIkKBIkKBIk\nKBIkKBIkKBIkKBIkKBIkKBIkKBIkKBIkKBIkKBIkKBIkKBIkKBIkKBIkKBIkKBIkKBIkKBIkKBIk\nKBIkKBIkQt+yHQsfHx8mn5+fm3xycmJyOp02+fn52eTW1laT9/f3TW5sbPyn41RiRIIERYIERYJE\nMvAD2yP5WJtUKmXyxsaGyZeXlyb7/3kymSxp+9DQkMm7u7tfP9jS8VgbhEORIEGRIME6Uh7F1oJm\nZ2ezr6+ursy26upqk7u7u01eWloyuaOjw+TV1dW875VIJBKZTCbfYf8YRiRIUCRIUCRIsI6Uh5+n\nzM3NmZz7f/PnwtbX101ub28v6b2rqqpM9utIfg52d3dncl1dXUnvVwTrSAiHIkGCIkEitutIfp1o\namrK5O3tbZP9PGV4eDj7emtry2zzcxjv4eHBZL+OVGze2tbWZnJNTU3Bvw+BEQkSFAkSFAkSsV1H\nmpiYMHlnZ8fk/v5+k0dGRkweHBzMu+/393eTV1ZWTF5bWzP55eXF5GLXI93c3Jhc5mu2WUdCOBQJ\nEhQJErGZI83MzJjsz6XV19eb/PT0VHB/uetQ/lql3t5ek0u9JruhocHkvb09k0s9d/dNzJEQDkWC\nRGxOkVxfX5vsP07GxsZMPj4+Lri/+fn57Gt/u5Hft8+e3+6Ptdgpl9+AEQkSFAkSFAkSkZ0j+ctE\n3t7eTPZfwRcXFwtuL/QV3i8d+MfSeD09PSZvbm6aXAlzIo8RCRIUCRIUCRKRPUXy+vpqcnNzs8l+\nHlPsNIa/5ejg4CD7enp62mw7OjoquO/Al4F8F6dIEA5FggRFgkRk15Fqa2tNfnx8lO4/dw52cXFh\ntvn51fLyssm/fE70TxiRIEGRIEGRIBHZOVK59fX1ZV/724nGx8dNnpycDHJMP4kRCRIUCRIUCRKR\nPdf2Xf5cXVNTk8m55+oGBgbMtsPDw/IdWHica0M4FAkSFAkSrCPl4e9V82tFudcYLSwsBDmm34wR\nCRIUCRIUCRLMkf53e3trcrFH0+Tei9bS0lK+A6sQjEiQoEiQoEiQiO0cyV9nPTo6arKfE52enprs\nf1407hiRIEGRIEGRIBHbOVIqlTLZ/5ynf0Sx/2krWIxIkKBIkIjNR5v/KEun0yb7r/v+afuV+Di+\nkBiRIEGRIEGRIBHZ25Hu7+9N7uzsNDmTyZh8dnZmMqdAsrgdCeFQJEhQJEhEdh3J33Ltbyfyv7Ld\n1dVV9mOKMkYkSFAkSFAkSER2HQkyrCMhHIoECYoEidDrSF/6vEXlYUSCBEWCBEWCBEWCBEWCBEWC\nBEWCBEWCBEWCBEWCBEWCBEWCBEWCBEWCBEWCBEWCBEWCBEWCBEWCBEWCBEWCBEWCBEWCxH/yKxa+\nn2pIxAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Image target: [[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJIAAACPCAYAAAARM4LLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAABPRJREFUeJzt3c0rbW0cxvFFj5eiHAZCRBzTk3CSkaJIkTIxMMBEDBgc\n/4F/QjJQFJMzkRQldToiRCZeJgYmXifeylvyzPazfnfZe3tcFsv+fkbrau299lJX977da++1k56f\nnz3grZI/+gTwNVAkSFAkSFAkSFAkSFAkSFAkSFAkSFAkSPwT8OuxjB4+SfE8iBEJEhQJEhQJEhQJ\nEhQJEhQJEhQJEhQJEhQJEhQJEhQJEhQJEhQJEhQJEhQJEhQJEhQJEhQJEhQJEhQJEhQJEhQJEkF/\nHelLOjs7M3l+fj7q41taWkzOycmRn1PQGJEgQZEgQZEgEao5UmlpaWR7a2vL7Pv27Vug57KzsxPZ\n/vnzp9l3f38f9bnZ2dkmj4+Pm9za2vrGswseIxIkKBIkKBIkkgK+YfubXiw5+b/eb29vm30/fvx4\ny6Fjcuc9lZWVke29vT2zLy8vz+TT09Oox/b/XZ7neRsbGyZXVFTEfZ7vgNvaIDgUCRIUCRKhWkfy\n+/v3r8nvPUc6Pj42eX9/P7Ld3d1t9o2MjJj8+/dvk3t7e02+u7sz+fz8/P+e5odhRIIERYIERYJE\naOdIGRkZgb7ewcFB3I9NTU01ubOz0+SrqyuTh4aGTHbXoVzu2t/m5qbJj4+Pke3a2troJyvCiAQJ\nigQJigSJUF1rS0tLi2zv7u6afWVlZW85dEw3Nzcml5SURLbLy8vNvpWVFZOTkqJfrjo6OjK5oKAg\n6uNvb29Ndv92/2e1Ys234sC1NgSHIkGCIkEiVOtIXV1dke33nhO50tPTTfavBa2trZl97nU5d87z\n9PRkckpKismrq6smLywsmDw9PW1yZmamyYJ50asxIkGCIkGCIkEiVOtI/s9N+9eUPoL/u2dzc3Nm\nX19fn8n5+fkmT05Omvya63ie53lFRUUm//nzx+Ti4uJXHS8G1pEQHIoEiVD9+//Rb2d+379/f3Hf\n6Ojoq45VXV1tck1NjclVVVUmNzc3m5ybm/uq13sPjEiQoEiQoEiQCNUcKUiHh4cmDw4Omjw7OxvZ\njrWE0tHRYfLw8LDJ7sdQwogRCRIUCRIUCRKhukTynpaXl01ua2sz+eLiwuSsrKwXj3V5eWny+vq6\nye660CfHJRIEhyJBgiJBImHXkdyPbri3JHa/fjQzM2NyU1NTZHtsbMzsGxgYUJxiqDAiQYIiQYIi\nQSJh50j9/f0m+28F43met7i4aHJdXd2Lx3p4eIj6Wp/h80LvjREJEhQJEhQJEgkzR3JvHeNe//r1\n65fJ0eZEromJCZMbGxtNLiwsjPtYYcWIBAmKBAmKBImEmSP5fzrU8zzv+vra5KWlJZMbGhpMdn/W\nwX+rGfcnv6ampkyOdeu/r4ARCRIUCRIUCRIJM0eKxb3dXn19fdzP9d+S0PM8r729XXJOYcKIBAmK\nBAmKBImE+V6bu27U09NjsvuZbPcn1P0/GeE+371O5/7MVsjxvTYEhyJBgiJBImHmSLGcnJyY7M5z\ncnJygjydz4Q5EoJDkSDBWxti4a0NwaFIkKBIkKBIkKBIkKBIkKBIkKBIkKBIkKBIkKBIkKBIkKBI\nkKBIkKBIkAj6K9tf//4uCYoRCRIUCRIUCRIUCRIUCRIUCRIUCRIUCRIUCRIUCRIUCRIUCRIUCRIU\nCRIUCRIUCRIUCRIUCRIUCRIUCRIUCRIUCRIUCRL/AhkN/OtmZFaHAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Image target: [[ 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.]]\n" + ] + } + ], "source": [ "%matplotlib inline\n", "import numpy as np\n", @@ -317,11 +386,60 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAANUAAADMCAYAAADkmebQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXtQFUe+x7t7gOW5ClIEZEHEQKEXSti4xtIrpbt6wdIV\nNmrERPEVvRrjA02U8gFBvWKiMYtRXGPcqFdjSs3VmJgYRQ0afCZq1MQnanyBqCjPw+FxvvcPtmfP\ni3Om5xyDkPlUTRXMnO7pM2e+0z3dvwcFQDQ0NJwHa+4GaGi0NjRRaWg4GU1UGhpORhOVhoaT0USl\noeFkNFFpaDgZTVQaGk5GE5WGhpPRRKWh4WQ0UWloOBmX5m7Av9BspTRU8/zzz5OLFy8SV1fXp30q\nquRDWk+loRgApL6+npw4cYKsWrWKUErJjBkzSH19PWloaGiWNn333Xfk+vXrZNeuXc1yfqsAeBa2\np87NmzeRnZ2tuvy1a9fg7u4OQghmzZolVPbJkyeYNm0azp49q/r8zwI1NTVgjFndunbtipqaml+9\nTT179gSlFDqd7tc4naL7ubnFpFhUer0e8+bNQ1BQEF544QXhqyFJEiRJEi63detWhISEyOUZY5Ak\nCYGBgVi3bh3q6+vt1jFs2DBQSnHo0CGT/QsXLsT7778v3CYA0Ol0SEpKAmMMlFKhsvX19bIYsrKy\n5P0VFRUIDg5ustylS5fkch06dECHDh3g4eFhIi57VFZWIjMzE5RSUEqxaNEifPXVV0LtN8bT0xO7\nd+9WXb5jx44gja8f6Nixo72Ptw5Rffvtt2CMwdvbG8ePHwcART+eOUp/dGMuXrwoi6m8vBzr16+X\nRcW38PBwu09JfgMZc+fOHXh4eGD79u1221FaWort27djxIgRoJSCMYaUlBTU19cjIyMDI0aMEPpe\nvXv3xogRI/Dyyy8jPDwcx44dExJGUzDG8MUXX9j9THx8PNLT01FUVISzZ88iPT0d3t7e+PDDD4XP\nSSnFDz/8oKq95kIqLCy0N5ppHaKSJAndunXDiRMnTPaVlJTYKma1HtGeivdQM2bMAACUlZWBMYZF\nixZBkiRMmDABkiRh8+bNNuuxJiouECVDpg0bNoBSCg8PD6SkpMj7d+3aZbUHtIckSWhoaEBmZqbF\nMM7f31+oLg4fGubm5tr8HGPMau+uRtA6nQ6UUlRWVgqV4xBC8Mknn5jss9NbtWxRvfbaa5AkCdu2\nbQMAVFVVISgoSPUwTrRcYWEhJEnCvXv3rB7nvZO9elesWAFKKaZOnWqy35rQmoIxhoaGBqv727Rp\no6gOjsFggCRJcHNzMxHT9OnTUVtbK1QXR6fTITY2Fowx1NXV2fysNeEMHz4cjDFERkYKnbeiokJ4\n6GtM45SC5b6CgoImiyjZmltMTYqKMYb58+djz5498rsMH3qpQVRU7u7ueO6555xSb5cuXWQRGW8B\nAQGK2jJ58mSLfSkpKUhISBB6Qd+0aRMCAwPlaxkaGorq6mrF5RsaGpCcnIz+/fuDMYbk5GQkJyfL\n9WVkZNito127dujXrx/u3buHe/fuWfSUInBR1dTUYO7cufJ1VfqORghBYmKi/P+kSZOsCs24iJKt\nucVkVVR6vV5+d2CMISgoCJRS9O3bF1euXFF0wcwRFRUhBDExMXY/p+RmKCoqwiuvvAJKKYYOHYrE\nxERQSvHKK68oaov5cOnBgwfw8PDAli1bFJU3bytjDFu2bMGDBw+Eypu/e5lvSmY3c3JyTMoEBQWZ\n7BOBi2rdunWglMLFxQWUUvj6+ioqzycpCgoKkJiYKE9YtNqeyhguKkdgjOH1118X+rw9Ed69e1fV\ncDQrKwuUUpw5c0aoHMfX11f4Bty2bRsYY0hNTUW7du1UnZcxhiFDhkCn0+HUqVNWhRUQEIDZs2fb\nrKe+vh7btm3D5cuX5X2EEOHfmItq8+bNSExMhF6vx1tvvSVcj7GICCGYNGlSUx9tPaLikwKOIEmS\n00U1bdo0SJKE1NRUobYMGjQIlFKhoRenurpa6H2MM2DAAAwbNgwlJSUOiaqiogI7duxA27ZtZSE9\nfPgQDx8+xODBg+V9t27dEq5b9EFRX18PSikuX74Mg8GAjRs3glJqMqQT5TchKkmScP78eaXXxGY9\nP/30k+LPDxkyBJIk4caNGxbHkpKS5EmTmzdvCrXj4sWLaNeuHXbt2iVUjsOHOcZPeSUY37COiMp4\nW79+vdWJCb1er7puUXbv3m3yntqlSxfhOowxf88yP6xka24xNSmq48ePIyIiAvn5+aLXxSqSJOH6\n9etCZbp27SqvRcXExMDFxcVk8VfNbBkf9z969Ei4LNAoqpMnTwqXY4zhwIEDWLVqFVasWKHq3PzG\n9/Pzw927d1XVYa/u5oa/VzV1WMnW3GJqUlSvvfYaGGOoqqoSvS5WUSOqO3fumCz08lnI3NxcVUM3\nQGwq3ZzKykpQSlXd0MY9zHfffafq/EOGDEFhYaEiKxJRNFE9ZVH98ssvIIQ4rZdqLfDFTjWcOXMG\njDG8/fbbTm6Vc3hWRGVnWl3R/UyBZ8Lr4plohIaGHTTXDw2N5kATlYYGIaSgoIBQqqgjsosmKg2H\n2b17N0lPT3eojgEDBpDw8HAntUic+Ph4kpaW5pS6Wq2oSkpKSGJiIvHx8SGRkZFk8eLF5MmTJ83S\nlvfee49IkmT12O7du1XXC4DMnz+fxMfHq66jpqaG7N69m/Tq1Yvk5+cLlzcYDGTMmDHk3XffJY68\nn+/du5fcuHGDbN26VbjsmTNnmry+Sjhy5AihlJI//OEPquswQemMxlPeADTaYj1+/NhiyoU7wrVr\n106xQ9r3338PSimioqLw9ttvY8yYMfDw8EBSUpLwNP0nn3wiT7USQlBWViZUPiIiwsICu7a2FvHx\n8Vi/fr1QXca0b99e9azZxYsXwRjDkSNHcPjwYZw7dw49e/ZUXL6urg6BgYEmC689evRARUWF0JQ7\nt7lLTEwUvq6cQYMGqTa0Bhqvo8Jzt7wpdUopVq1aZfItbty4gbFjx6Kmpgaenp4OT7uKrhMRKwaW\nxLYlswWSJFmIiltsqGXRokWqBcUYs1h8ZowhMzNTcR1ubm6ypb2npyc6deqEtWvXCl1f/rBS4HFr\nE0e8F3h5hbRMUX388ccm3yIvLw9jx46FwWBAbm4uPDw8AACnTp3C0aNHlV4MAI0+WSI/emFhoVWL\nZVHbMmuiUusXBgAlJSUIDg6WDWSVotPpMG7cOCQlJZnsf/jwIRhjihe0y8rKQClFTEwMysvLTez8\nKKUYOXKkono6duyIjh07qu6hOI6ISq/XY+DAgUo/3vJEZc1otq6uTrYiqK+vR0lJCTIzMxEREaHo\nKhw/fhzh4eGymJKTkxUP/8x7pIKCAuFeCrAU1d69e+Hp6WnLxcAmvIc6deqUULmgoCALt4iuXbuC\nMYbo6Gi75evq6jB8+HC0a9cOX3/9tcXxs2fPymKzB7+WjgTj4TgiqsDAQBw8eFDpx1ueqJrC2Leq\ne/fu2LBhg9KLIFuE8+3hw4eKyxYUFMju1sbvVaJPVt4r7d+/HxkZGSZxLvz8/ITqOnHihOphHw8P\nkJGRIf/NGENCQoKi8rGxsaCUNukyz+0azV3UzSksLJTfo7gFQ2FhofD34XCHSzUEBgaaGAXrdDpM\nmTIFGzdutPbx1iGqwYMHy742ah0Ujx8/joaGBmRlZcHb21vImNV4giI7OxtlZWXCw79OnTqZ2N4R\nQuS/V65cKVTX+PHjhX3DOHl5eYiKijJpS3p6uqKJhfLyclBKsWzZMqvHuRuGt7c3iouLbdaVnZ1t\n8nDivZaannv79u0ghGDHjh3CZYFGURkzb948Ww+tli2qa9euoW3btvjiiy+wevVqp9mF7dmzx2GH\nx44dO9ryubGKXq/HwYMH5d5BDU+ePJHDDDjCqlWr4OLiIhSFaMyYMXBzc7N6LCkpCZRSLF++3Gos\nDXO4x60xClzZrRIaGgpPT0/cv39fuCzQKCqdTodJkyaBMYYff/wROp0OjDFrD4eWLar+/fvDy8sL\nAPD+++87TVRFRUUOB1/kT1pR8vPzHRLVyZMnwRhrMhiNEm7dugXGmNC7DA/sMm7cOJP9er0et2/f\nlofWSodwzhSVr68vZs6cKVyOExgYKP8u69atA9DoURwUFGTt4y1bVIwx9OrVC9u3bwelFFu3bhW+\nYOY8evTIIdcLY9TcAJ999hkkSUJRUZFw2Tlz5oAxZjFcEaFnz55gjGH58uVC5fh7qXEvtHXrVvla\nxsTECEWn5e+nxvAhtiiSJDm01nft2jUwxjB69Gh52Dd+/PimPt6yRTVkyBC4uLggMjJSlScpANnN\nmwda4bN/jk7hAhAe/gGNHrc85Joo/AdX46AIAJ07d5bfoUQ5fPgwPDw84OHhYTLp07VrV9UzmGVl\nZSbvq5MmTVL1uziyPqUCRffzs5L1w4IdO3aQ4uJiEhgYqLqO559/nuj1elJTU0MAkH79+pHPPvuM\nMOa4dZZa06CSkhKHzvvCCy8Il/nyyy/JpUuXyLVr10hYWJhw+d69e5Ply5eT27dvm+zPysoibm5u\nwvURQsjvf/97UlhYSJYtW0YIIWTNmjWq6nkW0fypHGDp0qUOG5JqtCgUmbFrotLQUI7mpKih0Rxo\notLQcDKaqFowM2fOJHq9vlnObTAYyLBhw4i/vz+pq6trljY8q/zmRLVjxw7Svn17IkkS+eGHH4TK\n1tbWPqVWiXP48GGSk5NDampqmuX89+7dI4WFheTChQuqc+1WVFSQTz/9lFBKyWuvvUYkSSK3b98m\nlZWVTm6tfYqLi0lxcTGpqqpyvDKlc+9PeTNh+vTpJkankiTBx8dHtSkK0GgZbpwJkW/nzp2z+Gxd\nXR2WLFli8XnzsgCEo9TevHkTISEhGDRoEF588UV069ZN+LvodDqEhISoNlcqLCxEYmIiCgoKVK8z\nUUqFQzsDjXmsBgwY0OR15X8fO3ZMUX1VVVVITk4GpRRBQUFCcfcrKyuxcOFCi3N7eHhg9erV1tZH\nW+bib21tLYKCgkzcM6qqqmTzmvbt2yu6YObwC9e7d2+MHz/e5qJhv3795NjrthaeeZ22/LpWr15t\nYrDKnQsNBgMAy4weSuBB+NUG9CRGlgtqFrGvX78u/w4GgwGjRo3CpUuXFJUNCwuTb+DOnTvL+ysq\nKvDpp59i69atiqz3dTodpk2bBl9fX4vfiFKK77//3mb51NRUEyFdu3YNU6dOtRCYmTtSyxSVLXiO\nW9Fwy3PmzJEv1qJFi1BbW2tTVHq9Xj6XNVHV1tbKRr7Dhg2zKTwXFxcTVwkuKkfgyQHUYp6TSZSO\nHTti2rRpAP4dtoBSquh3MbbUt8bYsWMVubZw0ynzOPtPnjxR9MDh5/jwww9lG1Pg3/5lO3futNaO\n1ieqH3/8UTgUdHFxMSRJwpEjR2RRAY29jD0XEJ5+RpIk5Ofno66uTja+lCQJ+/bts3t+nmSNJwV4\n5513nBISQDSDIueTTz5xyOUiPz9fHl4tXrxYFlRYWBgOHz5ss2xFRQX8/PwgSRJCQ0NN7AXv3buH\n2bNngzGGsWPHKhLFggULADSOZIqKitCxY0cwxnD69GmbZfPy8kweqsYPxdzcXPlY+/btzR++rU9U\ncXFxQjdkRkaGSaqbd955Rw4cI2IzVl9fj+7du8sCe++99xTbI966dcvkZistLQVjDN9++y327t2r\nuA2c06dPgxCCn3/+WbgsAJMe4pNPPhHuqXr27CmLavTo0aCUorS0VMgvzNa76pAhQxTVwRgzcV7l\nf2dlZSkqGxwc3ORx/tD5TYhKxG26vLzcIg4EF8LZs2eFRRUUFISoqCgMHToUjDH069dP0Yt6ZWWl\nSb5fLipvb2/F7yHGdOvWDUOHDrWbW9ca3OMWUO/OPmfOHBNRcTd8EVGdOnXKJK0pMXLaVAr34Zoz\nZ478d3JysqJ3VEqpondzLy+v1j384zM7T548UfJxMMbQu3dvi5Bm27dvB2NMsRfxu+++C0mSrIZO\nGzhwIAYOHGjXN8vPz8/iBlKbtFqk7U2RnZ2NwsJC1ZbhHTt2xMmTJxEREQFKKby8vITc2bdt24bI\nyEhIkoTOnTtj4MCB8gPwjTfeEG6Pt7e3kDuPkoczT6Q+ePBg492tR1Q5OTmglOL48eP2PiojSRIW\nL15ssZ8na1PKqFGjEBcXZ/VYbW0tAgIC0L17d5t1lJaWyhMURUVFyMrKckhUzqCsrEx1aLDMzEx4\nenrK71NBQUFC6X14JnsvLy85ZkhCQoJqB07GmKKk55xXXnnF7j3AGIOHh4f5e3PrENXx48fBGFOc\ndJpjftHGjRsn/2giMSq8vb3BGLM6rNi/f7+qICw///yzKsc6Z0xycNRGhuJMnDhRlcNnYmKihefx\nrVu3EBkZKeyRDDTe/O+8845QGQBwdXUFY5a5uvLy8hAdHQ1CiLUHX8sW1S+//KJqto8jSRLGjx+P\nLVu2yEOL/v37C9dz584deXjCGEOPHj3g6+sLSZLQs2dPVV68ly5dQvv27RXFc+DU19cjJibG4fgU\nHGvet6KsXr0alFKhJHJ8LYgxJl9HPhwzntq2x927d+Hn5yfHgRRFr9fLsRONJ0zatGmD+Pj4poq1\nbFFNmDAB7du3V2VxADSu5RhbP+Tn56vOylhbWyv3EpIkITo6GjNnznQozgVjjSGXlcKDvojkLbbF\npEmTHEo4rZbq6mr5HdP4Zo6Li8OZM2cU1zN16lRQShVbXjTFwoULMXToUAwdOhRDhgyxFwmqZYvq\nhRdewMSJE0WuT4vCx8dHKHa5s+ETFS2RO3fugDHWHNdP0f2sOSlqaChHc1LU0GgOWr2o6urqyKFD\nh5q7GQ6Tn59PJEkiBoOhuZuiYYdWLaqGhgYycOBAEhUV1dxNIYQ0RlJycXEhkiQRSZLI4cOHFZed\nPn06oZQ2i69RS+JZCMTzTIrqwYMH5Ouvvyaurq6EMUaWLl1Kvv76a6uf7dixY5P1XLlyheTl5TkU\n5ozzxz/+kVy9etWhOmJjY0lsbCz54osvCADSt29fxWU7depECCGqQ4L9GtTW1hI3Nze5rb8233zz\nDdmwYYNwOb1eTw4dOmSyffHFFyQmJobMmjVLvCFKZzSe8mYCN47ctm0bdu7cKRvSmq8J7du3zyLv\nkzF9+/Z12mLpvHnz5LDAaklOTpb/5t9RKSJ2j0ro16+fhVGqLSuPhoYGu+f38fERaidf5zLeHOG5\n555TNcVOKYW/vz+io6PlbdmyZfj444/NHWNb7pR6QUGBTUvi8vJyeHt7Q5Ikm9bilFJ88MEHJvt+\n/PFH3L59u8kytuA34Llz5/DLL78IeSLv2bPHIjmaqKjCwsKE2tsUI0aMQJcuXfDgwQOT+m0xa9Ys\n5OTkWD1WWVkpZyNp06aN3XRFlZWV6NKli5yJkWdlFFn8tUZoaKiQuRRHQMwtV1TAv53ILl++bHFs\n8uTJ6NKli90QypRSExcJ7gvk7u5us1xTrFy50mTBUmniOcBSVKI9D6UUAwYMsNhfV1en2DKjuroa\nH3/8sYUrfE1Njd0ba9asWbh+/brVY/Hx8SapeeyxZcsW+XeoqKjAhx9+CEop0tLSFH0Pazx48AAZ\nGRmqygqIuWWLqqSkBCEhIWCMyZbU77zzDqKjo7FlyxZFV8C4p3N3d0dKSgqqq6sxceJEeHt7K6rD\nGuvWrQNjDCdOnFBdh0hKnKNHj4IxZpKD6eeffzaxSlCSYNzLy8sidej9+/fRtm1bu1kZubX++PHj\nTWJyLF26VBaUu7u7HCbAFnyoxy0ozpw547Co1A4dT506hZEjR+L69evYsmUL7ty5Y+s7tGxRcfgP\nxhhDZWWlYudA/vT9+eefkZaWZpFL2NvbW9ENYM79+/chSZJD7he3bt0ScmPp06ePiaX8xx9/LHvI\n8iFchw4dFNfH0el0IIQozqRo7Opu7hzIGMPSpUsV1WMsqv3798v/qxVVcnKyLXs9m6Snp4MQgsjI\nSCxcuBCUUsyYMaOpj7d8UdXW1pr8gKLYEtWxY8eE3624gS9jTFVkp6CgIMybNw9xcXFYsmSJ4nKS\nJJmkEpo8ebIcIsD4M00Nz6xRW1uLN954A23btkV5ebnicp9//jmGDRsmC4H8K8ulSCCa4cOHg1KK\n1NRU2ZPY2vuvUtRYt3PS09NN4mt4enraej1o2aKaNWsWJElCbGwsCgsLwRiDq6ur4qEf8O+0oP37\n97d4iisZ+/NUlcazU+aRnpRgHAaA1ydSh7moNmzYYPI+5u/vj7CwMKGeSu2DymAwYO7cuWCMKRpy\nWmPNmjUWs36i+Zg5b731Ft58801V7bCGn5+fraFkyxYV/9E/++wz6PV6HDt2DIwxIav1R48eoXPn\nzmjbtq1JKs6amhpFgVOMJyUmTJggT/OLYjwpwevr27evYmG9+OKLoJRi9OjRKCsrw/379xEaGork\n5GS88cYbYIxh7dq1ituzYcMGUEpVDZlOnz6tWpCc8vJyvPbaa6CUYvz48Q6JijGmKv4gAIsJHp63\nuNWKKiwsDIw1Jpq+ceMGAGDYsGFgjAmvRfCbiFIKSZJU+SSpvYlu3bqFiIgI7NmzR3ZB4fWJzP5t\n2LABnTp1MnFn4XWIuIPw7PZq3Oj1er0sKDUxMqzB40tERkaisrJSqOyePXscyixpzLZt2+Dl5YWM\njIzWP1HRp08fi5djR31o1PDCCy+oLjthwgRIkmSxuHrixAnV/mJqePnllx3yQZo1a5Y8y+cskpKS\nQAhR5ezpyGIx7yXT0tJAKcXAgQOVvGO3DlFVVFQgISFB7rnCwsIccg5US58+fX71czobHp9PLTy6\n0LBhw5zWJt5TNYeo+NavXz+lkYIV3c+aP9VvhMOHD5ObN2+S1NTU5m6KCcnJycTHx4f87//+b3M3\nRQlaJkUNDSejOSlqaDQHmqg0NJzMb0ZUV65cIS4uLuSf//yn6jooVdT7O52UlBSyceNGkpeX1yzn\nF+HBgwekoaGhuZvRrPxmRJWRkeFwHYw1z+Xavn07GTduHPmv//ovcurUqWfqpj1w4ACpqakhZ8+e\nJSNGjCDPPfccSU5OVlyeUmrysPrll1+eRjN/XZROEz7lzYLo6GjZpOeDDz4wSbuiBr5QKhLA0lod\nH330kUPtWLt2LdauXSvkNgI0hhQbM2aMvFZnLaS1Perq6qDT6XD79m2MGjVK3nr06GGyDpiSkqKo\nvn79+lmYGrVp00bOXWWPH374AYwxExMspYvsT548kfOO9e7dG76+vqoS6AGN0YvXrl1rsk515coV\njBkzxnxtsWWvUzHWmBkjLS1N/rFfffVVVRft5ZdfhiRJqg02jdskmheqqKjIqp0bYwyHDh1S1Q5f\nX19V0WXNF9EZa8xm2LlzZ1y/ft1ks4fBYJC/i6urK9555x3hm5oxZmIhn5OTo1hUkiRh7ty58v/n\nz5/HsmXLhM4PNEa6ZYzBx8cH3t7e8PLykj2YzY2w0dJFxV2c+d+UUvTq1Uv4ogGNJk/GqTDVokZU\n8+bNMxFTRkYGMjIyQClVlDTOGtwyQiQmPGAqquzsbKxatUrV+YFGtxH+na5evSpcvqqqyiSkd1lZ\nGTp06CCn5rHFzZs38dZbb5mIWK2oli5dioCAAPl/bmnfhLhbtqh4wHpjfx01gej1er3TYjs4y0RH\np9PZjK1hjwULFijKa2vO1atX0aFDB6fE7TD+bdasWSNkdc8dG19++WV5H884qcR9ZPPmzRYhokeM\nGAFJkrB582bF7eCZF41tDuvr69G7d2+89dZb1oq0bFEBjUOnQ4cOoaKiQnVPtWDBAhPjU5GLbg4h\nxCGPYY6jolq/fr2q4R/PCh8YGIjZs2dj9uzZqtuwY8cOiyHt6tWr7ZY7c+aM/JDkYiwqKhKyfN+8\neTO+/fZb+X+dTodhw4ZBkiTF4uapUM2D+fBr1IRRbcsXFaeiogKMNSZxE+HMmTNwc3ODJEmYMmUK\nJEmCm5sbzp49K1QPR83wzxrHjh0TFtWBAwcQGxsrp50RtXvjCQ7MtxUrVth1nTh48KDFPoPBgLVr\n1yI3N1cW1cyZM+22g6d55VuXLl3Qpk0b+f9Dhw6hf//+NjO0mItq7969kCQJb7/9tt3zc7y8vDBi\nxAhUVFRY7Lfx4Gw9ogKAjRs3Cotq5syZkCQJo0ePBtAY10GSJKsBVJTgDFHdvHnTalZ1Jec2z3G7\nfPlyxeEFrl+/jvT0dKSnp8u+V3l5eUI9xKNHj9CrVy/06tUL/fv3x969e+W8v5RSu+9oWVlZJsOt\nJ0+eoH379mCMwc/PD4MHD8bgwYNx5MgRoXAFPEn6pk2bFJcxp6KiAoQQREREWM2a+S9al6gOHTok\nPPxLTEyEJEm4ePEigGdDVG+//bYq62oupKSkJBOBKY0vYateJaKqra01yZ5ovkmSZDfmR1FRkcmM\nHQAEBASAMabKQZFz9+5dSJLkkPdC9+7dlThKtj5RMcaE4rqdPXtWHv7xdyp3d3chl3xjnCEqSqmq\nRGXu7u5y2draWtTW1qJv375wcXFR7QKRm5urWFQpKSlNCio2NtZiGKWEyspKh72IASAtLc2hySge\nrUrB8LX1iYpSinPnzin5uAmffPIJ/Pz8sGTJElURlDiOLv6ePHkSf/7zn1WXb2pmrF+/fkhNTbW5\nsB0REYHS0lIAjfEP+c3cs2dPxS/3I0aMkIXUuXNn3LlzR/xLGMF7XUcT2TkiKh7/ROEwunWJqri4\nGIwx1cmfnYGjogoODjYJ/ewsHj16BMYYCgsLm/wMIQQ9e/ZEZmamyUQBF5pSHjx4gAcPHiiOnGSL\nQYMGgTGGgoICh+rp0KGDKlHpdDoMHjxYpKdUdD+3KH8qb29vQiklFRUVT7s9TsdgMBBXV9dmtds7\ncuSI/Hfv3r2brR3O5rPPPiPDhw8n9fX1QuV+//vfk6qqKpKRkUEyMzOVFNGcFDU0nIzmpKih0Rxo\notLQcDItRlS5ublk06ZNTqvv5MmTxM3NjUyfPl1V+VWrVpHs7GyntUej+fiP//gPObulJEkkKSmJ\n6PV69RWKAJyTAAAgAElEQVQqndF4yptNDAYDevfuLRxs0RrV1dU4fvw4KKVYvHixUBxxTk5ODtzc\n3H7VmH3GzJ49W5XtnzEGgwFlZWVITEwEIQTR0dHNEvqNt4VP1Yv4u9XW1mL8+PHyZrxulpubi+Li\nYkX1GC8x8G3QoEHWPtp6ptT37dvn8ALhnDlzTMx8HIFHiBVxnLx69Sry8vKwYsUKix8wKCgIeXl5\niuty9DvU1dXJN2B2djZyc3MVL0hLkgQ/Pz8A/7bjc4T58+eDMSZbVihZ++LRcVNSUnD9+nVhFxh7\n8HxbVmg9onJzc3Pox1Pj79MUo0ePlvM0KUGn0yEgIAAuLi5Ys2YNXFxc5L/XrFmDPn36yPuUWouo\nFRUP9UwpRXR0tOyPNGvWLCxYsEBRHZIkoXv37gCcIypuszd58mS7dfH46ydPnnTonPbga6JWeu7W\nIyoXFxeHfjxnhSk+fvw43N3dIUmSSeIzWzx+/FgWDdBoRGqcnaO6utpinz3Uior3rJRS2Wi0srIS\nXl5eJlbftnCmqDZs2CBnP1SyCEsIgaenp+rzKeU3ISpHnAOXLVvmUII2jsFgkO0Hf/zxR8XlXnrp\nJYSGhuLatWsOt4HDGENoaKjq8sa2guHh4UK2g9yOErAUVUxMjFA7jC1UlD4oLl26BH9/f1BK0aFD\nBxw+fFjonECjI2JsbCxKSkqsHj9w4EDrHv6VlJSAMaYq+fWSJUss3CWaupD2YIyBECL8ZOa9lIuL\nS1PepKraMmfOHNXlKaXIy8tD165d0bZtWyG3ei4k88wjkiTBx8dHqB18OMd/H+N0R0q5cuWK7F/2\n8ccfK7Lh27RpU5PhFXhbQkJCrB3WRMUnJwIDA/Hmm2+ibdu2mDhxonA9wL+f0AcOHBAqN2DAABNh\nGSf2Voujovroo4/kiYqNGzcKlX306BGmTp1qVVT28gZbIzk5GZRSocyS5tTW1uK7776TXWPs8fjx\nY3zyySdWj3FRpaamWjvcOkS1c+dO9O3b19ZHFDNo0CDhoaBOp5P9skQzKJrDE4OLCtMcZ/RUdpKb\nKWLXrl0OT1TwaEzO4tatW/L7a1OMGjXKoqe6ffu2iTdyEyi6n5/5xd8tW7YQHx8fh+v561//Sr78\n8ksSEREhVG7v3r1k//79hBBCPD09HWrDN998QxhjZM6cOcLGn84AgJz1Y9u2bc0WHJRTXV1NCCGk\nR48ewmUvX75sdX9ISAjx9/cnOp1OqL4OHTrIfzv6Ozd3D2W3p/Lz8xPOLfvw4UPZm/TAgQNwd3eH\nr6+vRZAPe2RlZclDG2eRkpICFxcXhyZP1PRUPPUmj79w//59kwTSauA9ldo6/P39VYedCwwMbDKI\nz9dff20zxqNOpzNZJzR2h7FD6xj++fn5wc/PT3iCoVevXvLkBJ+2FWXlypWQJMmpw5NLly6BMYbL\nly+rroMxhlmzZgmVOXHiBAIDA+X3CUopwsPDVbcBaMzdy6MiKaW4uBhr1qxBr1695Kl5teTn5yM0\nNNRC1J07d7b70IqJiUFUVBRSU1NFfLpah6g++ugjxWGEnwaSJCE7O9tp9Q0fPtwpPZXou8zVq1dB\nKZWzr0dFRQkHn2mqLStWrFD8eeN3FzUu+MYYDAYkJSUhJiZGDlI6cuRIYXMnARTdz5o/1a+Iq6sr\nIYSQP/7xj6SgoIC4uLg0c4scp6CggFRWVpKEhITmbsqvgeakqKHhZDQnRQ2N5kATlQIqKiqaLeGb\nhnI6dOhA6urqmrsZmqjscffuXeLv70+uXbvmlPq2bt1KAgMDyeTJk0lubq5Q2evXrzskbr1eT955\n5x0yefJkEhYWRlxcXMjBgwdV1+csvv/+e3L+/HnV5XU6HYmLiyOlpaXkzJkzisq88sorqs9nF6Uz\nGk95s0tlZSW++uqrppzHnhpXrlxx2PLAGFdXV5M1EqW+QI8fP0a7du0QHx+Pc+fOKYp/aG5Jf/78\neQvTomeBoqIiZGZmqi4/ePBgSJIktERAKUVNTQ327t0ru+GsWbPGno9c65hSN06SNnToUKxbt05V\ncH5XV1cQQtChQwehRU8XFxe8+OKLQudriiNHjiAkJET2Nq6trVU8Ne7i4oLFixdDp9OhvLwc169f\nR2JiIry9vWWnPXvodDps2rQJy5Ytw+uvvw5JkhAcHKzYQxYAtmzZguXLl5uYOmVlZSmO6d4Ufn5+\nqqbYy8vLVT0gKKWIiYkBpRSfffYZevbsKX+fF154oaliLV9UH3zwAcLCwuT/6+vrMW3aNCFRNTQ0\ngFJqkR1Q6cKjq6srioqKFJ/PFowxi/UTDw8Puy79x48fR1ZWls3jasICAI0OipIkyQ6MtuC9a3Bw\nMPr374/t27ejf//+wutmlFKLZAKUUoucU0rw9/dHWFiYkD/a5cuXQSlFaWkpjh07ZnF83759Td1j\nLV9UGzZskI0bKyoq0L59e1BK5awVSti8ebPs/m2MklSaZWVl6Natm+KewBZ6vd7qjafkZkxMTLQb\nn2PatGmq2llXVydnA7HHgAEDkJ2djQcPHpjs567wSqGUWiSJsCY0JTDGhO4HoNHo9o033rD5mZCQ\nEGtReFu+qIDGJznvli9cuCCUV3bs2LFo166d/L/BYJC7eaVPNmuuBD169ICfnx/y8/MVt2XKlCn4\n+uuvLfYruRmV9MwnT55UlfgAaHzAOPJ+FRwcLCwq8zSklFKh/FJAozOhJEmorq7G3bt3MXbsWMVl\njUdATREYGGjumdDyRcWz9a1duxZeXl7COXIppfj666/x+PFj2Vt06tSpQi7ZxqK6desWAgMDcevW\nLTnnrZJ3ibFjx1q96QoLCxXlIlY63F2+fLnN4xs2bEBaWprVm1dUVObBa4y3r776ymZZSqnFhJO1\nfbYoKysDYwxz586Vz0sEnEiVXFNKqXmP1rJF9fjxY/j6+soJ244dO4aRI0cK2XR5e3ujS5cu8PT0\nRGhoKPLz8+UZMKUYi6pLly4mZYOCghTN3jHG8Nxzz1nsP3jwoKKAK0pFVVVVhdOnTzd5PDAwEJIk\nISQkBOfPn5dt/2pqapwiqm7dusHLywvz5s2zWZZSauExoEZUfIKCb3379lX8PZRc06SkJERFRRnv\natmiatOmjUXibH9/fwwbNszuxTCmoqJC7k14fLmuXbsqLk8plYOiUEqxfv16+djrr7+uWFT79+83\n2bdkyRKnPlUB4MMPP2zS+n316tVYvnw5KisrUVlZiTt37mDZsmXy9Lr5RI5SXn/9dTDGbGUftIAP\n5+Pi4rBx40ZkZ2cLiyo7O1sWE3/fXL16teJJl7CwMLt5yiilGDVqlPGuli0qaxMSw4YNc2jNaP36\n9aCUCiWOc3d3lwOamIuqT58+dlPK1NXVWbXIdnNzU+xC7urqquhd0pYrOTELvllXV4eLFy/KQyY1\n09kHDhyAt7c3unfvLjSCGDRoEAYNGmSRPE5UVLyHzM7ORmhoqPxdlMRjHDZsGNLS0po8Xl5eDkqp\nuTdB6xPV8OHDVYsqOjoalFJVeZUOHjwo//Bubm7y+5kSR8H6+np5CAsAc+fOhaurK06cOKH4/Dqd\nDj4+Pk26oFRWVsLFxcVE8OYwxrBhwwZMmzYNKSkp8lM+Pj4eFy5cwIULFxS3B2gMrcYYg6urq0OJ\n9Dii7v03b960GP7Nnj1b6Pdt164dKKUmkxH19fVyDA8r4RNatqiWLl0KSinGjx+P/Px8TJgwAW5u\nbqoCKS5evBiTJ092OMaEWvgQizGGDz74QNVNqNPpMHPmTHh6eqJnz54YMWIE+vbtC0opPv30U7vl\nKysrERUVBUmSUFBQgF27dglF2DWHMYbk5GSnXdM+ffo41XJFKTdv3gRp9JIApRSEEPj6+jbVc7ds\nUTU0NGD27NkmwwMRD1NOdXW1yXtRczB37lx4e3vj3XffdbiujRs3YuDAgXjjjTeQnZ2tKoKRo/CU\nns58SE2cOBEBAQFOq0+EXbt2ITg4GG+++SZ27dplK5m2ovu51ftTNTQ0kIEDB5K9e/c+rVP8phgy\nZAjZtWsXKSgoUBWwpYWjOSlqaDgZzUlRQ6M50ESloeFkfjOiqq+vJ7W1taS4uJgUFBSQt99+m0iS\nRKZNm/arnZ+QRkdBnU5H/vGPf5ClS5eSBQsWCNXz/vvvk6tXrz6NJmo4C6UzGk95e6rMmTMH/fr1\nQ3x8vMXahoh5zsiRI038sDZu3Kh4IfnDDz9Eeno6OnXqZGLa07t3b8Xnf/ToESilCA4OFl5XskZN\nTQ02btyI5cuXgxCCyMhIdO3aVdVaXmtj5cqVCA8PN3d8bNlT6hw/Pz+TrB2imTOOHj1q4u0aEBCA\noUOHWvWjsQdjTJ6af/z4sWJBVlRUICgoCEOHDpW/y6uvvooxY8YIpVyNjY01WWI4ffq0YgHw84aH\nh+O1114DYwxt27ZF//79Tba0tDTF/mPr1q2Dt7c33N3dcfbsWcXfg1NUVGTy2xo/bHgkXVtUVVWh\ne/fu8vrS4MGD8dNPPwm3o6GhAWVlZUhPTzd52AYFBWHhwoXGH235ourdu7dJsPi0tDThIJLnzp1z\nOIg+0Giu1L59e9TV1aGoqAi+vr6YO3euorJhYWEOt2Ht2rWglCIhIQE1NTVIT0+XxaXExIinquEu\nL2pTCnG4C82LL75oYg0hkp3l3Xffla1UTp06JZQRhYtv5MiRKCwsxJMnTxAeHq7qOk+ePFk2cbKz\nFtryRRUcHGzizjBjxgxVq+6O+Ao1NDTg3r17YIzJMR+CgoLAGFPU2/FkcdyZTsQfzJiBAweCUiob\nFDc0NKBLly5WLb6t4UwLCL1eL9tQ1tfXIykpSf5dlPqY1dXVwd/fXzjCLQB89913YIxZGEarzQ3t\n4+Mjj2Q++OADCydMI1q+qK5duwbGmDzEoZSiffv2ii8WYDn845vSd5LIyEhIkiT3StxNQqlQb968\nKYsqMDBQ/ru0tFToe/DewDy2xr179xQ9aIyD8ru4uDiUmCArKwt//vOfceXKFYwZM8akp7px44bd\n8kePHpUdG9XEtmCMWXUyLSwsRJ8+fRAUFKS4rvDwcDloTEREhL3ftuWLCgB++uknuLu7ywFbRKPu\nHD16FIwxeHh4oHv37ti1a5ei/LJFRUUmYgwJCcHNmzeRlpYGSZLw9ttvC70PcWpqauT0l15eXorK\n8DgbTYmHUopdu3YpbsOgQYPAWGNGeDXiOnLkiIWF+eeffw4AitKFXrlyxeT9ydfXV+j8xr9dQ0MD\nNm/ejICAAISEhMDHx0e1BzTw78QWTdA6RAU0vpAWFRWhbdu2wgFOCgsLERwcbBGuy15PM2PGDBNv\nUvO/+/Xrh27dugm1xZj33nsPjDFFwU4+++wzp4rKYDDI7x8zZ84UDmxjMBiwc+dOFBQUIDw8HNOm\nTZOHtUqGfw0NDVixYgXWrVsnX885c+YoNvDlrioGgwHjxo0DYwzt2rVDbW0t4uLimsySyLHlb8Vn\niJug9YhKp9OhU6dOwqk0bSH6nlVRUWEyhIyKihJ27zfHYDAoagcXVXx8vNXjoqLi1NfX47nnnlM9\niRIVFSX0jtupU6cm41CQf1mJK8HYhT4+Pl4Wo5ubm93vMn78eEiSZBEMqKysDLt374abmxvGjBnT\nVPHWIyrRsGT2uHfvnqrJCy6qixcvKnbqe/z4sc3JCSU3dFOiqq+vx6ZNm5ry/VHE7du3ERAQgKlT\npwqXdXV1tRomoClOnjxpdVKirKxMnlJXgl6vx5tvvok333wTOp1O3s8YQ5s2bWyW5aKKiIhQtN+M\n1iMq/pKvhMzMTJNs6UOGDMGQIUPw0ksvoXv37vKxTp06KarPGCIQWITDJypeeuklXLx40eRYaWmp\nkEs9pRSFhYUoLCzEpEmT5EhTSvyp7t69C8aY1cXqrVu3Cn+vhIQETJkyRagM0Phbnjp1CtXV1bhx\n4wa6dOkir1M5kgfs4MGDioLOAMDo0aORnp6Oo0eP4sUXX4SPjw9iY2Oxfv16e++YrUNUffr0QUJC\ngskTyRZz5szB0KFDLWb8+N8zZsxQlen+p59+EraA4Jw/f16eHDDflKZe7dq1q8XkQEJCguJh3+bN\nm03eB/nG982ePVvx9ykpKQGl1Kqz5a1bt+yWHzJkCLy9vREaGoqNGzfi3r17is9tDZ1Oh6ioKKEw\nCQ8fPkRWVhYiIiIUxbT4F4ru52fe9UOSJHL58mXy/PPPC1WYlZVldX9mZqZYy/7Ft99+S/7yl7+Q\n0NBQcuPGDeHy9fX1ZOXKleTo0aPk9OnTpFOnTmTAgAFk+vTpRJIku+WLi4vJnj17yIQJEwghjQnk\nSktLiZeXl6LzNzQ0kMzMTPLRRx+RBw8emBzr3r07OXbsmOJ60tLSyObNm0lpaanF8cOHD5P4+Hi7\n9ZSVlZHf/e53xN3dXdF5bZGWlkZWrlxJamtrFV1LB2j5/lQ1NTXkf/7nf8iiRYt+7fZoNMHMmTPJ\n3//+d2IwGJq7KTLe3t5Ep9ORhoaGp32qli8qDY1nDM1JUUOjOdBEpdFs9O/fX/Yza26uXr1KevTo\n4ZRMjK1aVEFBQcTLy4swxghjjHh6ejo07v7Tn/7k9DSlt2/fJhMnTiS/+93vnFrv06Curo5IkkQk\nSSLr1693qK6ysjLy7bffEhcXFye1zjGio6PJ7du3iaurq8N1PdOiMhgMJCMjgxBCyP3798kvv/wi\nVP7+/ftEp9OR0NBQkpSURNq2bUvi4uLIo0ePVLXn9OnTimfbbAGA/PDDD2TFihWkQ4cO5KOPPmr2\nXLWZmZlk4sSJNj9z4sQJMmvWLHLy5EmyZcsWh873/vvvk+eee86hOggh5JtvviF/+9vfCKWUfPPN\nN6rqOHbsGGloaCDLli1zuD2EkGd3nco4rO+cOXPw6NEj2TBWKYGBgdixY4fJvsGDB6uyzuDnz8jI\nEC7L4alOjbf4+PgmrTNqampQWlpqkXeqtLQU3377LYKDg+Hq6ircDh4LkeeD2rt3r83EBpy4uDin\neAXz8ztiKQ80LuJyy5i9e/eqTrlq7Alhh5a7+JuamipbcTc0NODq1asAGk1+YmJi8N133ym6WNao\nqalBp06dsHLlSqFyJSUlYIw5lJuWUorU1FQcPHhQ0eenTJlisVhMKUV6ejr279+Pnj17qrLbc3Fx\nkf9OTU21lY7ThKZEVVtbiyNHjmDjxo2KDJ67d+9u0e7KykrFC/wA8PPPP8PHxwcbNmyQ97322msm\nCQvsce/ePQQFBZkEWjUYDHISByu0XFG9/PLLCAoKwurVqwHA5GIfOXIEw4cPV3TRmuLzzz8XtjDn\nmRDNUqsohtu3iYR8bmhowKZNmxAcHIxu3bph/fr1uHbtmnw8ISFBWFQNDQ3o0aOH/D8hRHFogaZE\nNXDgQFn0MTExFh4B5piL6saNG3L+YaWcOXMGkiSZWLZPmzYNkiQpTnNaXl4OxphJMr4NGzbIFjhW\nbDZbtqis/Xh1dXWYPn26w6LiCdtEYYzBzc1NuFxJSQlcXFxUDdXstceeAak56enp8rDrzJkzslmR\nkp47Li4OBw4cMNl3+vRpzJgxQ/69xowZY1fo3bp1k6//66+/DkIIYmNjhR4QzhAV7/k569atg6ur\nK1JSUlBUVNS6EhS88cYb8pOvXbt2JsMff39/u6K6e/cuPD09kZ6ebtWz9Pvvv1ctKuOhkwg6nQ7z\n588HpRQFBQWq6jCmsrISjDELI117GAwGuLm5YenSpQgPD8eFCxeQk5OjyMp95cqVFnl5Bw0aZJKj\nq6qqyq44uJEx0Oiuwe0pL126pNiWkXvpGovq9OnTikWl1+shSZKcUP3NN980ebfq169f6xKVseu3\n+Xbo0CG7ouJpcyilSElJsTielpamysGQt8ERKKUYOHCgQ3UAjc6XHTt2FHoP4RQVFSExMVEOurJo\n0SJF5Y4cOYIRI0aY7DPPKXXr1i1F14gPryRJkoUkIioe6s1YVLW1tUhMTMR7771nt/ydO3cgSZKc\n+C0qKgo+Pj4m7bNybVuuqDjl5eXYuXMnpk6dikuXLsmJxeyJasqUKaCU4uTJk3JyMW6JHBkZCUqp\nUOY/jjNE9dVXXznFN8zb21vIB8o8UlFubq7q3prn5eKTN8aEhoYiMjLSbj2ZmZnw8vKSy9fU1CA6\nOho7d+5U1A5rwz+DwYDVq1fj+PHjdsvX1taCMSYndVuwYAEIISguLsb48eORk5NjrVjLF1VT2BPV\n9evXTW6YTp06wc/PDyNHjhROT2qMaGIyaxw/ftwpovLx8cGRI0fsfq6mpgb37t2ThzmcLl26NOlJ\nbIs2bdrI7X/y5Al8fX3ld7TKykq4ubnJs7W2uHDhgjwF/ujRIyxZsgSSJOHcuXOK2mFNVDqdDpIk\nKRI10Oj9zX24+KRFx44dfxvu9MacO3dO8UTF8uXLsXPnTlBKERAQIGdApJQiKSkJfn5+Qute5i+2\n9hg1ahRSU1NN9h0/fhyEEFVBYzhvvfWW4h7TmtdxRUUFwsPDVSd9W716NTw8PPDo0SM8efLEZHgu\nwvDhw+WZNg8PDwwdOlSo/OjRo01GHFxU5u99TZGYmGjhc7d8+XJbs6EtW1Rnz5618M6trq5GXFwc\nXn31VUUXzdm0b98elFJbceFMePDggcVirzN6O0eHoWpmMM0pLy/H9OnTERsbizlz5ijqNZ1Nbm4u\nBg8eDACYP38+PDw80KNHD6H8w4K0fFExxlBYWCjv456qly5dcvDaqOOXX35BYGCgkCUAn7433iZP\nnuxQOxhjQrHtjCkuLhaOnfisUldXh4iICCQlJYExhri4OKvxAJ2IovtZ86dqYTx+/Jj4+/uThIQE\n8tVXXzV3c35raE6KGhpORnNS1NBoDjRRaWgQQr766iunJdPTRCVARUUF+e///m+H6uBOfnzT6/VC\n5RctWkT279/vUBtaG19++aVDHsT5+fnkr3/9K2nTpo1T2qOJSoBPP/2UrFu3zqE69u3bR/bt20dy\ncnLIH/7wB/Kf//mfQuUppWTYsGEOP1UBkFOnTpE//elPZNWqVarq+PHHH8mPP/6oug3vv/8+oZQS\nxhhZvHix8AOGk5ycTP7xj3+oKltSUkL+8pe/kJycHBIQEKCqDguUThM+5c0qR44cAWMM7u7uiI2N\nlWNlr1+/XtH8Z15eHsaPH2+Spc/f3x8PHz5UVN6cV1991Wnhp6urq/HKK68IrzctWrQIkiQhNjZW\n1XkbGhqs2lRy06OmMBgMiIqKsprelS+gKrUhLCgogJeXF0aPHo3a2lrU19fDz89PtZ+cJEl4/fXX\nhcvxdk+cOFFpkZa9TjV58mSLG06v1yMuLs7mjXj27Fl4enrKFuXBwcHYsWMHqqqq5NDHapPAvfrq\nqw4vPN+8eVO2wjc3TlWCI6Jau3atLKLIyEhERkZi79696NOnDxiznStq9erVsoiCg4ORmpqKGzdu\n4NGjRxg1ahTatGkDSZLsrhPdvHkTnp6emDBhgryPG+EyxlQJS43H7/379+V7QWDdsfWJKiYmBowx\nXL16FdevX7f6rfPy8hAbG4uuXbvihx9+sDjuiKgGDBiAnj17qipbXFyM3bt3w9fXV76BRN02AMdE\nxc8bFhZm9ZgtUT158gSDBg3CuXPnrIZ2/uKLLyBJEt59912bbXj55ZcxcuRIk33vv/8+3Nzc5GTn\noqgR1bx580AptfB6njdvHpKSkvDpp59ae0C0bFFVVlbKycCqqqoQGBiI6dOnq3J1MLkqKpIMcCil\nGDdunHA5Y1f4nJwc5OTkYMqUKXB1dRXOJLhw4ULZw1aEjIwMOURBU21Uk9WQwy1gRo0aZfNz9q69\nmt+GMSY8/MvJyQGlVH5ABAUFgVJqku1y/vz55sVatqiARtu5Hj16gDGGAQMGCF00azx+/NjmjWUP\nQohTc2QB4jeR2p6KW2BbM+S9cOECGGN2h0Hl5eUYOXKkvD18+BAPHz7E3r175eGfvToCAgJsHp84\ncSIOHTpk9/sYo6an4qKaMGECpk+fDsYYpk+fLh/v27evalE9G0HXmsDf35+cPHmSBAYGkv/7v/9z\nuL779+8TQgiZP3++qvKUUrJv3z6SmprqcFt+TXj4s549e1oNsbZw4UJCCLEb86579+4ms45bt24l\nhDQ+mHk8RHt1vPTSS8ob/hT529/+RtLS0sg///lPEh4eTv74xz+Sv//97/LxO3fuqK9cqfqe8mYV\n7gQXHR3tcDgrXldISIhwilMOpRQzZsxQ/Hl7L+35+fnCPVVVVZXwk7mmpkb2mjYnNzdXcZQo7vs0\na9Ysq7N/kiRh3LhxTbrmV1ZWYtKkSTbPERgY+Kv0VHxyxPh77NmzB9OnT4ePj4+JF7ARLX/4l5qa\nKk87jx07VuiimTNjxgxIkoT9+/erroNSqnj2Lz8/HwsWLLB67Pbt2xg8eDDatGmj2KHOGH4T8OTV\n9rAlKj5TqsSNnd+4PL6DNVFJkoR+/fo1WYeSdy7RHMRq4/0RoxzO/J2XL7989NFHVoso2ZpbTDZF\nxVNfnj9/vqmQUYpRe+GNUSoq/sOEhIQgOjoa0dHRcHV1NVkvmz17tlCSMmN4HQsXLhQq4+bmJgfN\nLC8vx4ABA4R8s8zXtiIjI7F27Vr5+KJFi+TNVh3mwUE51tzzRdolSlVVFSIiIkxE1alTJ1tBcFq+\nqPr27St7Yc6ePVv14iDPgm68NqIGEQdDvV4PvV6Pffv2yX87Cw8PD0iSZHJDK2kPv3natm0r/x0b\nGyuSSRBPnjzBuXPnFLu9m8PXCiMjI1FWViZfm65du6qegXTGA1MhLV9UZ86cQXR0NOrq6pCQkNBU\nl2wXPuPX1NqWUjp06IBly5Y5VIcziImJUXUTzZs3z6K3ERGUs1i3bp1JD8E3e0PDphg9ejTi4uKc\n3EqrKLqfn3l/qry8PJKQkEBSUlJUBcUvLi4mwcHBZM+ePSQxMdGhRmr85tGcFDU0nIwiUT0r61TO\nTeN8KV8AAACQSURBVPqkodGMaK4fGhpORhOVhoaT0USloeFkNFFpaDgZTVQaGk5GE5WGhpPRRKWh\n4WQ0UWloOBlNVBoaTkYTlYaGk9FEpaHhZDRRaWg4GU1UGhpORhOVhoaT0USloeFkNFFpaDgZTVQa\nGk5GE5WGhpPRRKWh4WQ0UWloOBlNVBoaTkYTlYaGk9FEpaHhZP4f2SZQkNEX6gQAAAAASUVORK5C\nYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAANUAAADMCAYAAADkmebQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXlUFFe+x++9BYR1QGEQ5LGoD54yeNCnYxx98oCnRxx9\nyhGNC4maRB0xBhWNmmjUEI9rjAkEczTOJPrUyRiduByXifsWUTG4RRQDIqBGEFmbvfm+P5iqdDe9\n3Kpug+3U55w6B6rr3rpdXd+6t+79LRQAUVFRsR2svRugovKioYpKRcXGqKJSUbExqqhUVGyMKioV\nFRujikpFxcaoolJRsTGqqFRUbIwqKhUVG6OKSkXFxjwvogLvtnbtWvTv35/7eHVTNxtuXDwvorLI\n48ePiSAI5N133yWVlZXc5W7fvk0cHBxIc3PzM2ydSnuRlZVFli9fTn7729+Sf/zjH+3dnFYAPA+b\nWR4+fIiOHTuCMQbGGE6cOGGpiB6BgYGYO3cuamtrZZUT0Wq1SE9Px9y5c0EIwaJFi1BVVaWorheR\nXr16gTH2q5/32rVr0j3BGEPnzp1x7ty5Z3lKrvu5vcVkUVR3796VLtqCBQtQV1en6Go4OTnh5Zdf\nll3u5ZdfBmMMp0+fBmMMzs7O8PLyAmNMdlsePnwIxhgEQUBycjKSk5PN1lFSUoKVK1fCxcUFgiCY\n3MLCwmR/L10uXLiAdevWcR0bGBiII0eO6O0T28FDUVERGGMoLi6W3U6R6dOnS/dEZmamtF/cZ47a\n2lrcunXL5OcLFy40V8+LISrGGHx8fFBQUGDuMIsMHjxY0dNUvMD79u3T65369euHRYsWyarrzJkz\nkqiMbYb06tULH330ERoaGozWd+DAAVk39IkTJ7B06VIsXboU3t7eYIwhPj4ebm5uePDggcXy9fX1\nEAQBISEhevvltKGurk66pkVFRdL+8vJyFBUVobGx0WIdq1atwrx589rsj4+PByEEP//8s8myubm5\ncHR0hIeHh96m2+MxxjB48GBjxe1bVHV1dTh16hQYY6isrDR5kXjJzs5WJKrRo0cbLdevXz+sX79e\nVl1DhgwBYwzu7u7Izs5GVFQUwsLCIAgCPvjggzbHP3z40Gx93t7eEAQB0dHRXOd3cnICpRR+fn7Y\nuXMnKisrUVFRAW9vb67yJ06cgCAIGDBggN5+OaICoDeUnzhxIhITExEYGGh1D/b666/Dzc3N4v2y\nbdu2NiIy3MrKyowVtW9Rde/eHYwxZGVlAWgdBo4YMQIff/yx2Qtmij//+c+KRNXY2IiEhARcunRJ\n2vfGG2+AMcb1VBUpLi6GIAiIjIy0+iGRmZkJDw8PCIIAV1dXrjLjxo1DYmIiDh06pLd/+vTp6Nmz\nJ1cdgiDAy8vL6H45ogJaH5ozZ85EUlISZs6cKd3Mcq6pLlVVVWCMYdCgQVzHNzU1AWh9X9ZqtQCA\n5uZmS0NI+xVVQUGBdIEmTZrU5ini5OTEdeF0cXFxgbOzs+xyQKuwGGOYP38+Ll68iJEjR1rsRXSZ\nPHmydOMxxjBr1ixF7QCA69evS3XJGRIbE3JFRQUGDx4MjUbDVYe59zq5otKluroajDGMGjVKUXlK\nKSilOHr0qOI23Lp1S7q/zAzr7VdUycnJGDBgAGpqakx2z3IQ3wXEF1tT7yjmiIuLg7e3Nzp27Iic\nnBxZZXUfDIQQMMawYcMG2W2or6+X6unfv7/s8oZkZ2fjrbfe4jr20aNHFodMSlm9ejUYY7hy5Yrs\nsjk5OVafH9AX1b1790wdZr+i0p3dYYzpTRCIvZic6XFPT0+Ehobi2rVrCAoKgiAIsmfuxCEfYwxL\nly6VVdaQAQMGQBAEWcPAMWPGSD0Cb89ijm+//RatKyr8RERE6PVM7733Ht577z289tprinsqpb1U\nXV0dwsLC0LlzZ9y5c0fRuXURf1sLD0z7FdWqVav0RJWTk4OcnBxMnDhR6nF4qK2txdtvvw1BEPDk\nyRMAwL179xAcHIyBAwdy1SHCGMOjR4+QkpKCDh06SO96ciksLJSEzSuqvLw86UZes2aNovMa0r17\nd9lLDE1NTWhsbJQ2EfEaK2HJkiVgjKG8vFxWuVdeeQWMMWzatEnReQ3h7O3sV1QA0KdPH5PDjJs3\nb3JdKE9PTwiCgJKSkjafyVm8Xb58Ofz8/KRyPD/AnDlzkJ+fj4qKCulcNTU1ePnllyEIApYsWcL9\nUn7r1i1JVOPGjZM2cfZPEARZQ9KzZ8/C29tb8ZqfIRMmTFAsKkopXFxcZJWx1ZBPZP369WCM4bPP\nPrN0qH2LyhaMGTMG3333nVV1iOs5H330kfRD8rwQNzc3o76+HtHR0XpDpoMHD6K+vl52OyZOnCg9\nJARBQHBwME6ePImrV6/KrsvT09NmggKA3r17WyWq9PR02eUWLlyIyMhIvYdtVFQUIiMjMWTIECQk\nJODgwYMYMmSIxbpCQ0PBGMOHH36IlStXorm52dShXPczBbjtBJ8lz0UjjCEIgvR3ly5dyCeffEJG\njBjBXb6qqor88Y9/JIQQ0rVrV7Jt2zbFbcnJySG5ubmEEEKGDRtGnJycZNfR0tJCPD09SXV1teJ2\nGOLg4EAIIbLtK0+cOEFGjRpFSktLibOzs+zz1tXVkbVr15L//M//JOHh4SQwMJBotVri6Oio1ybx\nb1Po/salpaWkY8eOpg6lPO1SRfUvRENDA0lISCBbtmwhfn5+7d0cEhQURO7du6d3U7cH3t7eJDk5\nmSxZssRSW1RRqajYGC5R2Y3rh4qKvaCKSkXFxqii+hUpKioilFKSnp7e3k1RMaCmpob84Q9/IO++\n+y6pqamxqi67FNV//dd/tXcTFJGZmUkYYyQ9PZ0cPny4XdpQWVlJGhsb2+XchrS0tJB3332XLF68\nuL2bQl577TVy7do1smrVKuLu7m5dZbxz789446aiokL2ot/58+cRFBQEQgjWr1/Pbebj6ekJV1dX\njB07FmPHjpWcExlj+Pzzz2W1oaGhQW9NJTIy0mKZpqYmDB482GpfMrEuxpjNLDJsxfnz561axM3M\nzASlVLqulFJ07doVhYWF3HVs2rQJ4eHhPGt3L8bir+6iYmNjI1xcXHD8+HFLXx5Aq1WDaMFMKUVW\nVhacnZ1BKTVbbsKECWZ/6NWrV1usQ5eff/4ZjDG4uLhg0KBBkskTD7W1tXrfISQkBCtWrMCKFStQ\nW1vLbRzMGMONGze422yKjIwMjB492mhglNGjR8uu7/z58/D09FTcngMHDrTZV1lZierqaq7yLS0t\ncrwe7F9Uhw8f1ru5T5w4AcYYl5dqVVUVKKVwdXVFXl4eKKXIzs5GSkoKKKXmVs1BKYWPj4/Jz2/c\nuCFLVNOmTQNjDCtWrJBEJQddURluffr0wdOnTy3WobQ3MCYec5tczp8/z9VrPyvmzp2L1NRU3sPt\nW1TDhg0DYwzff/+9tE+OvdeIESMwY8YMNDc3Y9u2bRgzZgwaGhrQ3NyMPn36mDXgvHHjBpKTk3H6\n9Glp382bN7Fq1Sp06NBB8qDdsGEDWlpazLZD11awpaUFjDFZhqxHjhwBpRTTpk1r0yudPHkSnTp1\n4hK44XXbu3cvevbsKbUtMDAQI0aMQEZGht5xt2/fxu3btwGgzWeGKBHVuHHjFAne3d0dS5YskV1O\nl+Dg4DZtLiwsxJYtW3D37l1jRexXVFqtVu/9Y+zYsQgKCoKrqytqamq4LhilFI8fP8a9e/fa3HRR\nUVHcrvB5eXno1q1bG6Per7/+GllZWWCMmbW/++GHH4waBYtGsTzW2WKvpOt9DLQODQMDA7Fy5UqL\ndYiiBlrdLTw9PbF37169Y0pKSvD2228bHVJZ4vbt24pExZiycAmUUnh4eMguZ1jHmTNnALRekzlz\n5qBTp05Yv369qQeV/YqqsbGxzTCHEILx48dzXzAfHx9Mnz4dvr6+mD9/vt5nUVFRGD58OFc9QUFB\nemIQBAGZmZlobm6WXv4XLlxosnxVVRXc3d1NWtx369bNYhv8/f3h5ubWxm/oxIkToJRyiWr48OHY\ntm0bAGDr1q3S34ZUV1cjNDTUYn2GZGRkKBJV165dFYWOc3FxUXQ+XSil0qTVgAEDQCmVJiteOFEB\nwP3795Gfn4/8/HxpVkcupkJRbd68mdvjVeylnJ2dkZeX1+Zz8TMenJ2dMWHCBOn/27dvgzGG7Oxs\nrvKGuLq6glLKZfWuG3/h0qVLeO+999ocU1BQgE6dOsluh9hLKbnJe/bsqdhiPjo6Gu7u7orKAr+I\nau7cufjyyy+l/RkZGcjPzzdWxL5FpQtjTPJnsgWbN2/Gjh07uI599OgRFixYYHRaW4xdsXHjRq66\nnJ2d29RjjajEXpyXxYsXg1KKyMhIUEqxevVqXLx4EV999RUWLFiALl26KHKVEQUlvnvJYfjw4YqD\nvdTX18PZ2RkeHh5ck1eGUEpx69YtvWu4du1ac7ORL4aoRo0ahX79+imOLmuMqKgo7iltU4hDv4SE\nBO4nreHMpbjmZqwH5EGuqERycnKQlZUlbdasg1nTSwHAzJkzFZ9bRIwBYmJywST9+/fXe8Xw8PBA\nRUWFuSL2LypxwVQMIWUroqKiuN23GWsNJ6zRaHD69GkpUi2lFPHx8bLOa+ydKiEhQclXANAqKmsi\nM9kCcc3K0sygKRhjNlnczsvLw6pVqxSVlXF/cd3Pz7Xrx9WrV0mfPn2IVqu12YmqqqpIp06dSHl5\nOZdjXFxcHKmuribOzs6kvr5e77OTJ0/KchScNm0a+ctf/kIIaXXs+8tf/kISEhIUOegRQghjjLi6\nulptq2YNlLZ6Q9y+fZv8x3/8h+zyfn5+ZO7cuWThwoVWtePixYvk1KlTVtdjAdWfyhiZmZlkwIAB\npKWl5dc65TODsVbTzRfhu1jD6dOnSWxsLLl06RLp06fPszyVKioVFRujOimqqLQHqqh+JSoqKmQl\nq1P5dWlsbCTHjh0jFRUVVteliupXoqqqivTv37+9m/FCsn79enL9+nXF5evq6kiHDh1IUFAQ8fLy\nsro9diUqxhiZPn267HJJSUnkN7/5DaGUku+//55otVpy586dZ9BC0wQFBUnhxf6V0Wq15Pjx42Tp\n0qWEMUYYY4RSSpYuXUqePn2qqM4lS5aQH3/8UXGb+vTpQzZv3kzCwsIU16EH79z7M97MkpmZid69\ne0vOaLwr8EOHDpXs9SZOnIibN29i8eLFmDVrlkXL6ObmZnh5eUl2e4a2iImJiVxt0MXaiKq1tbWI\nj48HpRQBAQGyyorW7oabORcYXh48eIDU1NQ2easMefLkCRwdHfHll1/qhZB+8OCB4oizouW/koQP\nAHDu3Dk5EXLtf/FXJCYmBpRSxMTE4ODBg7wXQFo81jVJKi8vR0REBFdk1/T0dAwZMgSTJ0/GihUr\npP3Tpk1TZMlgjajEmy46OhoFBQV46623uC32gVZDWUopevTogUOHDuHGjRvw9fXFrl27ZLXjyJEj\nekbGCxYswIgRI/Dmm2/K/n7FxcXo3LkznJyc0KlTJ6PhuS2hu5AeHh6OiIgILFiwgLt8WFiYHGud\nF0dUYlheJdku1qxZo5cT11RmRFMYe5KvWrUKlFJZlh4VFRXcydUMEZ/Gffr0kZKV5efn48KFC7Lq\nKS0t1TOpmjp1qmz3eh8fHzDGEBAQgJ07d6KxsRFlZWUYNWoUYmJiuOvRzWYYFxcn6wEhIj40e/bs\nCQ8PD9lpio4fPy73QfDiiEpOpg9T5YuLi1FdXQ1/f39Fhp+6iKKSYwhaUVGBpKQkAK1ClTPsqq+v\nR0hIiHS++vp6ZGVlwcfHR1aiBUOmTp2KZcuWySqTnp6O+/fv6+0Tey5R8DyIOanETUlM+PDwcEUj\nBpGAgAA9m8WnT59ixowZ0u9khBdDVJmZmVJgf6WsW7dOEqYt3iHc3d1l/5g1NTWS8eiWLVvAGMPO\nnTu5y/v5+Rm1HezcubOsdojU1dWBUipbVIaIydKU2v4BQFlZGRhjcHNz4y5z4sQJhISESNfh1Vdf\nlX3eDz74QHpY+/r6gjGGwsJCbN68Wc/jXIcXQ1RiSp3Hjx9zXyxjMMbg7+9vVR0iSq3Du3btCgB4\n/PgxGGNG8+ea4tGjRwgODgalFFOmTMHRo0cRFhamqB1FRUV45ZVXQCmFk5OTrHbo0tTUhMDAQERF\nRcnqpYyxYMEC2V7AFRUV0nCeMSZ7OLx9+3YwxnD48GG90dDHH3+M7du3GyvyYohKfHpYg5+fH8aM\nGYOwsDAsXrxYcT0ajQYhISGglOL999+XXV53iCRmhDSTCtMiosW8HJYuXWp0FlDJO01ISIjV3re6\nxMfHKw6hlpiYKCeAi8SaNWskUe7duxdhYWHmrinX/fzcr1NRSslvfvMbq+ooLS0lf/vb38jp06fJ\nyZMn21ib87J69Wpy//590qlTJ0XrZR07diTvvvsu+f7778n9+/fJH/7wB7JmzRpFbSGEkN69e5Pf\n/va3ssq8+eabev///ve/J8uWLSNubm6y6tFqtaSwsJAMGDBAVjlzDBs2zGZ18TJy5EhCKSUHDhwg\nI0aMIHl5ebKvaRt41feMN6OsXLnSqqznogPdjh070NDQgNjYWGzZskVRXaLXLKVU8VCnqakJHh4e\neu9E1g5ru3XrpmhWVOkQVmTWrFno1KkTiouLFdehS0FBAby8vKRALJb45ptvkJWVhTt37sDPzw+U\nUtnDP6B10khMpMcYMxm745/Y9/Bv8eLFEAQB06dPl3ON9PD19YWHhwdiYmIgCAKioqIU1SMGtExJ\nScHDhw8Vt+dZ0K1bN0WZGSmliodaYrwLuec9e/Ys/P39MXv2bERERCAiIkLvAePr68tdV8+ePeHs\n7AzGGDw8PBRFgFKAfQ//xAYaDlfkUFZWRjQaDTlz5gzZtWuX4vjla9euJYS0ZuXz9/dX3J5nAQDy\n0ksvKSr73//934rKzZ07l7i4uMg+75YtW8jjx4/J/v37iZubG7l16xYZNmwYGTZsGDl+/DgpLi7m\nruv69evk8OHDJD4+npw6dUpWdstnDq/6nvH23FJQUABHR0erh2nPCnFGUQ4ajYY7mpQhPXr0AGMM\npaWlisrbOVz3s+qkqKLCj+qkqKLSHtiFqCoqKkhSUlJ7N0NFhYvnXlTNzc2kY8eOiiMOGVJUVETC\nwsKkKEAqKrbmuRfVxo0byZw5c8iqVatsUl9qairJy8uTIhHJ5cqVKyQ1NVVxBKOZM2dKznnvv/++\ntD8tLY2rfENDA5k5cya5cOGCovObQqPRkHXr1pGGhgau41taWsjy5csJY4y4u7uTnJwcq85fVFRE\namtriY+PDxkxYgQpLS21qj5b0NLSQmJjY+UX5J3ReMabSaxZoDSGUmc4oNU6PCkpCYzxJ20T2blz\np5TMQDTqFa3OAwICuBKfnTt3zqiJUW5urqy2dO/eXc/nqKSkBIIgIC4uzmLZxsZGpKamQhAEvPLK\nK9BoNEhISJDj6KdXl2iDaLhZMq7NzMxETEyMXuIIcQFX7u9rKh49pdTQ+IDrfm5vMZkV1alTp4wG\n0ufBmGFmRUUF3NzckJmZqahOjUaDyMhI2ZFQnZyc4ObmZtQSY/DgwejVq5dFN5Lm5mYcOHCgTVrU\nyspKbuvukpIShIWF6d0oCxcuhCAI+PDDD7nqEG9cJVYcunz22WeglGLcuHEYP368LBeWmJgY9O3b\nF6dPn0ZaWpqU9UQUmZy2jRo1yuiD+/3334eTk5NhJGP7F1V6erpNUmqKbNiwQc9hUS7ffPMNGGMo\nKyuTVY4xZjQ8s5jgQG4McEN48zSFh4e3sSwRn/A83q9i3rC+ffsqbivQ6rfk6uqKtLQ02WUzMzPb\neBuISfEYY1xphUTS09OlXGGGhISEGDNZsm9RZWVl6T1BxHSjlFJFP0ZGRgYYY9y5YI0xfvx4RUNH\nxhgGDRqk53V77NgxODk54dtvv1XUltTUVOl6jBw50uLxGzZsgCAICA8PB9A6lO3SpQu8vLxw+fJl\n6bimpiaTPmcbN260KnUN8Isfl5IsiIsXLzZ6/Smlst16xHYYG3Y3Nze/mPmpvvnmG+mLbd26Vc99\nPT4+XpbXrWirZi6PLw+MMQwdOlRR2fr6eimOg7jJSVOqS3V1NXr06CEreIsgCOjQoQPu3LmD7du3\nSz2Uu7s7evToIf0vCAK8vb2N1vHhhx9CEAT4+vrqvcOIf/OIOzQ0FOfPn5f9nYFWP7TQ0FD06dMH\nhYWFKCwsxKeffiqrdxIRr//Ro0eRnp6O0NBQ+Pr6IjIyEq6urli6dKmxYi+OqCilepF6EhMTZaXW\n2bRpExhjOHnyJHcZQ8TUOa+//rriOgBg0aJFkhiUeu2K7Nmzh3six5jXsKlt06ZNRuv49ttvwRiD\ni4sLduzYoZfe9Pr16yCEWIzbERoaCh8fH5PnsIRGo0Hnzp31JiXkeoU/fvzY6ORIp06dkJGRAUop\ncnJyjBW1b1E1NTVhwIAB+OqrrzBlyhS9zxITE7ktpGtqamzi6HjlyhWEhIRwp+AxxpMnTyQXeDc3\nN6vibrS0tGDUqFHcdVRUVOC9997De++9B0EQMHbsWFRXV+tdx6amJr2hoFwYY20mUozh6+uLwMBA\nUEqt/l38/f3x9ddfIz4+HoIgICYmxqKd5pdffglKKaZOnYqzZ8/qfSbmrDKBfYsK+GWGSPdFvqmp\nCUFBQaavmAFffvmlVT5ZIkOHDsXYsWOtqqN79+5wdnZGdna2NBwzxd69e3H16lWjs5iVlZVSmDS5\nwhSnz611fzcGr6jq6upQVFSEHTt2wNnZGcnJyYrOV1hYqBfB6eDBg1I4O0szgCbSj1ryM7N/UQHA\nnDlz4OjoiCFDhkhBJHkzF65YsUKR348xGGOKIxdVVVXhjTfegJOTE3Jzc9GhQwckJyebfS9csGCB\n0SGK4XBFzkyko6Oj9P7Tt29fqyIx6ZKdnY2IiAhFa1XHjx+3qscyJQA/Pz9FdVJKMX/+fFPvqS+G\nqKyBMWb1bJWINTmHxbH/jh07ZK0JAa09c05ODjZt2oRNmzYhMzNT8QymKKhFixbh5s2biuoQ0Wg0\n2LhxI/z9/SEIAreg1qxZAx8fH3To0AEBAQFSMnClk0imFr8JIbJnGEtKSkApNZcyVRUVY0zx4rEh\ngYGBisoVFhbqTQIoCU5iK5ycnCAIguJs8EBriILPP/8crq6u0mRB3759cefOHa7yP//8c5se18nJ\nSXGK0rS0NMTExOgJ6+DBg/D395fdU4misjbwi+pPpWL3VFZWkmvXrpENGzaQ/fv3k08++YS8/fbb\nz+JUaiZFFRUbozopqqi0B6qo/kU4c+YMoZQSSikpKSlp7+Y8Uw4cOECOHDnSbudXh3+caDQaKXFc\nnz59yLJly8gf//jH9m4WN4Ig6P3/6NEj4uvr206teXbk5OSQfv36kerq6mdRvTr8I4SQixcvkr/8\n5S+EUko+//xzxfX8/e9/l/7Oz88nI0eO5C5LKSUuLi6Kz21IXl4eWbVqFWGMkd///vdcZQwj0P7P\n//zPc/1Q+Otf/yq7TFFREenbty85e/asTdpAKVXmzMo7TfiMN6PcuHEDCQkJbfY/ffrU9LzoP3F2\ndtYzEhUNP5VOJyclJcHX1xc//vgjAOCtt97iWjwVcyht3rzZ6Oei1TgPFRUVetPzoqkTjz1iSUkJ\noqOjER0drVdHRUUF9/mfJTt37sSMGTNAWkctsjKiAK1LFx06dMD8+fNllauoqNC7P3RtFydOnGg4\nvW7f61STJ0+W1jGys7MBtF54MfOFJcPNFStWoKCgQBLR9u3bpXUauRfeGHv37uVamzlx4gRmzJhh\n8nMeMyPR70rcdu/ejYaGBmzduhWMMVmLyUCrxbxY16JFi2SVtSWigLp06YLz588jLy9PUT3BwcGK\nTdH8/Pxw+vRp1NTUYNSoUWhpaQEAfPrpp8Y8G+xbVI6OjqCUSu4Gnp6eksgcHR1lX7xXXnlFEtX4\n8eNll9elubkZc+bM4RLVoEGDzFpA8IiquLhYEkF0dLS038nJCYwx2e70ACRjXKWiam5uRn19PfLy\n8pCbm4tdu3bpbWKPbg6lLiC6REdHw93dHdnZ2ZLP3KRJk7jL+/n5Sb21+ACuqqoCYwx+fn6GQrdf\nUYmxy0VDS41GA41GIxlLKnmizZ07Fy4uLvDw8MCDBw9kl9dlz549EAQBDQ0NFo81J5r79+9ziaql\npQUHDhyQznf48GEp4dnkyZO52y1y7NgxSaRyrQ4+/PBDVFVVIScnB/fu3UNlZSW0Wi20Wq30lAda\nLSfMUVlZKW1KePjwIXr16gV3d3fs379fsvAYN26cLCNjPz8/zJs3DwBw9+5dvRGBEexXVFu3bsXh\nw4f1hng5OTmglKJfv37cFwxodf3QHTMvWbJE1g9ZXl6OhIQEvcx64nsaD4wxPHnyBAUFBViwYAF6\n9eqFBQsWYMCAAWCMybLQvnLlilH/JzkW5ydPnrR045h973RycsKECROsfhfbuXOn3vBPDp9//jlc\nXFzw/vvv49SpU2CMISsrC0Brry4nWJBGo9G7Hhs3bjR3uP2KyhhjxowBpVS2v4+YtZD8M8kyYwwR\nERFcZZubm+Hj4yOJKDIyEhs3boQgCFi4cCFXHYwxeHt76/1wPj4+WLhwIbp27Sqrp3j55ZdBKcUH\nH3yA/Px8ZGZmglLK7eNVV1eHxMREvbZs375d8j86dOgQtm/frjfE1OXixYvo1asXVq9eDVdXV5u4\nj5w/f1524jjdLB+zZs3C/Pnz0djYiMzMTAwbNgz9+/eXVZ+lh4wOL46onJ2dZSeu1kV3mHb79m34\n+/tzhePas2cPGGOYOnVqG9dxXmG+/fbbyM3NNXoDLliwQHFkJ+CXd61Ro0ZZPPbgwYOyvH+NoZvs\nWnTptwU8v4XIzZs3cfr0ael/3d9EEARZPX/fvn3BWGu+YMYYTziAF0NU4vuVtfEldDl79ixcXV0t\nHscYk/JRZWZm6vV2jDGudypzJCYm2kRUPLmZ3N3duQU1YsQIo3V07twZUVFRiIqKAqVUdqQrY8Pu\nvLw87p7j/wKhAAAgAElEQVRKq9Vi0qRJem2llMLd3R1du3Zt48VrCcYYQkJCpChR/zI9lbOzs03d\nJSZPngxBEDBhwgSLx77xxhvIyMjAnDlzIAgCZsyYIQ21GhsbZT1hjXH58mWrRCXO/vEEfuER05Il\nS6xyC7HEqlWr2rw/EULMLjkYUlpaipkzZ2LmzJm4dOmS4pAEH374od55bSmq59ZMqbq6mkyZMoU8\nffqUnDx5UlGl8+bN++UEALl16xY5duwYcXZ2JjU1NRbLNzY2EhcXF0IpJTdv3iTdu3dX1A5z9V++\nfJkMHDjQ6OcajYZERESQwsJC4urqSpKTk4kgCOTu3bvk8uXL5N69e6R3794kKyvLpu16loh5k0Wi\noqLIhAkTfvV2xMfHkwMHDpAZM2aQgQMHktdee40Q0prL2Ax8Afh51feMtzZ8+umnoJRi165dlp4e\nJtG1qhDH3l5eXnpRgNqbwYMHm/ysubkZI0aMMNmzhIeH/6smX7Oaq1ev6l1LR0dHnmhb9t1TiTZX\nShMBqKg8A1QnRRUVG6NaqauotAeqqFRU/klxcTGZNm2a1fXYhag2b95MXnrpJVJfX9+u7bh586aa\ngdGAHTt2EMaY3oyeJQRBIA4ODuQf//iHTdvym9/8hgQHBysqGxcXR4KDg8lXX31Fzpw5Y11DeGc0\nnvFmFt3sFiUlJZYOf2b06tVL8boIAMTGxiIlJUXPMuF5oLa2VlrklsOePXvg6uoKxhjWrVuHPXv2\ncJXr3LkzAgIC4OLiothKxhienp6KXECqq6ulWUALuce47uf2FpNFUYn2bWLQxYkTJ/JcJwkxbjYh\nxKqAmIB1WRh1U99QSpGeno4zZ85wlc3OzkZtbS1mzZoFxhjefvttLFu2zKoHzKuvviotHovb3Llz\nUVxczFW+d+/eUow8GbZzehw/fhyMMXTv3l3JV2iDIAiKsrLEx8eDMaaXt8sEL4aoxAizEydOBKUU\nn332maUvLiH+6Pfu3QPQatrPm/TN0NB1ypQp0o0zevRo7jaIpKamYvTo0di/f78kLN4bUTTiZYzB\n09MTAQEB6Ny5MxwcHCRDXzkMHTpUOvfAgQMBtFrj87antra2jZFy165dwRiT7ZZz7949BAQE4OWX\nX7YqPHdBQQEEQZDcOHgRHTY3btyo57pighdDVKIZf01NDSiluH//vqUvLrF169Y24Yg7derEVdbQ\n9Cc0NFS6gTIyMrjbIJKamgrGmNRj7d69G7du3ZItKl0/pfT0dERFRYExZjHThciWLVv0epajR49K\nn/GKStfy39fXF5cuXcKFCxcU9+Lp6ekQBAFr165VVL6urg7R0dHw9PSU5StXX1+PqVOngjHusAL2\nL6oHDx6gY8eO0v9z586VlSht9uzZbXxrKKWKhhv79+8HY4w7v64xdG86safisXsTBWnqvYdSymWz\n5+zsDMZMh8IWEzrwoJsB8vTp02CMwcHBgausMeT4qBmybNkyCIKAc+fOySoXEBAAxhhWrFgh7aus\nrERRUZGpdyv7FlVjYyP8/Pz0hntHjhxBSEgI3xVDaz4od3d35Ofn486dOwgPD4e7uzuKioq46xCZ\nMGGC5BullLCwMMmyOiUlhdt4tXPnziYTLYjmNpZwdHQEY+bd55W8F23fvt1S+hkukpKSFIuKECL7\nYffDDz/oPSQfPnyIt99+29L7Idf97GDd3OGzAwB5/PixXmgvuVOd3t7eJDk5mfz7v/87AUAopeS3\nv/0t+bd/+zfZ7fnb3/5GCCGS4aUSnJycCAASFBRE1q9fz11u4MCB5He/+12b/Vqtlnz44Ydtwo8Z\nUl1dTbRaLXnnnXdIamqq0WPEkGAhISFm6/r73/9O3nzzTUJI629UXV1tk2WGP/zhD2Tz5s2yy6Wn\npxPGGJk5c6ai87700kvk/v37pGvXrorKG4VXfc94a8Phw4dBKdV7eaWUyuqpdDly5Agopbh+/bqi\n8owx2TOPuqxfv156otvKlUWctbKEuUwW6enpkjfwkydPTNZRVlYmxcXQ9WVijCE4OFjWBIVo3Hzp\n0iVpX3R0tOyeqqGhAYIgyA6xAPzSU4ltMZzFNJG8zr6Hf+JUuIhWqwWlFF988YWsiydi7RqTNaL6\n+eef4e3tjdGjR4MxhlmzZiluhy687yGUUgwfPlxvX3l5OdLT06WbaPXq1WbrEL2gjYnKx8dHihHB\ng+7MJyFEL8G4HC5cuABBEBQtLdTV1Zn1LTMRKsC+RTVhwgRJVJmZmXBzc8OCBQtkXzwRSqnibPBA\nq6jGjRunKC6D7g3DGMOwYcMUt0Pk5s2bEAQBY8aMsXisKa9fJycn7vgWxkTVu3dvnD9/XrYgxN6h\nqqoKW7ZsgSAImDx5ssVYjrqsWrUKgiBYldQvJycHkydPltrv7e1taRbVvkXV0NCgt1hqIcqNWb75\n5hsQQqzyshUvupIM97o3Yr9+/ax2wwcAQgi8vLy405Pu2rUL27Ztw7Zt2yzmwzWGKCpHR0csX75c\n77MrV67A0dFR1nT2rl27IAgCfH1929THgyAIcHJykl3OSuxbVC0tLfjpp59AKcW3334r6ylmyO7d\nu9G3b1+rov8MHDhQL+CIHHQfDtZktxcpKysDYwwBAQFW18VLYWEh/P39Ta7Rpaen670jPWsEQeAK\neGNjuO7n53b2j1JKunXrZhMnxZs3b5I9e/YQBwflX/fcuXOKy9ra0XL79u2EEEKWLFli03rNERgY\nSB4+fGjy81mzZv1qbSGEkObm5l/1fHJQnRRVVPhRnRRVVNoDVVQqKv+kpaXFZGQrOaii4kSr1ZK0\ntDQycOBAIggC+d3vfkeek6FzuzFixAib1PP1118TxhhhjCkKt3bs2DEiCAKpqakhNTU1ZN26dWTd\nunVEo9Fw16HVaomzs7P1DoqEPL+zf7Zk1qxZ2Lp1K/bt26e4joSEBL3wwoIgcCUmq6mpMWnjl5eX\nhx07dihuU3vDmPVRerdt2yYZ+jLG2ngV8LbD8LeRa2mRmprKM0Vv31Pq169fx9ixY9vExv7666+x\ndetWS18edXV18Pb2lqayR40aJf2dkpJisbwhhqv2P/30E5c1g7e3dxtrBgDYsWMHGJOfysYapk+f\nrue+8tlnn0k+UUrSCzHGsGXLFsXt0fW41d3EJH9y6tG14BdFVVNTw1W+paWFKww47FlUuj++qc2c\nhff3338PSimWLFmiJwbR1IlSimXLlvFcRLN4enpafFIzxpCfn2+0LK8VQkJCAkaPHo2EhATJf8rB\nwUFv48HY01x8yitJjcMYU2zl0tLSAgcHBzDG0LNnT7065YpKJCUlBYzxZ3UR2bZtm9HfyAj2K6pB\ngwbB0dERcXFxyM3N1dsuXLiADh06mPzW169fh4uLCyil+Pnnn9HU1IQ7d+5g8eLFkn8VpRTx8fE8\nF9EsQUFBXKIytuArx7RHvPlEAYl/h4eHIzo6mltUe/bswZ49e5CQkIA9e/agX79+kqiU4O7uDk9P\nT0VlRY/biIgIvetjybDXGM3Nzfjxxx8lcye5C+yxsbG8hgH2KSrRGdBYJr7s7Gw4OzubTS6wdetW\nPQsG3e2tt96CVqtFbm6u1f4/5eXlEATBogu2sfcO0ZgzPT2d61wnTpxAWVlZGzOrOXPmwMHBQVFK\nm3379km9JY/9oDEYY4pEdenSJXh4eICxtskVunXrxlXH/v374evrq9fbKsXZ2Zn3UPsUVV5enskJ\nANHRjiOWAIqLi6XNGJRSHDt2zGwdR44ckdytjW0nTpyw2A4xY2JwcDBmz56N5ORkxMXFgTGG/v37\nK3ZluX//vqyhnyE9e/aEIAiyk3DrQghRZNAqXj9dj9vm5maEh4dzZwDZuHEjAgMDsX79esTGxoIx\nhu+++052W8rKyrB9+3Y0NjZixYoVGDduHKqqqkwdbp+iAmC0+9Z9qbUFlkSl0Wik946AgAApz6/u\nxuO5K8bWEDdCiPS3IAiKDHSLi4vRvXt3ODg4YNq0abLLA7/c2BcuXFBUXqxDbk9VWFgonbugoEDa\nf/ToUTDGF17AkH79+kEQBEVh1lavXo2zZ88iKChI+m3MBPaxX1EZkp2dLf0QmzZt4rlWFhkyZIjJ\nkGXfffcdunfvjrS0NJSUlKCoqAj9+/eXxPTOO+9AEAT89NNPss/b0tKCV155xaoshOI7lZzIUoZY\nExNCtx1yRSU6B+rGHikqKuKagDLF1q1bFYvqtddew4ABA6T/S0tLzSWhe3FEJT7Fpk2bxpXgTJec\nnByjoa/MiSo1NRWCIGDw4MHo2LGjdAPGx8dj27ZtqK2txauvvoquXbvKagvQGntDHPopRZwGr62t\nVVRedO6z1spdiajS0tL0HD6///57DBo0yKpRiIeHBwRBQHV1teyykyZN0svwWF5ebu59+8URVXh4\nuKIL/vHHH4NS2maMfOnSJVBKTb6gR0ZGSkJ66623jK7F1NfXK3rSi6JSGo5LjM9nTU8nJgfv1auX\n4joAZaLq06cPGGPo06cPevToIYmJRxC6i7yHDx/GgwcPsHr1ajDGFDsr7t+/H/7+/li5ciViY2Ph\n7+9vLsjpiyGqL774Aoy1JjuWS0ZGBvz8/EApxZAhQzB27FjpfcYaj1ERa0Q1b9487sVJXTp06IBR\no0YpKisi3pjmIivxILrSy+HGjRt6kz1//vOfzU0M6NHc3IyvvvqqTVJzngkjG/FiiEo0YVG6cl9Y\nWAgvLy+9yQJXV1ebxDNXIiqtVosBAwbAwcEB+/fvl1W2oaEBjDEcPnxY9nl1EW9o3UVXJTg7Oyvy\nvu3fvz8YY4qdDGtqanD+/HmsW7fOqoeLAuxfVGJgEh4bu38FysvLrQpYKSI+4U1loVcxCdf9rDop\n2hEVFRVk6NCh5OLFi+3dlH9V1PSkKio2RvX8NUZxcTFZu3atrCRlKipysAtR/fDDD+STTz4hS5cu\ntSqISlhYGPn9739P+vfvbzHjXktLC/nTn/5EHB0dyUsvvUT+9Kc/2TyAixwaGhrItWvXyKRJkwhj\njAQFBdk0s2RiYqKs0Mnbtm2z2bmt4ejRo4RSShhjJDc316q6NBoNWbhwofWN4n35esabScS1JnHG\nykKmO5OIKWy2bdvGdXxKSgo++ugjPHz4EI8fP8aXX36J2bNnK4qZZ8ihQ4f0ppUt0dzcjMDAQOl4\nDw8PaZ3NmpxOIoWFhaCUIicnh+v45uZmkwuk3333neJQbnJZt26d3nXs0qUL93cwxqFDhyy5stj3\n7F96ejq8vb3RuXNnaZ+SVXetVovQ0FC89tprssoZo7m5GatXr+YOYGlIU1OTUS9Vc1y9ehWurq5t\nLEk0Gg0YY5gyZYqitogEBARwp+IR0Wq16NGjh0lvAGs9AHgw52unhLq6Onh5eeHUqVPmDrNvUYkX\nSPdmknvRRGfF6dOnc5fhQaklguGiJY+o0tPTcejQoTb7xeD8x48fV9SWxsZGJCYmwsvLy6qn+yuv\nvCIJydHREefPn29zjLE0pgsXLsQHH3yA6upq2eZFV65c0aurrKwMZ8+etUpUnLm57FdUJSUlYIy1\n8ZsSU2DyPlXDw8PbZA6xBUpEtXz5cjCmn9LTmpvgwYMH8PDwUFQWAHbu3AlKKW7evKm4jrKyMoSF\nhUmiMmXxHhERgQ4dOrT53rpie+edd3D37l2u886fP1+vnqqqKuzdu9eq6+nv7/9ii+rQoUMICwtr\nY74yY8YM6QewxMWLF0Epxd69e6V9T58+xZo1a/Do0SOsWbPGYh2mmDRpkqzj8/LyEBAQIPVUeXl5\nqKystMpSfPTo0bhx44aisomJiVaFFCgoKICPj48kJmO9kyUqKipw7do1nD59GtHR0ZIgeHIyL168\n2OzwT4nZEmMM/v7+lg6zX1H17t3b6FOrqKgIlFIkJSVZ+vLo1KkT1q1bB+AXHx5KKS5evIi8vDyM\nHz8e06ZN4+7FKisr4eTkBF9fX3h5eSEsLAyXL1+2WM5wyKe7X6moRL8sJWzcuFH2O5ThuXU3T09P\nvVSl1nDp0iXunsacqOT2VgcOHABjDKWlpZYOtV9Rubm5mRQVYwwzZ8609OXBGJNE5eXlBcYYjhw5\n0uYY3ihCjx49Qt++fVFUVIS6ujrU1tYiKiqKK0SXOOTTja0h/vi6PSlvOxhjikyMtFotIiMjER4e\nLrusyODBg9s4XAqCgMWLFyuuUxdrROXv749u3bqBsdYcYLwPjo8//pj3tcJ+RTVjxgyMHDkSjY2N\nevtFUZ09e9biherZsyeWLl2KmJgYbN++vc3n586dM7pfLjw3t9hTiRMCI0eOlHopuf5hjo6OSEtL\nM/qZpQmHpKQkqZdyd3cHpRSffvqprPMbwxYzfmVlZVLOXUusXLlSElJeXl6byQ7xs06dOnGd29HR\nEV9++SXPofYrKtFH5sqVK3r7s7KywBhftJ0jR45IQz5d6uvr8eDBA/Tp08diHZaorKy0OKVdW1sr\niQoATp06JTnV+fr6yjqfaKVuKMTTp0+jc+fOcHR0NFs+KSkJvXr1QkZGhiSEyMhI7vOb8p0S67Jm\nQmjdunWglHJZvetOVBhzG5ErKsbpzwV7FpXoiOfj4yNlkhd7KY6XSQkxz6+x2SZrFnErKysxceJE\nLneUyspKafj3ww8/SH/PmTNH1jlzcnLQsWNHXLt2DUCr+4Ovry8YY5bWViTEnkp3440wKwYjvXPn\nDu7cuYNhw4bBzc1NqseaLJfFxcXS72I4OjGFpXcqXlGJ632c2K+ogNYAh+I0pygGpe7jSvjhhx+w\nYsUK3L17F3fv3sXatWtBKYWvry+2bt0qqy26ExWMMQwePFh2e3RvFk9PTwwePJj7BhTRaDSIiooC\npVRW4msAePjwITp06CCJyM3NDX5+flYPHz/44AMwxmRNGgG/jGaMbbGxsdz1vPPOO3K8l+1bVEDr\nAuWnn34KJycn/PnPf+b94jZBq9VixowZ6Nu3LyilGDx4MPLz8xUNcXRFNWfOHNliAICOHTuCsdZ8\nwRby0j4zysrKpBSn1iwY6yIKQe51ffTokfQ6IG7R0dHIysrimcWT2LVrF4YMGcJ7ONf9rLp+qLQb\nDQ0NxNXVlaSkpJB169a1d3N4UP2pVJ5/mpqaiKOjY3s3gxdVVCoqNkZ1UlRRaQ9UUT0jNBoN6dq1\nq00dCUWuXLlC+vfvTxhj5JNPPrG6vq1bt5KdO3faoGXtiyAI5NVXX23vZqiiskRRURGZPn06YYwR\nBwcH4uDgQP70pz+R2tpas+Vqa2tJQUEBOXbsmMlj/vGPf5CGhgZZbfm///s/8uqrr5KffvqJvPTS\nS2Tfvn3c5c21wxoYY+R///d/rW6HtVBKybJly9q7Gc/3lLqIVquFRqNBREQEvvnmG97pTwk/P782\naxk8i7+Ojo7SJgiC3v8JCQkWy48fP95sisxJkyZhyZIlXN+BMQZnZ+c2IYqVuDoYlpkwYYKsNKk/\n/vgjGGvNLeXt7Y1u3bopTlN69epVZGdnIy0tDWFhYUhOTlZU15AhQxRZy4s4ODiAUorg4GBzh9nn\nOpWYO0r01qWUYujQoZg/fz5effVV3uRcAIDk5GTJCkPXnOWnn36yGNw/MzNTWlsKCwtDTEwMYmNj\nJRMjS9blJSUloJSaNYeqrKzktpkzJr7XX39ddjz0wsLCNtF55YiqqqoKkZGR6N27N2bPno07d+7I\nOj/QGqogPDwcnTp1wuLFi5GRkSFlciwrKwOllOuhJaI0LDjwizf2X//6VwCti9FmsE9RAa3WDF99\n9RX27NmD69evA2gNFyx+cV7c3d2NWh/X1dVxmbA4Ojpi6dKlksV8bm4uunfvLvVW5hBFZc6+T46o\nDBeMtVot/P39ZeVkamhowNChQzFo0CC9/XJElZaWBkopvvrqK+7z6iJ6Cr/88ssmwz17eXkZzZNs\nCsYYEhMTFbXnwIEDehYVL6yojLFo0SLZpjUeHh5tXDuKiorQvXt3Lj8m3Rs5JiZGb/hnSVRarRYJ\nCQlmRdPQ0ABKKX744QeLbQFajYFFez/GGEJDQ7kS4ImIjoWGAh0/fjyXqMRcW6JRs1wriOzsbIv5\neENDQ2Wljp05cybCw8MV2XKKGUh0aWhowMmTJ00Ny18cUdXU1CiK+6178xm+UxlLf2oOw3cqS6IC\nWntESiliY2NNJoemlJpNt6pLY2Mj+vXrh2vXrqGlpQVxcXFteh1TxMTEgDGGpKQkaLVavc8mTJjA\nFZN86NChkqhEvyrGGNavX8/VBvEhkpGRgYyMDDx58gRPnjzBnTt34OTkBEqprCTYLS0tkkFxUlIS\n0tPT8fTpU+7yommTSFVVlXR/GPre/RP7FpVWq0VpaSm2bNkihRfbsmWL9P/BgwctXrQFCxa0cWJT\n4hkKGBfVF198YbGcq6ur5Mi3efPmNp/LERUAPUFUVlZyGYOKIcjE756QkICTJ09KWRx5RVVSUoJT\np06hpKQEQOtNuGvXLlBK0b17d672i9buhltKSgoopVi5ciVXPcAvrjC6m5wUQ2FhYdLxly5dwvDh\nw3H48GEwxvQmhHSwb1HV1tbi559/RllZGdLT020S9krMyJiamqqofGxsLGJjY6WJCsLp0r5//36z\n4bx4h3+GiENMS9TW1mLgwIEoKSlBfn4+Bg0ahNDQUD2hWZM9Y9WqVbyesybx9PSUnUEkNDQU8+fP\nl/6X+8BsaGjAO++8A19fX9y/f1+qw0wSCPsWlS5vvvmm2alpHmpra9GjRw+MGzeuzfBHLgkJCdI0\nOw8tLS1obGzEtGnTEBISgpCQED1RnTt3TlE7lE6pA61D03379iE3NxfDhg2zysFQdMSU+86r2xZK\nKffygkhISIheililoxARcTg5b948U4e8OKJydHTUG/sqQekFz8zMRGxsrDSlHhsbq7d2ZW3EWt7h\nn+hHJZKfnw8nJydMnTrVqvNXV1eDUmpVT1VbWwtKKXbv3i277K5du0AIwffffy+7bEhICK5evYry\n8nJERUVh0KBBilKUAq2TQMOHD8eGDRvMHfbiiIpSikePHlk6zCRdu3bF6NGjFQ1PTC3+Ojo6ynKG\nM0Xfvn25RLVr16427w9y41sYQ6PRwNXVlcvHq6mpCTdv3mzT048cOVLx8I9Sqjg5ek1NDYKDg5Ga\nmsodM9AUjo6OlhZ+gRdJVJ6entwpLA3RarWKnOBEUlJSTIrq0qVLiurUpW/fvlzu8FevXtUTlLXh\nnnWRM1ESExODU6dOoampCbW1tVJ4LyWjgL1796J3796yFvSfFYwxzJ4929JhL4aoSktLFS/sAa1W\nB0qDRqo8O0pLS22SFdIWPHz4kDc0ONf9rPpTqajwo/pTqai0B6qoVFRszHMrqpaWFnL//n0iCAJ5\n6aWXyJgxY8ju3bvbNZvh88CpU6fIrVu3rK6HUkoEQSBVVVWK69BoNGT//v3ko48+UlT+zJkzJDEx\nUfH5n1t4X76e8daGN954A4IgIDg4GEFBQfD09IQgCFIwSaXMnz9f2uwRSinKy8utnjETLQcyMzMV\n17F8+XJQSuHl5aVoFs/JyanN+lt7IHoUEMsWMvY7+/fZZ5+1iZdeXFxslahWr14NR0dHvWlppZYM\nuhw5cgR79uzhOlaMEEsIwZ07d2SvrYi+RroWGa+//rqSZkuiUjoD9/nnn4MxBnd3d2zbtg1vvPEG\ntymZaK2uGzm4Y8eO6N27tylDVpPU1NTg0KFDUnogSqms9TsxQq1oIGxhrc1+RZWcnCxl7ABaAyeG\nhIRwJSbQ5e7du9i8ebOekPbv3w8A2LFjBxhjyMrK4q4vLy9Pz46PEILXX3+daxU/Pj4eEREROHLk\nCGJjY6WMGbyUl5eDUgoXFxfpfIMGDVJkEzls2DCrRUUpRUBAgBS4sqSkhNsWUvf3yMjIaLPPXCK6\niooKyfmUMYaxY8di3759OHPmjJSKhzdYaWVlJby9vZGbmwsAuHz5sqUHpP2KShAE6YsCkBKmyaGu\nrg4hISFgjMHPzw9dunRBfn6+9Hl1dbUsUV27dk0aroSEhCA5OZnbtCclJQWMMek7HT58WHamDDHz\n4cSJE6V9oqjkWjKI57bGVo4xhuXLl0v/i0MoS9TV1RmNdX7p0iV06dIFjDHs3LnTaNnU1FT4+vrC\nw8MDa9aswdGjR/U+lyuqefPmgTEmue9fvnwZo0ePNlfEfkWly+7du5GQkCArVHJzc7MU08HwwuvC\nc1PNnDlTiiGu658l50amlOplbnz//fdBKeXOSgG0eh3HxcXp7evZs6einspaUTU2NrYpd+rUKa62\neHp6gjFm1B9NzL0VHBxsdAgXFxdnNom5i4uLLEt3cQgrMmvWLOzbt89ckRdDVIz9kif3008/tfSl\nUVBQgB49eiAlJcXscWLdlm6qffv2YceOHXoi8vDwgLe3t8X6RSiliIuLQ1VVFbp06SLd1HIymJiq\nd+zYsbLKiMnFRVGZytNrDkKI3gOhqKgIrq6uXC4snp6eUmx6Y4SGhoIQAhcXF9ntEoPRKGX48OH/\nGqKaN28egoKCEBwcLPkxmfvi4mSEpVkt0W1CaTQi3ayIlnBwcICrqyumT58OSqmUfNoaURUUFIBS\nirfeektWOfF9Suns3+nTp0Ep1bNXFIdtPIiZT4YOHWr08169eln1u8hxctRFTHn0wk5UmEOj0Zh9\nvxJ7NVM0NDSgoKBA+uHkJD1ramrCRx99BC8vL1lu2w0NDZg6daqe+wohRHaOKpFZs2aBUqookXbX\nrl31RCUXcbYOaBW2mI2E175SPLdh1pAvvvgCLi4u0uemRGeKa9euQRAExemWxJlZAObele1bVLm5\nuZg/f77RsbU5Uc2ePRuMMaSlpeHHH38E0PqOlZaWhrS0NLzzzjvSDxcbG2s07UpcXByGDRvWZv+s\nWbPAGLMqs70IpdRS5B6TiMnWlKxVGQ7/5KIrqhEjRkg9L0+svmPHjkkTFGIyv7KyMvz4449wdnaW\nfl3RL4kAAAImSURBVJfhw4fL9u9KSkqS7VvW2NiIzz//HCEhIdI1DQkJkXKQGcF+RSUIAt577z0U\nFxfr7a+rq0NUVJTFmcBz58618T3S3UaNGmW2/MOHDzFlyhQw1poPKiYmRgqrZW66l5eqqip4eHiY\nfek2JDExEX5+ftJUvLhFRETICiIZFxdnE1H169cPjDFZEwOlpaXSbzBixAjpb3F0wZjyDJdKRNXU\n1ISCggIA+g8LM9i3qNzc3BAUFISgoCAEBgZK0+pdunThvmi2oKamxipXc2OUlZXxOMRJiJ61lFKb\nuLGIdcmJrSciJuBmjMkaAotERka2ech5eXnh22+/tSrGxdq1a63yghZniy1gv6IqKytDt27d9FJ6\nenl5Yffu3YqyED5vyBVVY2MjOnbsiPT0dFlx/kwhzvqZiBhklocPH4JSKnshXpdFixYhMTERHTt2\n5M0Kb5Hy8nI4OzsrfqdirDVFqgW47mfVn6qdcHNzIxs2bCDTp09v76a8MAiCQEaOHEmmTJlCRo0a\n9SxOoSZ9U1GxMVyicnjWreCEq7EqKvbAc+tPpaJir6iiUlGxMaqoVFRsjCoqFRUbo4pKRcXGqKJS\nUbExqqhUVGyMKioVFRujikpFxcaoolJRsTGqqFRUbIwqKhUVG6OKSkXFxqiiUlGxMaqoVFRsjCoq\nFRUbo4pKRcXGqKJSUbExqqhUVGyMKioVFRujikpFxcaoolJRsTGqqFRUbMz/A9zbk5sI2FiJAAAA\nAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAANUAAADMCAYAAADkmebQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXlQFdeex885fWFYHyiMAhZuFI46OMKDp5QUllBm1BrH\nWHGLRo1G8eEad52HcclYinFJuc9zqUgqDxOXUuO4TOICRoW4xpgYheCCImBE2S6Xe1m+8wfv9LuX\nu53ue42B9KeqS+nb59zTffvb5/Q5v4UCIBoaGu6Dve4GaGi0NjRRaWi4GU1UGhpuRhOVhoab0USl\noeFmNFFpaLgZTVQaGm5GE5WGhpvRRKWh4WY0UWlouJnfiqigbdr2W9gYY/jiiy/sfS7Eb0VUvxrJ\nyckkNDT0dTfjtSNJksXW2NgoVE6v15P9+/eTvXv3vuIW/vpUVFQQQgj54YcfXKsIwG9h+9Xw9/cH\nY0zo2IaGBmzduhXx8fEghCAiIgJbt25FdnY26uvrFX/3y5cvkZ+fj6qqKsVl3Q1jDB4eHhg1ahTa\nt2+Pu3fvCpXr1KkTGGNgjCE3N/cVt1KMsrIyq325ubmYP38+fvnlF+F6YmNjwRjD7du37R0idD+/\nbjE5FVVlZSW6du0KSZLAGIMkSZAkSfQ6WSFJEpKSkpweV1dXB8YYAgICsGTJEmRnZ6OiogIHDhxA\nYGAgGGO4ePGi03oqKirkm9B8+9vf/qb6HDiJiYno06cPKKXyppSioiKEh4dDr9c7PbayshIGgwEA\nUFhYCEopOnbsqPg7TSYTHj58CEopNm3ahD179sgPqdraWkV18d+CMYauXbtaXefnz58L1cPvLyfX\noeWK6saNGxYC6ty5M9atW+eyqMaNGwdJkpCXl+f02Pr6ejDGcOPGDbvH8B9u7969Do9p27YtwsLC\nEBkZiaNHj8rlLly4oOo8/vrXv2L+/PmYMGECxo8fj5MnT0Kv18s3vChPnz4FYwydO3dW1Y5Ro0Yp\nFnJVVZXFTU8ptRLCDz/8IFRXXl6eRbmAgACkpKQofmD5+/tDkiSkpKQ4O7Rli4oQAm9vb7z33nvy\nfv4DBAYGCl0scwoLC8EYE7lwMsHBwQgICMDq1athNBrl/UajEenp6WCMYd68eQ6Hgowx3Lt3Tx6i\n/PWvfwVjDN27d0dJSYni82hsbERQUBCGDx+uuKw5jx8/Rnh4OBhjuHLliqo6zp8/r0hU9fX16NKl\nCxhjiImJQU5ODlasWIH4+HgLcdTV1QnV9+6771qU27Jli+JzyM3NBWMMoaGhIoe3XFHZ4s6dO3JP\npeZ9JiYmRvhdilNfX48lS5agffv2YIxh9erVyMnJAWMMcXFxMJlMitvBbwBzkSohOjoalFK0adMG\nGzduRGNjo6p6mvcOajh48KBdUdn6jQ4cOADGmM0hXkhICBhjGDVqlNB3jxkzxuawuk2bNsLt5/eE\nuaAKCwtRXl5ur0jrEdX27dvlYZSSF0+O0WgEpVT0aWQT/gMo7e3MGTt2rOp3HwBISUmBTqeTxTxy\n5EjVorp16xaApvebhIQElJaWKipvMpkQEhJi81wuX74MPz8/4bp+/PFH+doWFRUJleHHm09SKH1A\n8JGPXq+Xh6J837Jly2wVadmiWrRoEQoKClBQUCC/R3Xo0EHep4TNmzc7ulBCmIsqJCQEH3zwgeI6\n+Lj/2LFjisveuHEDkiTh5MmT8r5JkyYprscWEydOtDmDZoukpCSLiRFKKS5duoTbt2/j7Nmz6Nix\nIyilKCwsFKqvoKAAw4cPV/xu17t3b0RERFjsUyoqxhimTZsmv2vz8pIk2Rtet2xRJSUlyWLiGz/h\ndevWCT/R+MWbO3eu8PHNKS8vt/ixMjMzFdVZUFCAoKAgMMbsDi2Ki4ttTnicO3cOjY2NuHPnDn78\n8UcATVP9GzZsEH6hd/SOUl1dDV9fX6F6UlNTsX//flRUVCApKQnh4eGYNm0awsPDER4ejvXr16Oi\nokKoLs7gwYNBKYUkScLnY4srV66AMYZhw4YJlzGf+JIkCf7+/ggNDXU0GdayRQX8YxaQMaZoOGEO\nH/opHd6Y88svv6Bdu3by37W1tYiKihJ+Kn7yySfyedy8eRM3b96UP7tz5w4iIiLk97bmjB07FoMH\nD0Z5eTlMJhPq6urwxhtvKBpCbty4ERMnTrT5GR9ai0AphcFgwIsXL1S/h9mqkzGGlStXCpcpLy9H\ncXGxxb65c+eCMYa0tDThesjfLSjMZyJ5e+w8MFu+qHJzcyFJElJTUxWvX3BiYmKshglK2b9/v9Xa\n1okTJ4RvLPOeyt7Wv39/u+Xz8vLg6ekp/+jDhg3D9evXhdt/5MgRi+/aunUrMjMz8eabb4IxhoUL\nFyqqp127dqipqRH+fnucPHkSlFJ4enoqKscYw8OHDwE0PeC8vb3BGMOAAQMU1cOH9CdOnMCJEydE\nirRsUS1dutSlmSmg6eITQix6qbS0NKF1quZ06NABnp6eSE5Olhcc582bp7ien3/+2WL7NfnLX/4C\nLy8vC4GpuRbuwsvLC5RSxe+G0dHRYIzJ/wYHB2P79u2vqJUWtGxRubrQC/xjlbz5vjVr1iiuy2Qy\nWfUuvxUznZYKY02mUmfPnlVU7vDhwxZT6M+ePXtFLbRC6H6mgLDx7avEqhFpaWnk6dOnZO/evYSx\n353db6vn+vXrpE+fPuTWrVskKirqdTdHFCp00G9VVBoav0GERKV1ARoabkYTlYaGm2lRovL29iZ/\n/vOfX3czNP7Ot99+S5YtW0YYY0SSJPLFF1+81vYAIMeOHSObNm1SVX7//v3ua8hvYBOCT6OKkpmZ\nicGDB8vu0IMHD1Zs4vRbJjw8XHR9xYJHjx4BAC5evIiMjAx5U0Jpaans8Lls2TIMHz7cpZlad3Ds\n2DEwxvDpp58qKldTUyP7Yl2+fBmXL1+2d2jLnlK3BWPM5YXc1NRUdOnSRXG5ESNGwNPTE+3bt5eN\nUZXQ2NiI2NhYecU+LCxM2N7OFiUlJYqXHIxGI+bNmwdKKUJCQvDuu+9a2PB5eXlhz549TuspLS3F\n1q1brfYnJSUJ2fyNGDECjDGbVv6MMZw5c0bshMyoqqqCp6en4odDRUWFlRkc/z9fYDajZYtqwIAB\n8Pb2lv++evWqotV/RygRlclkQmxsrGzm09DQAMaYoh5v9+7d8Pf3x8CBA+V9Hh4e2Lx5s3ijzTh9\n+rT84wcFBQmX69SpEyilaNu2rc3PRSzop06dCkmSbHrIRkZGOnKbkOFrTM1v2urqavmBo4SDBw+C\nMYbKykrhMpWVlbJxQKdOnSw+MxgMFiZMZrRsUXH/Gs4333wj2865QkFBAZpGvWJs2rQJjDG8ePEC\nAGQ3ASWiopTC19fXwseo+fkpgYcXcGBNbbcdlFK7VhR9+/Z1KipH7RY5n4KCAruWMkOGDAFjDDt2\n7HBajzncskIJX375pUMX+uzsbFsjgZYtKn7hTSYTdu3aBUqpYlOULl26WNz8BQUFVvucQSmVjWkr\nKirQq1cvRa4SL168wIABA6yc9qZOnYrTp0+rsgbgwxQltm4bNmwApdSh1/SECROcikqv12PNmjXI\nzs6W9xUWFiI0NNSp5y33vn7vvfeQn59v8dnWrVvh7e2N7t27C5yNJYwxfPvtt4rKSJKE06dPOzyG\nux2Z0TJFdeXKFSt/HUopCCFITk5GRkYGrl69iqqqKiEzodTUVBBCcOnSJVWTFObOjebxFI4fPy5U\nvqamBp6envjyyy8t9nPj1IaGBkXtmTVrliwqJWUppejRo4fTY0SNWyMjI7FlyxbExMRg3LhxTgPH\nZGRkyNcuODgYnTt3ljfu1s8Yg7e3tzwqECEsLAzr1q0TPh4ACCH4+OOPnR7He1XzoiLb6xaTlah0\nOh0YY+jduzcOHDiAM2fOyGb55nZ33DJZ9CKqxfzp3rt3b/n7lfZ2Xl5esl9Tbm6ubNiqlA4dOoAQ\nonimjVKKffv22f383LlzoJQiISFBqL5vv/0WkiQJe1Obi8rZpuRd097wzVkZkZAMraanMhgMFi7i\nX3/9NRhjWLRokdOL4Ag+ra4Uk8mE7du3IzAwEJmZmXj06JFiUQFNL8YbN27Ehg0bcPr0aTDGhG9g\nzuXLlyFJEnx8fBT5h2VkZNgd1jU0NODDDz8EpRQvX74Uqq+0tFR+n/P39xduB9A0JOfbpEmTMGzY\nMAtB3blzR1FPpebBJFqGO8qa0TJF1Rwe0uu7774TuhD2uHTpEgghij1TOXxWS81ERXN4TMElS5Yo\nKjd79mxIkoT169crKudIVNu3bwelFDExMUJ18dAEe/bswYkTJ1TH2+A8fvxYtlYfMWKE4vJqRWVv\nlvLAgQNIT0/HvXv3IEmShXMqWouoevbsidmzZzu9UCJwYa1du1Z1He4QFa9DyZoKF5SaBdaNGzeC\nUorY2FhkZ2cjKipKfleVJEk4ZsatW7cQEREhzx5u3rzZbaLy9vZW5fioRlSJiYl216bM/88Xyc1o\nHaJy4NosTEVFBQghqhZ9m+MOUfH3CyV18B97//79ir+vrKzMauInNjYWn3/+uaJ6Nm/ejJCQEISG\nhsq9lau4wxFVZNKhOYMGDYIkSWjTpg2GDx+OnJwc5OTk4KeffnIU/6R1iGrbtm2qYo+npqbi0qVL\nuHTpErp06YK1a9eqHvqZ405RffPNN8JluKiqq6tVfef69esREhKCkJAQTJ06VVUdPACOJEkuRaYy\nxx2iEgm/3Zyqqip8/vnnuHfvnpJiQvez5k+lAkmSyKJFi0h6erqq8iaTiXTo0IF8++23pGvXrm5u\nXcsiOjqa3L59mzQ0NLzupoigOSlqaLgZzUlRQ+N1oIlK47VjMplISkoKqaure91NcQstRlRVVVVk\n/vz5JDk5mXTq1IkYjUanZfr27fsrtOz3jclkIowx8oc//EFV+eHDhxMvLy8ydepU4uHhobodGzdu\ntMgM+eOPP6quy2VEZzRe8eaQmJgYtG3bVp4popQK+dxERkYqNmF5FTDG7K6NTZ48Gffv3xeuq3kO\nKoPBgAkTJigO8+UOamtrkZqaio4dO6pa9uCWGa7M/gHAzp07ZbM1vtny9xLl7t27oJQiPT29+Uct\nf0qdZ+tjjFnYrXXs2BH/8R//4fDCFBUVgTGGn376yebnZWVlOHz4sMM6bLF3714wxpCeni5k1jNk\nyBC7i7wVFRVWvjz2OHXqFBhjOH/+PCorK/Hee+9h+PDhiqbla2trkZSUhHfeeQeEEPTs2RPp6emq\nUhMBQP/+/eVQ0Grw9/fHtGnTVJU1Z+DAgbKYunTponj9zWQyYfPmzYiLi5Pvt/Xr19tKd9SyRcUv\nUnObv6NHj4JS6jQM9I0bNxAaGmrXjszPz0/Yfk6v19tcdRexbrB3zMaNGyFJkq2noc3vT0hIkNeo\nlLo5cCilmDlzJgCgbdu28kKwmjU3bi84ffp0xWX1ej0iIyMRFxenuKwtunXrJt8vSgKlnj171mJB\nvFu3bvJnL168sGWb2bJFFR4ebuVb8+DBA3Tq1Mmu56o5Bw4cwMiRI+1+7uPj47QOoMkbdfTo0Rai\nSklJwZAhQ4REZW9oM3jwYOFhT2JioltCRFNKZf+txYsXy17AanoLSin69u2ryNuWw2OYq304NGf+\n/PmyqLZt2yZcbujQoWCsKTb8V199ZfGgXrBgga30sS1bVLYIDg4WtjXr2bMnVqxYYfdz0RtakiQr\nxz69Xo/u3bsLpUm1JzxJkhAeHi7UBkqpkJu6I549e4bIyEiUlZXh6tWrsiv7tm3bVNnvqbX541lY\nzBPnGY1G3Lp1Szhjx507d6z2mecSFrWcqampwb59+6ySTxgMBnv3R+sR1cuXL8EYg5eXl7A7/dix\nY7Fo0SJUVVXh/PnzVjmaRESVn58PSZLk97LKykrZzVrU5UGSJIwcORJr165Feno60tPT8dZbb0GS\nJLRt2xZr166FJEmIjIwUqs9gMGDZsmXo0qWLYq/hjIwMLF261MK15tmzZ4oFkp2drVpUWVlZiIiI\ngF6vlxNhm6ewEfldGGO4fv26VS/Jy4eEhChq08mTJ7Fo0SLU19cjODgYfn5+9t4zW4+oeAwCJe4f\nnp6eYKwpcyFjTalNg4KCsG7dOjmtTXV1tbzZ4ty5c5AkCTdu3MCqVass3qlEZ9s6duwoBxjhP3rz\n/8+ePVtREjug6eV65MiRqvIOm6NGVIcPH0ZoaKgqm7usrCy5Z+D+SowxZGdnyw8sZ/Brl5ycbDFJ\nYj77pwSDwQA/Pz95omLx4sX2Dm0dogoODgZjzFEsNpswxjB06FDcuHEDT548wZMnT5CRkYHFixej\nR48e8sUPDAy0iLdgqx7G/pGgmRCCBQsWKGrLgwcPcP/+fTx48AAPHjzA6tWr0bZtW7szk6Ls27fP\nZdeL0tJS4UyKnMOHD0OSJBBCLF7uRSgsLIS/vz/eeecdSJJkFdLM1j5zzId5jDHodDoEBAQgISFB\ntaiGDh0qmou5ZYuqtrYWa9euBaUU+/fvV5z0jTH78R9mzJiB3r17w2QyOX3S19bWora2FkajUc46\n6OraV0JCgqogmM15+PChS6ECgCbrdTU9Vfv27VVNqev1eoueOi0tDbdu3bIY/jm6vtxJ0tkmCg9V\nduHCBfTp08fZ4S1TVLW1tXIyZnvb+fPnnV6s5ukrzcnPz1flW+WOhUo+5FOy4OsINdGHOHV1daCU\nonfv3orLmv8eokFwOIQQpKSkICkpSd7GjRsn/KBxJihHOY45JpNJjpTFnSOXL1/utOki2+sWk4Wo\nfvnlFzmU8Pr1662mR1etWoXw8HDhzOf2yM/PF55SN0eSJOHFWkd1uCLMTZs2yU/yYcOGqRr+1dTU\noE2bNqCUqvJVA5reQ95//31QSi0mPn4N9Ho9evbsCcYYsrKy8NNPP8mbjaiyNunXr588SjEYDBg5\ncqRIJKmWJyqgyQLhVaeaNJlMyMnJUVTm2bNnqj1vzeGiev78uarymzZtgre3N5KTk0EIQWJioqLy\nz58/x6hRo5CYmCjU47dWoqOj0a9fP7z11luIiIgQnTUUup81fypBdDod+fOf/0y2b9/+upuimiVL\nlpCLFy+SCxcuEEmSXndzWiKak6KGhpvRnBQ1NF4Hmqg0NNzMb15UM2bMIIwxQiklf/jDH0hGRsZr\nbQ8AUl9fr6osY7+Ny/348WPZme91Ul5eTnQ6HdHpdGTr1q2q6oiPj7dwTlTrLOlWRGc0XvFmF1cW\n9tzN119/jbS0NAQFBWHixImKppL5IuOrQIkNYFFRETp06ACdTgedTqc0RJdDPDw8FB3ft29feHp6\nIjg4WJVPFs9n5a77w2g04syZMzhz5gyqqqpsJfdrmVPqzTFfxOX2fL8Fnj9/3jwksENSUlLkH13J\nGllxcTGWLl1q9/MJEyYImzt169ZNFhPfAgIC8P333wu3xx537twRXjM7evQovLy8IEmS6viJ3333\nHby8vKzyc4lmLQGAJ0+eYM2aNXJSjObXhm9mtA5RAU2LfW+99RYYY4iKirJ7XL9+/dCpUyfk5eXh\n0qVLWLp0KVJTU63swtzV433wwQfCXrPckQ5oWnwNDg52mmq1rq4OnTt3xpUrV2x+XllZCUqpkKi+\n++47uzfNjRs3hM7BHrt37wZjTDhnF/dNc8WqpKGhwcozt6GhAZ6enrh06ZLT8nPnzrUQ0u9KVPyJ\nxIUwevRou8Mu8zxH7rQPs8cHH3wgbN0RHh6OjRs3yn9funTJaRu475E7RPXpp5/KN0m7du0wd+5c\n+W9HBsX2MF84joiIEO6leHqaV5F0e//+/cK/a3NvgQULFsipbxcsWADGmK3Y7i1XVJs3b5at07mr\nxezZs5Gbm4vFixdDp9PZNZYtKirCpk2bMGfOHHkrKipCUVERqqurYTAY0K9fP6cXv6CgAPHx8YiP\nj8fs2bNtuod88MEHQgFouNv2Dz/8YLE/MzMTY8aMsVvOZDKhTZs2iI6Otvm5WlHZ2jZs2OC0Dk7b\ntm3lLCHff/89GGM4cOCAUNmVK1dCkiQrR0LzEAWSJKkKJHPx4kUhsY4YMULuneyFM9DpdLYcQ1ue\nqPLy8qyi4pSUlNg8YbVmPgMGDABjzGlqT0opTp8+DYPBgKKiIgwfPhyUUvTr108WGKUUCxculN1C\nHNXFGLNpaS/yZKWU4tNPP7V6kCgRFf8uR1twcLDTuB39+vUDpRQNDQ1YuHAhKKWKfot+/fpZJHXj\nLiAzZ86UJyuc9WRnz55F586d5XbHxsZi9+7dOHv2rNPJkjNnztga1lnRakT12WefQafTITg4GHPm\nzLH7A6u1nWtsbJR/CGe2f4QQCy/j+vp6LFq0CL6+vmjXrh26d+8OSimGDh3q9F2Ci8reuThjxYoV\noJRi+PDhFsIqLy9XJCpHPRXfnCUvGDt2LDw8PHDgwAE5bSwA4XfLfv36oW/fvvLQigvIfPbPmahc\nGdbzzJwdO3a0e0x+fj4Ys5nDquWJyhlGoxFjx45V/T60detWMMYQFBTk9Fg+9LKFTqcDpdRW/iKb\n2BOVkmn2e/fuYcmSJRYuF4GBgcKiOnTokIV4TCYTamtrsWfPHtTU1AiLymAwIDc3V76BecK4Tz/9\nVOg8eIiCd955B0CTgD755BP58+rqaofDv/79+1vtW79+vTzRwNu1YsUKm97U/LiDBw/arH/hwoXy\ntfhdiOqrr74CY8zprJk9eBJq0QAjcXFx+PTTT+V1oEOHDuHNN9/EoEGDFOf8tSWer7/+GpMmTRKu\nBwBycnKwcuVKnDp1yqV3qqdPn1p8Lioq4B/et6tXr8b9+/cVxQ2sqamRe6KDBw+iR48eFlkqx40b\n51BUpJlTZn19PRhjGD9+PK5cuYJz58457LW4qPz8/OTf9dmzZ7h79y7u3r1rcY1svLe3HlF9/fXX\nSE5Oli+UGv+dDh06gDGGsLAwRYulN2/exO7duxEbG4vZs2erCqvFnS7NxcyHj66gRFQ1NTXw9PR0\nefiXn5+P8PBwrFq1SnW7L1++jMDAQEiSBE9PTwQFBcl/p6SkOHQy3LNnDxhjGDhwoPz+3XzEYDKZ\nkJ2dbRUlicOXZ4iduCGMMXv3SMsTFZ/p+/777zFx4kRMnDhRPkmlSaeb87qtMQ4dOmTxo3Xr1s0t\nSegmTJiAOXPmCB1bU1ODv/3tb3YFdfToUad1MMbQoUMHV5sN4B+TFJIkKUpNWlJSgo0bN1osUShl\nzZo1Ntep0tPTW1cmRXsvnmvWrFEco8KcwsLC1y4qwDLoo6vey5wJEyYoDl9ty7JCZDhrNBrBGHst\ncdvdTV1dHUaOHIlRo0Zh1KhR2LZtG8rLy+0u1fwdofv5d+FP9ec//5ns2bOH/M///A9JSUl5lV+l\n0brRnBQ5T548IQcOHCBz5879zViKa7RINFFpaLgZzfNXQ+N10KpF9d1335EFCxaQqVOnkurqarfU\n+fTpU9mxTqOJP/7xj+Ttt992qY4ffviBTJ06lej1eje16jUiOqPxijenLF261G7Mc1uYh/KllCI2\nNtZhgE1RXrx4IU8Dq42Z91ujpqZGdt/48ssvFZePjY1V5MfUnCtXrsDf3x+UUsUx5V2hsbERVVVV\n6NWrFyIjI9GtWzds2bLF0X3W8qbUHeHr6yu8aMsXRadNm4bLly/j8uXLorGyHcIDNR4/fhySJDnN\n5gg05aEihFj8K+LvYwsedpo7Oiq1e2toaJBdL7gBrblleP/+/YWzqnBevHgBHx8fDB06VPH5zJkz\nR/5d2rdv7zSEtcFgQHFxMWpqarBixQr4+vraNAoWoaKiQv7ugIAAtGvXDu3atcOyZcsceUG0HlHN\nmjXLpZjhp06dAqVUOB9Uc0wmk3wjdu7cGUCTf5SIm0FqaioIIRZhplNTUxW3gQvKPDlCUVERcnNz\nkZubK9Rr8sV17vrSq1cv7N2716YngChHjhxBfHy8ql67tLQUt27dQn19vRw33xHXrl1DQECAxYPA\nz88PHTp0wLvvvovU1FT4+vracoO3glKKlStX2vzMXvZNtCZR+fn5qeplbt++jWXLlslPpD179iiu\nA2gyxOWi4hFheWodZ1RUVIA0zW7KybTV9FTcHV+J5YE5RqMRhBCnLi9K0Ov1eOONN9C2bVuXh9Y9\ne/YU+o0LCwsxcuRI5OTkICcnB48fP7b4fMWKFUK2nUFBQRg8eDCuXbumpJmtR1SUUkW5XDkzZsyw\nSm4wcOBARSls+NMdaLID5HZpM2bMUOy9SghBRUWFquQIer0e8fHxYIyhb9++ir11ueGpJEmYN2+e\nanGaw+tTmnyOw3va06dPg1KK2bNnu9ymFStWICwszOlx9fX18j1hy7P63Llztu651iUqV9NzciZN\nmgRCiKPEXjI8TWXzLIfffvst/Pz8hLMfmsN7LbUUFRWhTZs28g0tYq/HKSkpwd69e7Fy5Urs2bNH\ntr2zNwxyxMqVK0EIQXJysuKyAJCWlmbxsJs0aZKtbPCKWbx4Md59913h4/Py8kApRf/+/XH+/Hm8\n//778qSJDev71iEqftLuwmQy4dixY/YumgXnz58HYwy7d++22J+QkABJkvDVV18p/n7+fqXmvYpz\n//59zJgxA4wx9OjRQ3U9AJCenm43BoYjVq1aBcYYPvzwQ1Xf21xUlFLhjB2OYIxh586disrMnz/f\nqi3r16+3dWjrENWhQ4cUZ/ozGo1OMy+KuEx06tQJ/v7+Fsav3IlObeASPvTLzMx0OWEbn/Fy8GKN\nJ0+eCMWP+Oyzz4S/ly8rHDx40KU0OitWrIDBYIDBYAClVHEmlubExcWpuqZt27bF0KFDMXToULRt\n29aRJ3frEdUHH3wgen0ANA3bnD3BKaVOX64ZY5gxY4b898WLFxEXFwdfX19F+YfNMbcGd6W3Mk/T\n6SgQ5YoVK3DhwgWHdVVWVgo7fhoMBnz99ddujYaUk5MjnMzPETy/sxJevnwJSimMRqMcvapnz572\nDm89ojp16pToNZK5evUqvLy8rN4XKisrcfz4caGeSpIk9O7dG9HR0fLsn7MgL84wn6QQmbRYtWoV\nevToYbHmj+I+AAAgAElEQVRxMel0OqeLtcXFxQ5vNO4aby+qUHOGDBkCSZJUZ3CcP3++/P/GxkZE\nR0eDUqo4p3Nz+Ahi0KBBisqtXLnSakb0/fffx8SJE20d3jpENWfOHFWiApqe5nPnzpUDlJiPmbt2\n7eq0/MKFC+UJgfXr17vlRZoQgszMTIu/HREWFiaLqFOnToiLi1PsW1ZXVwdJkrB9+3bs2LEDWVlZ\nOHnyJMLCwuDt7Y3Ro0cL1zVmzBhIkmTlji/K1atXLX6H5ORkHDp0SFVdnOPHj4MxhilTpiguq9fr\n5QXg4OBgXL9+HRs2bLD3Ht86RDV9+nTVouL89NNPmD9/PhYsWIAtW7a4nBXeFVJTUzF48GD5b2ei\nKi4uluN7q526BprMvPgDgve6aiZbxowZ47LnLw+c8/7777uclByAbBmidhH7q6++kkXOvYBbtaha\nI3ySwlxcGurYvHkzJEkSipDlBoTuZ82fSkNDHM2fSkPjdaCJSkPDzWii+p1y+PBhMm7cOBIcHEz+\n9V//lSxcuPBXb0NJScmv/p2/BpqoBKitrSVvvvkmYYyRLl26KPZOvX79OlmyZImcQtPPz89tnshq\naGhoIPPnzydffPEFuXLlCrl9+zZpaGj41dtRUVFBfv7551/9e181rVpUe/fuJV27diU6nY5IkiS7\nwet0OnLt2jWn5XluXF9fX1JXV0c2btxICgsLFYkqOTmZREVFkXXr1pGGhgbS0NBAnj59SgIDA0lm\nZqai8ykrKyOTJ08mf/rTn8i//du/KSprTnh4OImLiyP37t0jXbt2JYwx8vHHHwuVffToEZk1a5bV\nNW3fvr3idpw6dYq8fPlScTlCCDl79ix5//33CWNMzgmtFqPRKF8HvvXv358YjUZ1FYpOE77izQqD\nwYCMjAzodDqMGjXKwrvTzmq3BbGxsZAkCYmJiXj48KHFGs2gQYOsAuPborldXXl5uYW794ULF+TN\nHjNnzrTax50eRc2vTp48iSNHjlh5o4aGhipeCJ4/fz46deqkqIw5/Bqat6W6uhp+fn6K61qxYoWq\nNqxYsQJBQUHYsGGDbHv4zTffKAq3wDl69KiF9/HOnTtx7NgxFBcXIzAwsLn7R8tep3KUFdGZqKqr\nqxEQEIDU1FR5cXHQoEHw9PSEJEl4+PAhZs+e7XRtw555T3Z2tpxtj28iFhpA08Pi2LFjYIzhyJEj\nQmVseSw3NDTAw8NDkcdtYWEhAgMDrRz7lMBFdefOHXlfXV2dVUI7EZTkTDbHy8sLWVlZFvuU2ody\nnj17htOnT+P06dNWouRxTsxoWaJ6+vQpdu3ahYiICEydOlW+WadPn46MjAzk5+cDaDJIdWTLlp2d\nDW9vb3zzzTc2P9+0aRMGDhwIoOkG2bdvn926hgwZIrdj3bp1KC4ulm3vwsLCcPr0abtlm9PY2Igd\nO3ZAkiSEhoY6Cy8sw8/bnLFjxypK5cNp27atW0JfV1VVQZIkREVFueSKb37DRkZGOkwYbq+cOSNG\njFDVY9ojKSkJKSkp5rtalqh4uhm+OXoCO7ox+DBPxLNVxIXjxo0bFpnlGWMwmUxO67bFtm3bIEkS\nhgwZIlzGYDBYBOIfMGAA8vPzUVFRoTirPGNMOJmBaH1qzYOysrKwYcMGREdH4/HjxyCE4L333hMq\nGxYWBkopFi9eLHtinz9/XlFwn4KCAnlrjl6vR58+fbB69Wr88ssv5h+1LFHl5uZi9OjRyM/PR1VV\nld0nOffGtQf5e0oUEVEpSVpgLqoBAwaodqjr2rUrGGMO08U0Z/To0Xj77bcxZMgQ7Nq1CwBUi2rl\nypUwGo0OfbBEOXv2LHr27InevXsrKldUVISgoCAUFRUhLy8PiYmJoJRi7NixQuVPnjwpC6h///5I\nTk6Gt7e37PjojBMnTlgY9Y4ePRr37t3DvXv3MGvWLMTFxckpWJvRskQlirPh34ABAyBJEkaNGuW0\nLlFnw4SEBDkEl8FgQPv27cEYU/2inZubi7feektVWXOUxu3gD4WIiAhERETI+Z2UukuYo9frFfe+\nhBCL96kdO3YoEhWnsrIS58+fR1FREUwmE0pKSpyKiucKy8jIwM2bNy0mKiilGDNmTOt3UmyOM1HV\n1NTIs3uOqK2thSRJiI+Pd/qdCQkJ2LZtm/z3l19+iXbt2qFt27biDTeD+/64Co/OJErznvnHH3+U\nE1KvXr1adTuUiurMmTMWw67GxkZQSlW5bphjMBjkEHL24ClePTw8ZCEFBwcjPT0dq1atQlBQEG7f\nvm2v+O9TVEDT0Ij3QgkJCXj48KG8jRkzRvYJysjIEPrO5qICmiY8vLy8lDQdQNMPP3z4cLf0VEpF\nlZ+fDz8/P0RERCAnJwdPnz7F06dPkZqa6pKVt1JR2YJS6pa8VwsXLsSmTZscHtPY2Gg3ETvvuezw\n+xUVZ+/evejatauF/1DXrl2Fp785PE/tjh07cODAATkyqui6iMFgQGNjIw4ePAhvb29HEVAVERsb\nq6pcTk4OGGOYO3cuNm7caPXAEEWv12PAgAGKr6ctKKUuDUM5X375JbZs2aK6vE6nw/Tp0+193HpF\nFRMTo6QIjh49iiNHjigK59UcT09Pi8kKkWEjJyIiApMnT5ZDK6sN+9ycoKAgh/EpXhUXL15EbW0t\n+vbtC0mSFE/t24JS6rIzKtAk9CVLliguV15ejv3796N3796O0sa2TlF169ZNyKLi9wClVNFambvg\nkxOrV68WSmv6a6MmfkZjY6PTkHUQvJ9bnJPiv/zLv5Bbt24RLy+vV9keDQ1baJkUNTTcjOb5q6Hx\nOtBEpYDz58+Tf//3f1ddPiwsjNTV1bmxRcooLS0lu3btIv/1X//12trwKtixYwdhjJFLly4Jl8nP\nzyc6nY6MHDnSYj/fV1NTo75Boi9fr3hrEdy+fduluO5hYWGKs3U0p7S0FLGxsRZW2uZhqe1x5MgR\nOTQYIQRbt251qR0A8PXXX2P8+PEghAhb3ANNqYQuX74sz6TyRdh169Y5mnmzC6/nr3/9q3CZZcuW\nQZIkeHh4WOzn++xED24ds3+MMdTW1qK8vBwffvghPvzwQzDG8PLlS4cXLT8/H0uWLJEvOCEEoaGh\nKCsrw5kzZxyWtUdGRoZLokpKSoIkSSgtLVVV/sSJE/L58JxdsbGxYIxh2bJlNss8fvwYqampoJRi\n+fLlWL58OVauXAlKKaKiolSfS0BAACorK1FfX4/Gxkbcu3dPqBwXED+PGTNmYPDgwZg+fbpsF6mE\nrl27Ij4+HkePHsXQoUMxduxYIXcYnjBu7969Vp/l5uba83dr2aIyF0RCQgISExMxevRoeeHSWSqc\n7t27gzEmO57t3LkTa9eulf+vJluGq6LKy8uDJElISkpSVZ6LSq/XIysry+LmtIenpydiYmKsFptd\nSdf66NEjVYvX5O9Rgm0trlZUVMiuNqI8ffpUtrw3X0P08vJyuDBfWFgIDw8Ph2mAkpOT0bdv3+au\nNy1XVCaTSb5A4eHhFj+g0WgEYwzbt2+3e0EA4M6dO2CMYcKECfI+83rUiIr7MbkCY8wlUfGeLjQ0\nVLYScTT8++WXX2zeYK6I6uDBg6rKrVu3Djk5Obh//77VZ5cvX4ZOp4NOpxOq65tvvoG3tzdSUlIw\nadIkREdH4+7duxgxYgQYY9i/f7/djCSiovLw8Gi+IN1yRZWRkYHQ0FB8/PHHFvvLy8sRFBSEjh07\n2r0YIixYsEDVAmFwcLBbROVKHeZhm9WK85NPPrGwzFaavO7Ro0cWQyyj0YirV6+qaguHJ1wQfady\n1EM/efIEjDG7aUq5qLp164a8vDy73+Hh4dH8navlisoeSvyf7LF69WrodDpVPZU7Mty7IqrS0lJZ\nVPbeoUTgAfmHDh2KxYsXg1KKfv36KaqD+1C9fPkS8fHxio17zeHDvo8++kjo+Pbt2+Ptt9926BPG\nbGTANMfDwwOSJGH58uUOj2nVorp9+zYYY83dmxXTvXt36HQ6i2GhKJRS1XEVOLyXUUphYaE85HO1\nt0tOTpbNiyorKxESEoLAwEBFdfz0009YunQpOnbsiKysLNXJ3/i5ODBitVnG1gRD82McJdSWJAmU\nUoexLWz427UeUXl6eoJSqnrWjJOVleVSb0cplZ0V1RIXF6fq+0NCQsAYky2wc3NzERMTo9q135xF\nixZZTS07Y+HChZgwYYJir19zzOOQiFJTU+P0+vXr1w/9+/d36P1tPqVuK5/07t27W29PVVtb6/KT\nGWga9w8ZMgQ6nU51KhhKqeJUqc1JSkpSdS6hoaGQJEkWUWlpqYXIXGHRokWK2zRr1iw0Njbi7bff\nVhUaLDMzU56YUOI68vLlS6eBfxhjFqHkbFFeXi6Lqk+fPlaf84mKVikqf39/MMZcTl3JX4TV3AAc\nd/RUx48fByHE4Qtyc3gPaz4U4RGnHHipWtG7d29QSnHz5k15n16vx+eff65YVObJt/v37y8cc4P7\nw3FB8XxQzffZE1phYaGVqAwGAxYvXgzGmKKwbdOmTZOFwzcuNA8PD1vvWy1fVJmZmVYBLdXAF3/n\nzZvnUj3ucLXgomqeEtMRn3/+ORhjGD58uDytzterlPDs2TN07drVKhM7IQTt27dXVFd4eDiKiorQ\n0NCAM2fOYOHChU7LmId8++ijj6xm+u7fv4/c3FxZaPbga5Dm2+TJk1Wtnen1ejx+/NhKVHZC3LV8\nUQ0bNgyMMZcyoBcXF0On02HevHkuO/R17NjR5Tr0ej1iY2Px7bffKioXEhIiW0+EhoYq6umas2vX\nLgtRTZ06VXEd9+7dg5+fHxITExEQECAkqsGDB6NLly4W6VnV8Pz5czlta0BAAAwGg1s8qQUQup9/\ns64f5eXlJDY2lgwfPpxs3LhRVaVnz54lgwcPJoMGDSL/+7//63IjNX73aP5UGhpuRvOn0tB4HWii\n0tBoRnFxMfHx8VFdXufGtvxm2bhxI1m4cCGhlJJdu3aRSZMmEZ2uZZ66v78/IYQQg8FAsrKyyJ/+\n9CfyT//0T6rr++d//mfy/PlzouY14MWLF2TRokVEkiQSFxdHpk2bprodPL+UmnZkZmaS2tpai33v\nvfee4noaGhpIcHAwqa6uVpzYzwLRGY1XvNmlvLwcMTExqq0gGhoarKZfRUJC22LlypUIDQ3FypUr\nsXLlSnz33Xeq6nGF+/fv4/79+9i7dy8kSVKVwsYctRYmBoMBkiThnXfewfLly91iE6mmHdz5kpsU\n8U3EcbM5O3fudGa61PKn1AsLC62c2pqeA+I0Dzul9sfjcceTk5PldRRKKY4fP66onqqqKnz88ceg\nlKoy6jWnT58+LoWPnjFjhurrYS6ivLw8t4hKibX8gQMHZAFNnjwZu3fvlhegRWPkm9OrVy9QSm2a\nLJnR8kXVnN27dysWFSc7O1uOG37ixAlFZQcOHAhKKXbs2GGxf9iwYejWrZvDshMmTLDqKTt06OAW\ni/t58+apFlVubq4cIHTkyJGKy5uLaODAgfD29lbVjurqavTr1w+MMZdDDQBNC9ySJOHcuXPCZTZv\n3gxKKVatWuXs0NYnKm6ypITGxkakpaXJVgjTp09XtFD47NkzBAYGYufOnVbxz6dMmeJUVNz1nYso\nJydHtl9zVVQ8JrwaZs6cCcYY+vTpoygbI8dcVJRSTJ48WVU7fv75Z9kiQmmq1eYYjUYsWbJE8TXx\n8fERdX1pHaJKSkqS7d6mTZumyDTHPFRzVFSUnPLUTlAPm9jyodLr9XjvvfdAKUVlZaVwXZxt27aB\nMWY326MokiSpCuDS2NgoXxc1ggIg52/Kzs5Gbm6uqjoA133k6urq5IwdfNin5LoWFxcrGf20fFFl\nZWUhNDQUy5Ytw/DhwxU75vEf7OnTp1b7RJk5c6aVrVxUVBT279+vqC0ck8mEYcOGYeDAgYrdNs6e\nPYt58+ahqKgIp0+fhp+fn03XdJE2uHozFxcXg1KK5ORkBAUFYc6cOYofMNOnTwdjDNOmTVP8/WvX\nrrUaVvPNWfwSzosXL9CuXTucOnUKDQ0N2L59u/wb37p1y1aRli8qc3hoLiWUlpZa+WApvZlqamrk\nnEaUUkRHRwtlabTH9evXwRhDenq6onJz5syBj4+PxQzX7t27VbVh4sSJsg2hWqZOnQpKKUaMGKG6\nDm7LqDQjJJ/5bL7l5eXh3r17wo6k06dPB6UU9fX1mDRpksWD044zbOsSVV5enrAYCgoK7PrTcFEp\nearynEUHDx6UM5Z3795dlbjUuOQXFRVBkiRcvnwZACxuJB8fHxiNRuG6Kisr5eGwQEB+K65cuQJf\nX1/ZBUPtBAV3AXnw4IFwmc2bN6Nz585WYvrkk0/kYezDhw+F36l48jfuBXz+/HlcvXoVS5Ysgaen\np60irUdUer0ec+fORVxcnNDFmjZtmlNRiTJx4kQ56575PkqpYktz/v1KvWwLCgqQlJQEo9GIgoIC\n+Pr64t1338XIkSPh7e2NFStWCAs8IyMDjDFcvHhRcduBJt8pfi18fHxUT6XzoZ8SPD09rQTVq1cv\nq2hbSkRlvg0aNEj+v53r03pE9eabb1p4vTpj2rRpVjmKTp06JS8ii8ZjWLNmDSilNrMevnz5UvFU\ndHJyMjw9PXHt2jVF5a5du4bOnTtjy5YtkCTJKpDo3r170aZNG6fvnOPHj5cfKk+ePFHUBs6MGTPk\nIdPJkydVLXF069YNjDEcO3ZMUTlzMe3du9fmsFFJTxUSEmLlV7Z9+3ZHs5AtT1Q8sMuJEyeQm5uL\n999/X74JlHi41tXV2X2JVeIPFR8fD0opfHx8sHbtWnnj0YiU+nkpHXaaExYWBkmSXHqf49fAz89P\ndR0AMHLkSHh4eKBnz55OlxRsIUmScHw/c54+fSo01PX29lZ0vyig5Ylq9+7d8hQ6t1hQO7zg6x98\nW7p0qeI43bm5uVZDBEopFi5c6DQGQnOcxVb4NeDXQu0EB0ev18tDP2fht23RrVs3zJgxw6U2OOLG\njRuqZkUFELqfNX+qX4levXqRt99+m6Slpb3upmioR3NS1NBwM5qToobG60ATlYaGm2mRouIObUo4\nevQo+eKLL15Ba5SxfPlyIkkSOXToELl+/brqeh49ekRCQ0NJcXGxG1vXsmGMkdGjR5Nbt2693oaI\nzmi84k2IjIwMefFSaQy/sWPHuhxdNisrCz179rTYN2fOHKEZSr1ej169ellk7QgICHDmv2OTiooK\n2cTHUSxwR+Tl5WHVqlVYtWoVQkJC0LlzZ5dCwamlsrIST548wbJlyzBs2DBVdVy/fl22dKGUqpqu\nF6TlTanbgy/avvvuu5g5cybatGmD5cuX46effhK+GgkJCaqn5w0GAxhjWL58ucUU8vjx4+Hj44Pr\n1687LP/WW29ZWQJwy3s1rhvm1vdKp+mPHDkCHx8fuayHhwe8vLzg5eUlnA2xoKAAWVlZyMrKwqxZ\ns+T/izJixAj4+vqCUgpPT095ep4oXEg2mUyykJKSkrB48WLZsVUpxcXFiIuLk9cD7dDyRVVWVgbG\nGEaMGCF7dU6ePFmRrRsnISEBkyZNUlxu9erVYIyhrKxM3ldSUoKwsDD4+/s7LX/t2jULMb3xxhvQ\n6/W4du0aJk6cCEmSMGHCBGGXlgEDBiAsLAw//vgj7t+/D8YYvvzyS+Hz4Y6aSsJfFxUVoVu3bjbX\n7Mw3JdTW1qKurg4//PADPDw8EBMTY88y3CHmv0ufPn1AKcWjR48U1dGtWzcMHDgQHTp0QHBwsKMH\nVcsX1enTp8EYw8OHDwE0ragHBAQIXyxzunbtqqpXWL16NQIDAy1MV8aMGQPGmFCUWP7kCwwMxNKl\nS2URcdq1a2e1zxHc0RFoGjpFRkYqEtXkyZMV926HDx+WhePj44Pu3bvj0KFDGDdunLw/Pj5eUZ0c\nbszKz0kNDQ0NyMzMBKVUUbIDALhw4QKioqLwl7/8BUBTyqZW3VN9//33FjcAYwxt2rRxfqVsoNY6\no76+HmlpaUhKSkJQUBAYY0hMTBQ2F2KM4b//+7/lv0tKSiz+5sc4u9Fv3rwJHx8fC3eNiooKdOrU\nCQkJCQrOqOn7lFpClJeXWyUh4O+Tai0rKKXo2bMnDh06hHv37sk5s5TWwbOxeHl5KfqN+e9pzpw5\nc1q3qAAgOjpavuliYmIUB+XnUEoxfPhwVWU5PH7322+/LXT8oUOHhLLRBwQEOO1FO3bsCMYYnj17\nJu8zmUwYO3YsQkJChNrDMX8fW79+varhNND0bqRGVDx3Mu9ZAgICEBUVBUqpxXBOhG3btsn/r6mp\nASEEz58/d1ru9u3bVveSeeQtOwjdz7/5KfU333xT/v8f//hHl4IcBgYGqi5rMplISUkJmTdvnnCZ\nzMxMQggh7dq1c3hcdXW107qePHlCCGmK08cpLy8nX3zxhaI2EUJIamqq/P8lS5aQuXPnKirfnClT\nphBvb2/h469cuUIIIWTq1Knk+++/J/n5+eSTTz5R9d0zZ860+Ft0ueX48eMW95JeryefffYZoZSS\n//zP/1TVFhlR9b3izQqDwYCRI0daPFWVeohyysrK4OXlpdrdAWh693n27BkmTJggnHGDz/A5oqSk\nxOksIE9ktmLFCov977zzjtUkilJ4ehs1xMbGyvmC1Y4gODzxnCuZIbkBtEhP1fw1wsvLC4wxXLhw\nwVGxlj3827Nnj5XbhlpR5ebmqn4XA5rWmNq0aYOSkhIEBgYKD5eWL1/uVFTdu3eHJEno37+/3WOC\ng4MxbNgwi8kS7t5ix0NVGB77Tw18COeq1TvQlLRaZDbVEVOmTJED0jije/fu2LlzJzp06IDw8HBI\nkgR/f39n3tAtW1R8LSUxMRGMMXh5eTm9UPaIj4/H6tWrVZWtq6vDiBEjcP78eTDGrJwfHXHw4EEw\nxvDWW2/JflyHDh3CoUOHQAiRHxbOnvKMMcydOxdAUw/Op8XT0tKEnsr2ePTokUsBYNwhql9++QWR\nkZHw8vJy6I2cmZmJyMhIm7EBy8rKkJqaCkqpfJ1E4L3T7t27RQP5tGxRmfdQffv2Ve3cB0DVrB+H\nJ2729vZGWlqa4rgOvCey5QY+ZcoUoTqePHlicT28vLywfft2Re0wGAzw9PS0WjhOTExUtT4EWLqj\ni0xU3L17F7Nnz4bRaITRaMSYMWNAKUXfvn2Fvq9///6yt25UVBR69eqFwMBAUEoVz4CqpGWLigeg\nXLNmjctXokuXLqrLclExxlRl6+Mxx803NYm8+aJk7969VU1f81SvjDF07NgR48aNw+rVq116WA0e\nPFiRqO7cuWO1YPzRRx8pWojW6/WYNWuWRR2XLl1yKZezAoTuZ82fSkM1JpOJ5ObmkgEDBpBRo0b9\nJgyWXzGak6KGhpvRnBQ1NF4Hmqg0fvfk5eWRiRMnuq0+bfinEACkXbt25MWLF0Sn0xGj0fi6m6Th\nIjqdjvj7+5MrV66QyMhIR4cKDf9aZo5OFfzf//0fCQkJId988w1JTEwkJSUl5NKlS+Qvf/kL8fLy\nEqqjurqazJgxg5SVlRFKKencufOrbbTGK6e0tJQQQsjBgwedCUoc0WnCV7xZwQ1XZ8+eDV9fX5fS\nzqSkpODkyZPYsWMHysrKrKytRbhw4YKc0fHq1auqcimVlpYiLS0NMTExcl1KmTp1qoWDI2PMqcEu\np7a2FjExMfDx8cGRI0fg4eGBWbNmKW7D/PnzFZd5FRw/fhyenp4ICQlBcnKyvGTQvn174Tr+9re/\nQZIk0ZRCLXedymQy4eTJk/LfV65cAWMMEydOxPnz50VOXuby5cv45JNPFJVpzoMHD8AYw5YtWxS5\nnN+6dctCQHzjC5hKRFVaWipH8DUnJSUFSUlJQnWUl5eDMYYPP/wQALBgwQL06tVL0QOivr4eAQEB\n8PX1RadOndC5c2d06tTJ6QL7s2fPsGDBAixYsMCho2NUVJTTNjQ2NlplHGloaEBQUJCiCMTcI1tB\nYM+WKyoACA8Px5QpUzBlyhQrG8Bjx44J+zMRQlxa4DQajYiNjVVsO5ibm2vRZt6zZGdnyze3krxM\n9sI1c18vEUwmExITExEREQGgSVSMMUVxMm7evAl/f3+LaL8NDQ0OnRT1ej0CAgKceg6L+rzl5OQg\nOTnZot0PHjxQ1EMB/7DaOXz4sGiRli2q9evXY8aMGVZWDDdv3hR6wvMwy+Hh4Rg7diw6duwIf39/\np/EkmsOTZpv3UIWFhUJDyMLCQpu2arzXEc1icuLECZu5pEpLS0EpVZTDmKew+eyzz1SJqkePHvjs\ns88s9plMJodJH4xGIwYNGoS+ffvixYsXePHihZUFRlxcnLComvdmBoMBb7zxBt555x3h83j+/Lns\nkd18/7x58zB+/HhbxVq2qBwhIip7kXmGDh2K6Ohooe8xGo3w9PTEzp07AQAbNmyQ3b8pparTcm7e\nvBmMMRw4cEDo+BMnTlg4JxYWFiItLU11soHq6mq0b98ejDF07txZUdKD7t27W9k/Dhs2DAMGDFDc\nDnN48BeR97XmlvkhISFWHtbOeP78ORhj2LdvHwDg3LlziIuLszB0thHi4PctKnv8/PPPCAoKEjr2\n/v37slftvn374OHhAV9fX3z00UcIDw8XFqc5er1ezkKYkpKCtLQ0p2VOnDhh4cMVGhoqDyf37Nmj\nuA1A05Bt3rx5GDdunKJytm5c0XgdjlAS7mDQoEHYtWsX6urq8OzZM1BK0aNHD0Wi4gF5ysrKUFJS\nAm9vb6soVxMnTmxerHWKavPmzTh37pySIlbcvXsXGzZscHpcfn6+fHGLi4stPuMvy0pc0fkTkN9A\nIm4fHJ7zWK/XIysrC5IkqYoZyKmvrwdjTJGoTCaTlU+bXq/HkSNHVLcDaHp/VhpDZNOmTYiKisLg\nwYNRV1eHBw8eyAGCRBg/fjwkScK+ffvsho6z4fzZ+kRVUFAgnLDNETU1NfbGzBY0NDTI7zKFhYUW\nny4Os7oAAAJISURBVD1//hyUUnz44YfYu3ev0PdKkoS4uDgw1pRvV20OJbXT8eZs2rQJjDF89NFH\nwmVsPUAuXryoKMWoLbiobPQMDjGftXzw4AHu3LkjXJZ7TTffzId/NmhdoqqtrQVjTNgHydGwauPG\njcLBHymlmDBhAqqqqjBixAhkZWW5FEFozZo1Lg2X9u/fD0optmzZoqo8R2nkIVvwMAWucOHCBfj5\n+VlF/lXTFqWzf9HR0fKwr7mfm51RQOsQlV6vl32rlESkLS8vx9ChQ3HixAn5xdpoNKJ9+/aKcu6+\nePEC48aNk59eSjx/bcGHGGohhCh+D7IFYwz9+vVzqY7g4GAsXbrUpTo++OADUEqthtdq4OtUah52\ngrR8URUVFaFr165gjCE9PV3xFdi3bx+8vb2RkJCAQYMGITo6GpMnT7Yayv2a8CGGK+VdDbJy69Yt\nMMZcfjf18fFRHd6MExwc7DZRMcYwdOhQxQE1FdCyRcUYQ3JyMk6fPu2ey/EbgTHm0vSzO0TFGHP5\nwfLy5UucOXPGpToA9UFObWE0GjF37lzhmPAqELqfNSt1jdfK+PHjya1bt8jt27dfd1NEaFGevxoa\nrQbNSVFDw81ootLQcDOaqDQ03IwmKg0NN6OJSkPDzWii0tBwM5qoNDTcjCYqDQ03o4lKQ8PNaKLS\n0HAzmqg0NNyMJioNDTejiUpDw81ootLQcDOaqDQ03IwmKg0NN6OJSkPDzWii0tBwM5qoNDTcjCYq\nDQ03o4lKQ8PNaKLS0HAzmqg0NNzM/wNfldd4jVvGYQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAANUAAADMCAYAAADkmebQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXlYVFee9885t2BYX1BsZGlEoMmoj44yGrV19AEnRo2O\n2mI0JibuPmpaTeIawbjlcYtJxgV8MNjRjIqPJhNtx+XRaEQF10CiUXEhEdwQVCjZ1+/7B31uV0FR\ndc6tMgi5n+e5T2Jxz7mnbt3vPdtvoQCIjo6O42CN3QAdneaGLiodHQeji0pHx8HootLRcTC6qHR0\nHIwuKh0dB6OLSkfHweii0tFxMLqodHQcjC4qHR0HY2jsBvwD3VaqkXj69Cnp0KEDycnJaeymNAWo\nyEkvZE/l7u5OGGMkJiaGVFZWNnZzHEpWVhZ57bXXiKIoRFEU8uc//7nR2gKABAcHk8ePHzdaG+qS\nmppKBg0aRJKSkhq7KdoB8CIcZjDG1GP27Nl1/yxMXl4ePv30UxBCsGzZMgQEBCA7O1tzfZw2bdqg\n9tbJ4+vra/b9FEURKpednY2CgoIG/yZLVlYWRo4ciQ4dOiAjI0O6PACUlJRg586doJSCUqqpjpCQ\nEBBCsGvXLmRmZqr/L0p2djZiYmIwefJk+Pn54fLly5rasWrVKnh7e4Mxhs6dOzd0mtDz3Nhisiiq\nzZs3gzGG0aNHo0OHDlruEQDAyckJLi4uGD9+vPoQL1++XHN9AHDkyBEwxvDXv/5VU3lKKVq2bKn+\nmzEmVE5RFDg5OVn8W0OfW8Pd3R2UUlRUVEiXBYAePXqAUgoXFxd4enrCxcUFn3/+uVQdISEhSElJ\nAQCkpKTAaDRKlb958yYYYyguLsawYcPg5+cHxhiSk5OFyqempuKLL74AYwxhYWGYMWMGfvnlF/Ts\n2ROLFy+2VKTpigoAMjMz4ebmZvbQLVu2DG+//bb0gxAREQFfX1/pH70ud+7cAWMMgwYNQmVlpV11\ncUREVVBQAEJIg72aaG/H6dy5M3x9fXHz5k2pcqbUbfewYcOEXxAAsGvXLoSEhGi+PgDMnj0bGzZs\nUP8dEREBxphQz817pT59+tT729KlSxtqW9MWFQBcunQJjDF88sknCAgIwJgxY/Drr7/aul9mFBcX\ngzGGffv2SZWzREJCAhhjdj2MdRF5EGNjYy32VAcPHsTNmzfh5OQk3KaamhpQSvHLL79oai/HtN0r\nVqyAs7Mz3nzzTaGyfJgXEhKCVatWYdq0aZg2bRpWrVol1YaoqChVQPx3njp1aoPDZFMURcHUqVPr\n3YcbN27Az88PCQkJloo1fVEBQK9evUAplXoLckaOHKkO+4YMGYK9e/dK12EKr6uoqMiuejgxMTEY\nOnSozfO4qD766CPMnj0bTk5OcHJyUoXm5OSEwMBAXLhwwWo9BQUF8PHxwejRo+1ue48ePdCjRw8o\nigLGGKZPny5cltSu9tabl65atQoDBw4UricxMRGKoqhDuOLiYuGydUlKSkJSUhIURbHW8zd9UZWX\nl8PDwwMFBQUICgrCqFGjUF5eLnOv8PDhQ0yaNEkdbzPGsHbtWqk6AKCsrEwtL0thYSFmzJiB8ePH\n4/bt2wCArl27ms2trFFXQPxYvHgxkpOTERgYqH5mDdMFhbKyMhw+fBjr16+Hj4+PTUGacvToUTDG\n1Pmh7EsmJSUFmZmZ9T43Go3SC0BcBImJiVLlTOELRoqiYPny5ejSpQtef/11S6c2fVGdOnUKR44c\nAfDP7n3mzJlSN4zz5MkTdU6kRRgHDhzQXDY0NFQt6+zsjB49eoAxJvRWLigoqCeqkSNH4vDhw+o5\nFy5ckBJVWloaOnXqpP6bUgovLy+h73Lx4kW1DCEEY8eOFSonwq5duzBt2jSpMv7+/pp+E1O4qCIi\nIgDULmC4urpaOrXpi6q0tBQbN25U/x0XFwfGmHRvZUpxcTEWL14s/UMEBASgdevWePr0qVQ5T09P\n9OjRA8uXL0f37t3VoSw/cnNzrZanlEJRFPW/d+/etXiejWGLWpeHh4cqivnz5+P8+fMYOnSocA/B\n211RUYERI0YI97a24PMsvhoowsGDBx2y9VKXpUuXwmAwWPpT0xdVeXm52cNfUlICPz8/nDhxQvgG\nWYIPX2RgjOGVV16RvpbBYEB5eTmqq6vRvXt3eHp6YubMmejevTsYYza3DHgPxf/b0LKzaE/Ftyoo\npTh8+DD+/ve/q/NWW2RnZ4Mxpq6injt3Dh4eHjbLicD3q2Q4ePCg+jLx9PSUvmZJSUm9z34XCxUj\nR45EcHAwEhMTUVNTg/z8fE03kFNaWooxY8agVatWwmWqqqqEl2rrYtor9ezZU7p8RUUF4uLibPZo\nIqI6efIkXF1dzYZ9Pj4+WLlypVBb+vfvDz8/P/XffOHj/v37QuUt9UJ8aX3atGkW51kN8ejRI3h6\neqKiogJRUVHSL8lWrVpBURRs377d7HNPT091GGiB5iEqAGjXrp3Zw9mrVy9bRVR4b2cwGODs7Cw9\nLyovL8egQYM0j9sZY8jPz0d1dbWm8qJER0dr2gSWhd8/PoxkjAl9t4EDB5qt+vFj1apVUmLi7N69\nG4qi4Pz58+oKpAwJCQlQFAVhYWHIzMzEoEGDoCgKrl+/bq1Y8xFVfn4+jh8/rv6gz549s1VEpbKy\n0kyQ8+bNQ3p6unD5Z8+egTHmsLnD8yI3N9ds8eJ5MWnSJPVeUkoRFhYmXDYlJUUd5hFCNInJlHPn\nzqltiYyMlC4/atQoVZCmCxVWEHqeKfBCGIi/EI3Q0bFB07VS19Fpyuii0tFxMLqodJoNAMiCBQvI\nn/70p0Zthy4qnUbj1VdfJYqikIyMDLvrKikpIQaDgaxbt44sX75cunx0dDSpqKiwux2E/A5EVVFR\nQWJjYwljjHTr1o3ExsaS5ORk6XpOnjxJXF1dyf79+80+v3Hjhs2yq1evJuPHjyeUUqIoComJiSE7\nd+4kz549E7r28ePHyfHjx8nkyZOJoigkICCAHD9+nDx9+lT6e7xIcI/jbdu22VVPcXEx2bRpEyGE\nkH//938nb775pnQd+/fvJ2+99ZZd7VARXSZ8zocZ1dXVqpHm06dP8d133+Hjjz/GokWL1CVUG/sJ\nAGo3CCmliIqKwsGDB9Vj9uzZIITg0aNHNus4duwYKKVIT09XNwrv3LmDcePGoW3btjb3aEJDQzF4\n8GBs3LhRdYDLyspCXl6eTfeLdu3awWAwwGAwYP78+di8eTM2b96MVatWqZ/PnTvX5neoy5o1a8w2\ngHfv3i1cNiwsDIwxhIaGSnnoWmL79u2a7Sk5JSUlah2lpaWa6xHc62q6+1Tc9IQfplbE/BARFVBr\nmrN+/fp6n2dlZeGLL76wWX7v3r2qCc/9+/fRu3dvTJ8+XcoymzGGuLg4ALWboFFRUcJlrSErqoCA\nAFBKsX//fvWznJwcGAwGYX8sg8Fgtu/Hxc0Yw4wZM6TazxjDmjVrNIuqpqbGLiPrum0hts2kmqao\n0tPTHSqqy5cvgzFWr1c6efIkzp07Z7P8/fv34efnh7y8PM2xGPz8/FRjVz8/P4wfP166DlNOnjyp\nPtRz5swRKjNp0iRERUXhhx9+MPt8y5YtoJQKubJnZmaqm778MN0IlvGpAgBXV1f8/PPPmkW1YMEC\nMMZUI+OioiLk5ORoMrhu1j1VaWkpZs2ahUuXLtXz4BwyZAgURZE24iwoKFCFOWXKFDW2gQyU0oaM\nLIW4ffs2fHx8oCiKdCwGoNaqhPcK/BA1LC4oKEBAQIDFv8m+KEwFxId/WkSVlpYGf39/5ObmClnr\n18XV1RWMMXz//ff47rvv0KlTJ7MeVJZmLaqGSElJUXspGXf2gwcPYuXKlejatatZzyfrJcofPtm3\nsSnjxo3TLCrOiRMnsGvXLrNh18WLF62WefLkCYKDg80+O3bsGNq0aQNKaUNuDsJo7alu376tSVTv\nvPMOGGM4ffq0ar7WvXt31NTUqO2RhQ//bMQeaT6i+vbbb+Hv7y/kM2SKv7+/ap927tw5hIeHqw+A\nbJyJli1bYsaMGaCUoqqqSqosh4tq0aJFmsrXZe7cuSCEYPLkyTbPpZRi586dOHbsmLr44uLiAkop\nunTpYlc7tM6pAGgS1UsvvQQXFxeUl5dDURT06tULRUVFqKmpUUUmC3/Z/vzzz9ZOax6iKiwsBCEE\njDH4+vrWmxM0BGMM7733nsW/xcTECAcpAYDr16+r7tr3799HRESEUHCRulBKkZeXBx8fH9y6dUu6\nvCXu3bsHg8GAe/fu2Tz39OnTSEhIwI4dO9RVS0qpWUQiGTIzMxEWFgaDwYDBgwdrqiMmJkZKBIWF\nhaqTJAC4ubmhtLQUJ0+eVIVx9OhR6Xb8roZ/3F1aURQ8fPjQ1pcGULuUbq1Hi4mJwcGDB4Xq4pg6\nEyqKgvj4eKnyABAcHIy8vDwkJCSgV69eyMvLk67DEjLzq7pQSoVfVHVJTU1V5zBah8Vubm5Sc7on\nT56oD39VVRW8vLzQt29ftR1ae93fhahKSkrQpk0bKIqCkJAQoT0lTlRUFK5cuWLxb56enhg+fLhw\nXRzTH75Vq1bo2LGjdB2lpaVQFAXR0dG4dOmSdLy+hpg0aRKOHz8uXW7Pnj2aeyngn57EWnqpmzdv\nqt7PdY+0tDSrZYODgy2W43MqWa5cuQJFUUTce5quqCorK9X5U2hoqMz9AVAbuiogIMBss5f3dloj\nsoaHh2Pp0qV4/PgxKKVYs2aNpnqMRiN69uwJPz8/DBo0SPj7RUdHq4sT8fHx6jFp0iTNCw0fffSR\n0F6dJVJTUzWHjquoqMC0adOwYMGCejE37PWx0kJZWRkURUFQUJCtU5uuqNLS0lRRiQ756mK6f8Kt\nKuwJgpmdna3W5enpidTUVM11FRYWIiwsTOqlsXLlSrz++uv1ltUZY/j66681tePLL7+0S1R887c5\n4OXlhR9//NHWaULP84uSSseMPn36EEII2bhxI/Hz89NUR3V1tSObRIKCgkhNTY1D6vLw8CC3b9+W\nKvPhhx865Nqm/PrrryQoKMjuep49e0b+3//7fw5oUeNRUFDgsLp0z18dHXF0z18dncZAF5WOjoN5\nYUXVokUL8tprrzV2MxxOeXk5WbFiBWGMkb/+9a9CmSLLy8vV43/+53/Ihg0byH//93+T1q1bk6+/\n/lr42i+//DLp27evPc03wxH+XJMmTSJ+fn7kb3/7G9E6FRk/fjwZP348OXDggMPmRuXl5YQxRoqK\niuQLi65oPOejHpRSaxntGpVVq1Zpyq2Unp6uBn7kR6dOnaz6ZFVVVdWz0De13F+wYIHw9e3JeFiX\na9eu4e9//7tddcyfPx/+/v547733QCnVFKy0T58+aNu2rRpSOzo6WlNb4uLisHDhQhw5cgQLFy5E\nSEgIGGPo3bu36WlNd0kdqH0AtMRys8STJ0/Qv39/u5OMAeZBIWXo06ePusQfGhqKq1evAqjNGmkt\nwivfmIyMjFSPU6dOSWXp4Hh7e6sPXt0jKSlJuj6ZoKamLFmyBD4+PigsLARQuy/ZsWNH6UR69+/f\nrxc2e/bs2dLizM/Pt7iZbMHivWmLivwjTy/n7t270hu3+fn5GDhwILZs2aJ+Fh4ejnnz5knVA9Ru\nSq5atQopKSlSOZQ4ycnJFvPRpqSkgLGGky4cOXJEk3evJebOnQtKKc6fPw+j0Wh2ZGdnS+8JajFM\nBoCFCxeiuLgYpaWlCAoKgo+Pj3QdQG2yCXd3d7PP1q5di48//liqnmXLloExhq5du8JoNFrzx2ra\noqKUqqK6desWGGPYuXOn1M3q2LGjmZdtQUGBGq5YlmnTpiElJQWEELtcN+qSkpKCTp06NfiWLisr\ng7u7u/pWt4fTp087bPgH1P5GPNWRLHfv3lWHo/aYStW16Fi6dCkOHDggVQcPBz5//nxbpzZ9UXFr\nAx5UvyGrc0sMGzbMLGaBn5+fagUhEN7XIoQQ6fxJ1uAhpcvKyqyet2vXLnUutXnzZruuGRISglu3\nbqGgoAA5OTl21UUptTtORU1NDT7//HOsW7dOU7z5gwcPolWrVjh+/Dh8fX3h4uIiVf78+fNmQ73+\n/ftbzAbyD5q2qO7cuaOKady4cRgzZozUJJRSimvXrmH16tVmAVbKy8s12RNyZPPSVldXo6ysDBUV\nFbh8+bI6tEhKSgKlVGqyHxcXpy5SEEIwbtw4rF+/XmpYHBISovYQgYGB0vHQTRk8eLBml4+6BAcH\ni9jeWYQLYuTIkWbxN0Q4deoU+vbtiwkTJmDChAlgjFm7H01bVEDtm5z7Pc2bN69Bl3BLhIaGIiIi\nol7Ql5ycHLuGQA2l1myI+Ph4dZWPsdpMisuXL0fHjh01GaN+//33CA8PR1BQkNp7tWvXDvn5+ULl\nuagePXoEo9GIEydOgDEmlbSBM3jwYPTv31+6nCW+/vprTb9LfHw8ZsyYgX79+uH777+XLl9TU2M2\nomn2ojLljTfewKBBg0ROtcqDBw80i8poNCIkJEQo259pjuCkpCScPXsWZ8+eNQuWMmzYME3tMKW0\ntBTbtm2Doig2Y2gkJyeDUopvv/3W7PPy8nJN92Tfvn12vaBMDYG1iOrYsWN444031H9b+m6inD17\nFowxuLq6Iisrq6HTmpeoxo4di+7du4ucapVNmzahb9++msry5XQRuKhM/a6mTp1qJipfX1+hup49\ne4bjx49bjWvXunVrq/5ZZWVlyMvLs/gW1iqqI0eOaCpXVVWFSZMmmbnPdOzYEW3atBGuIz8/H2Fh\nYWbzUR4yQOT6QO19PX36NJYsWaL+JlOmTLFWtHmJKj4+vqHkxlJQSjW5O3BBic6pqqursXnzZmt7\nHsjIyBDO6MiHen379kVqaipSUlKQmpqK1NRUdOzYEYqiYOLEiQ2Wz83NRVBQED777DOzzwsKCtCx\nY0dN4hg8eLCmcoQQs/BwhYWFcHNzs7lgY0pcXJzZxmxlZSUIITZFRf4RmkFgT8picZGjscUkJSrZ\nFUBLtG/fXmqTkYtJy94Ux1ocuoULFwotl1dVVWHHjh0NxkLMzc21uXpmNBrx1ltvmcXt48edO3ek\nv9e+ffukN8GB2ge7b9+++Pjjj0EIQUhIiPTK35dffqnOfxhj8PLyEtr0ffjwISIiIsyE1KpVK2tD\nPrOmixyNLSZhURUVFaFfv3746aefRE63SFVVlXTEH2494ci9KVMePHiAESNGCEdo2rlzp5mo2rRp\nIxWJqLKyUp3b8cNSBF8RtA7/Nm7cqF57x44dmryxS0pKMH36dDDG8MMPP0jF+ygvL8e+ffvAGMOQ\nIUNkekih5/l35U+Vnp5O2rVrR1xdXX+Ly+k0P4T8qX5XotLRsRPdSVFHpzHQRfUbQykljOm3vTnT\nbH/dqqoqoigKefvttxu7KSqhoaGEMUa6du3a2E3ReY688KL629/+pmYgXLJkiXBEo4cPHz7nlslz\n//59QgjRlD7zeUEpJfHx8Q6rDwB58OCBw+prTM6fP0/Onz9PLly4IFdQdJnwOR/1WLp0KRRFga+v\nL7Kzs/Hdd99BURTh6LJacx7V5dGjR4iJiUFERASGDRuGmJgYTfXExsaCMWZ3bqq6VFZW4vvvv8fr\nr7+OIUOGCJUh/9gmMD0yMjI0Xb+0tBSrV6/GkCFD4OHhAcZYPR8nS2RnZ5ttDXTo0AFPnjyxWa6i\nogLbt2/HkCFD4OzsDFdXV3zwwQcICgoSzllWl5KSEmzduhV9+vQx22oYO3YsJkyYYBr9t+nuU929\nexeKomDEiBHqZ/fv34eiKJg9e7bQjbImqocPH+L06dNCm8CMMXh4eGDlypWIiopCeHi4LVOWenTu\n3Flz3iROXFycxU1bbiEiYlCbkZGBESNGmG3YclGZ3mtRTDdQ27Rpgx07dgglXFu7di0URcGECRNU\n9xNFUdCjRw+bZauqquolICgsLISLi4t0etKMjAz4+fmp9/Gbb75BaWmptY3opi2qwMBA1au0oqIC\nbdu2RZcuXYRvXLt27Sx+PmXKFLi7u4NSilmzZlkVFk90cP78efWzmzdvSsdAd3d3t1tUEyZMAKUU\nbdq0wc2bN1FSUqIeonABWfpMtqe6d++eunl64MABqfRCI0aMgKIoZpYkiqJg5MiRUm3gvP7665os\nO7iYhg4dirlz54pYdTRdUXHy8/Nx7NgxMMbg6ekpcp9U6j7AvXv3BqVUHWIUFxeDMYbWrVs3WEdU\nVBSGDx9eL0GcrKi4oLi7+pMnTzB69Gh06NABQ4cOtVn+/ffftytkNVD7Vq7bI3Eh1e29RLDnBcGH\nfJyCggIoiqJpCBoREYGxY8dKvVyA2mErpdSqvaQFmr6o+LyK/whOTk7CKWwY+2e28uLiYrzyyiv1\neiVbogJqk0+bDnNMbe9ESEtLU8tWV1erOW5Nj27dulmtY8CAAULXskZcXJzVHklUVHl5eRgzZgxO\nnz6tuS18+NelSxdkZ2dj6NCh2LZtm1QdBoMBvr6+uHjxIi5evKhGZBKNP9K1a1d1yFxeXo6HDx+K\nZNds+qLiJCYmYuvWrVJDKBcXF3XiPmfOHIsJBRhjQkFCbt68qWYQ4T0GpVQoxampqABoEpWWtD11\n4aJqCFFRtW/fHowxtG/fXjpPL6eoqAhz586Foijw9PSEoih48OCBVB3Z2dn1hpwTJ04Ufj6mTZuG\nbt26oVu3bnjppZdAKUVAQACOHj1qbUrQfETFkUlPevfuXTUkGGMM69atw8mTJ7Fu3TqMHTvWbCio\nBe49a4shQ4aAMQY3Nzezz8+cOQNfX1+hh8CewCgcR4kqPz8fN2/eRGlpKTp06KDZBZ7De/8PPvjA\nrno4Fy9exLp164TOzc7Oxs6dO1FUVASj0YisrCxQSq29aH/fogJq51GEEHVCavr/ApFzrCL6Rjxz\n5ozaIw0YMACHDx/GgAEDZHx4cPv2bSxfvtyu9jpKVKYcOnTI7q0LR4sqNTVV2Pv3yJEj9UIjUErR\nvn37hoo0bVHNnDnTzN08JycHiqLYnANZoqqqSu21tOTqrcvKlSulHqbr169j5MiRZkLy9vZGQECA\nsNvBoUOH4O/vj6VLl6KoqEhTuy2t/vEFDNlFguTkZOE9KWvw+ZVpcB6tcB8rEd566616KVXz8/NB\nKcXWrVsbKta0RaUoClq0aKFGduX7GFozIQK1e12MMUyYMEFzHbxt/v7+dtWhlfLycixfvhxr1qwB\npRRjxowRLmu6J8V7LlFBEULQsWNHdcgqElpNhLorgbI8fvwYDx8+RJ8+fTBp0iThl+b7778PSil6\n9OiBAQMGqKOYjz76yFqxpi8q05U2Ly8v6WXT5wFfiteagdCRODs7SyWO5r2S6SHKzJkzVU/bhQsX\naopcZAnGGFq0aKG5fExMDDw9PaUzOhYWFsLJyUnNSOnk5CSyvN60RfWiEhkZKW1R8byglApPyl9E\nBg0aBE9PT9y6dUtzHYwxh0TvFUToedadFHV0xNGdFHV0GgNdVDo6DuaFF9XTp0/JX/7yF3LkyBHy\n6NEj4XI3btwg8fHxJDo6mty4ccOhbbp79y5ZsmQJmTRpkkPr/a05fPgw+Y//+A+iKAopLCxslDZ8\n8803ZODAgYRSStzc3IT95V5oRCdfz/lokJqaGqxbtw7t27dHYGCgcEB/UmeVKy4uTqicCEFBQZqs\nzhMSEuzOZhgYGFjvs/79+0ttNVRUVCAkJATOzs7qCqto3L38/Hx069YNhBCcOHFC+JqWyMjIgMFg\nMHNj0RK2ecGCBWjZsiXc3d2tJtBriLi4OMTFxYlsLTSP1b99+/bB19cXvr6+6o0/duyYrS9vJiRu\nhU3scMYDas1aTAUlKqrFixerWwPBwcF2W3ibkpOTI1yf0WjE3//+dzMj5fDwcLRs2VJ4A7ZTp071\ngnkGBgZKpUkFaq3L65p6ZWdnS71wysvL1U39fv36gVKKyZMnC5ev++IltrcYmraouPPYe++9py6Z\nfv755xg3bpzmN73phqcshYWFqh1hbm4u0tPTwRgTcnRcsGCB6ozn4uKiSVQVFRXo27evWdm7d+/C\nw8NDyOCWm2xZehlcvHhRjdRqK8prTk4O2rVrVy9CrmhceNPrmXLs2DFQSqWzRg4bNkz9XSilwtlL\nSB03GEH3l6YrKp6dYu3atWafV1VVoaysDF988YVmC2mtouIpaLjzIxfV7du3perR6qw4depUMMbM\nkiucO3cOjDG8++67VssajUaz3sXSg8fFIfJQFxYW4u233zYTlcwmNFBrJmSKi4sLKKVSzo5A7TOx\nfft21fv48ePHQuXqPgPNvqeilFp1D9+1axe++uorWzegQWwZl5rC/X0YY2ZW7QcPHpQ21XF3d8eA\nAQOEXM5NefLkiZlPFod/Zm0+lZaWBk9PTzg7O1u9xsaNG6UMlrn3rlZRATCbS3FPbFkePnyo9lT2\n2HU2a1GdOnXKpjvBxIkTpUVlOpeS8XTlP7ipoLKzs+Hj4yM1DC0sLLSYZcKWNQBPYerr61svnrtI\nr8eHfLYm8KmpqcK9KDdcNRWVFvu9WbNm4fjx4yguLsb48eM19VSm7j1eXl7SycABqWlB0xTVtm3b\nbBk1glIqJSpTV3KJSSl69uwJxli9eBc8MpLMMK6ulTo/bLnT82u5uLggMjIS+/fvx8yZMxEZGanW\nkZSUhDNnzlgszx9+WwkWUlNThcWRn5+PTp064fLly7h8+TJcXV2hKIp0alBTvv/+e1BKpQ2me/Xq\nhezsbBw4cACUUqloVxkZGWaC4oeVIDhNU1SHDh1qsAeorKxEZmYmKKVSc6q6YhJZBTQajWCMWfyR\n+MMs6gJ+5MgRMMZw6NAh9TNuMd+2bdsGy1VUVKBHjx5mInRxcYHBYFD/7ebmZjGOBqdVq1ZQFAVe\nXl4wGo0Wl85LS0sxduxYzT0OT7Vqj89XWlqa9O/Kqa6uRqdOneDr6yvkOArUNy7m2LDeb5qiAtCg\nqLigRH94vv9g6W1ki1u3blmcrxw9elR9oM+ePSvUjvz8/Hrnfv7552CMmSUus8Tjx4/V1KZnz57F\nnTt38NN9jjpKAAAgAElEQVRPP6ltuHHjhtXySUlJZtb+MTExuHjxovr31atXIyoqSj1HZkmaw5fZ\nre0hVlZWYs6cOQ32mHPmzNHUUxmNRpw+fRqMMWzatEm4nK2eqYH9zaYrqpCQEHz11VfqW7Wqqgr3\n79+XEpQlNwd+A0U2+7ioOKZL6owxHDlyRKgdlqisrNS8CggA69atkxL1uHHj6u0tWZoTXb582Wo9\nNTU1WLFihVlvcPbsWeEeji+b151H5ubmglIq5QKyYcMGODs7IykpSdO9FHnBWjin6YoKgFmQQ61W\nCBo298xo06aN2dCrZ8+eFgPIiJKVlYUpU6aAMQaDwYBPP/1UUz1aBbls2TKEh4fDy8vLbPNXdNi2\nYsUKVUD+/v7q/48cOdKmIDlcQHWPXbt2CX8PPmLhx927d4XLcjRa2DRtUT148ABbtmwBpRRhYWHY\nsmWL9B3gc6mMjAxNlhQ8eAxjTNg8yhqm4c60CgrQLipOeno6du/ejd27d0uV48FF6/Z0skvZCQkJ\nSEhIQJs2bRAZGWnNfd0iPCE5pRTR0dFSZe1E6HnW/al0dMTR/al0dBoDXVQ6Og5GF5WOjoP53Ynq\nL3/5C8nIyPhNr1lcXEy6detGevfuTSilZODAgeTx48fkBZnP2sW4ceMauwkOp6CggCiKor0C0RWN\n53z8JnArhoEDB/5WlwQADBw40KKJUmJi4m/aDkdTUlJiV8w+U4hG74GGiI6OFsp3ZYlhw4Y19L2E\nnudm31NVVFSobx2j0ai5npEjRxJFUQhjjCiKoh4iPHr0iIwYMYL8+uuvpLq6mlRXVxNCCJk6darV\ncnv37n2hk25/+umnxMvLq1Hb4O3tTf72t7+ZfTZ69Ghy4MABsnfvXun63N3dyf/93//Z1yhR9T3n\nAwDq7fDzIzQ0FKGhoVAUBd7e3hZdyi1x5coVODs7qylNS0tLpXuqqqoqREZGwsnJCT/++KOZFTX3\n5JVNdMDbYWuvac+ePVbPSU9Px6xZs+zas7IHX19f7Ny50+56iMbNeZ5jypQnT55odmL95ptv1Geu\nAVtKoee5scVkJio3N7cGhaUoCtq2bSsVJpinBTV1B5AV1S+//KJaU3CKiopw/fp1VRiyuWY3btyo\nGsdao3///mCMoUOHDti6dSuuX7+OL7/8Elu3bkVkZCQopWjZsqVdMS9MkfXzopTi0qVLdl2TaLR4\nqampwbvvvlvPQXPHjh2aM5G0aNHClslV0xOVCDdu3BAS1fr168EYQ69evcw+1zKnGjp0KLp3767+\n+8cff4SzszMYY1iwYIGwD1Bpaalq0T1kyBCb5Ux9rvixf/9+9f+BWkt20Z7qq6++gqurK4Ba+8P0\n9HSkp6fj0KFD6v+np6fbNNLlUEqFA8Y0hNZeilJaz8KfW1qIhDioC39Z9+3b11oCiOYpKh8fH5tZ\n2K9duwZKKcaPH48zZ85gxYoVWLFiBSZPngxCCIKCgtSYESIUFRWBMYZJkyYhJCQEjDG88847Ms3G\nZ599Vm+hwlZP1a1bN5tpWS9cuIDIyEihNrzyyivq4eHhgQsXLgi33xIyyREsoVVQXl5emDhxIrKy\nstTPqqqqQCm1mUDPEtyLQeDl1PxENWjQIDDGkJKSYvW8jz/+uN4DbGphzhiDk5OTVMID03oOHz6M\nmpoa4bJVVVXqCqCbm5uZDaC1QCunTp2y6cl64cIFTW7o77//vlnvK0t1dTXWr1+vuTxgXy/Ff8/u\n3bsjMTER06dPV0Ulm2qI2zIuXrzYZpNFjsYWk5So+Je35YJ++fJlBAQE4Ny5c6ioqEBFRQXKy8vV\nYC0eHh5gjFmNg8FZs2YNWrVqpWnuZKtewR+yQWpqajB27Fih4drChQuRm5uLoqIi5Obmwt3dHZMm\nTdJ87UuXLmkOvsPRKqqAgABQSuvFDKSUIjQ0VLie06dPq/Oo2NhYkRdl8xIVj4sg8gMUFRVZHOtf\nu3YNjDFs3LhReF5l2rslJCQIlREhMDAQjDGsWbNGcx08foUIixYtUl8mHh4e2L59u/TChCknTpyw\n6aJvCy2C4ly7dg1FRUX46quvVDehKVOm1MuMaA0fHx91YULQP675iKqkpAQ9e/aEoijYu3evyJe3\nSHV1tSoQEQ/THj16oFOnTigpKQFjYkm3RYiJiVHboWVSzUlISGi05fSWLVvaXYdWQdWFUmpzflqX\np0+fqoJq06aNaLHmIyreRcv6/1iCMdvZ4DlOTk5qFCLGGJKTk6WvZxokxvT47rvv7F45a0xROWIZ\n3xGiWrFiBSil0lGUNEaBEnqeX9ztehOMRiMBQEaPHm13Xa+99hrZsWOH0LmBgYHk5ZdfJlevXiWE\nEPJv//Zv0tebOXMm8fT0JIQQ4uLiQpYuXUru379P/vM//9Nua4nU1FS7ytvDH//4x0a7tilPnz4l\nH374IWnZsqVUOT8/P9K2bVuydetWh7epSTgpGgwG8s4779QzR3nelJeXEzc3N0IIITNmzCAbN278\nTa9vi7CwMFJQUECePHnS2E35vSDkpNhkRHX79m3Stm3b36g5OjoWaT6i0tF5QdDd6V9U9u7dSy5d\nukQqKysbuyk6zwFdVL8xr732GhkzZgyJiooi9+7da+zmaIa7vnh7exNFUUhMTMwL8ZIoLS21z8HQ\nATQpUS1btoxQKtQDmxEbG6v6QcXGxpLz589rur6iKIRSSs6cOaOpPCGEHD16lBBS64sUEhKiuR4t\nACBVVVUkOjqahIWFkfnz5xOtw39KKaGUksLCQkIpJWvWrCEffvihg1ssz40bN4irq6t0uX79+hHG\nGPnll1/sb4To2vtzPupx584d7N69G+7u7vX2eGT2FrKyssxsxbj9nmh44/z8fIuRXbWkjvH09JSO\ncWfK+fPn1e/A74vo9ygoKFDLcgt7xhi6dOkivf9WVlaG2NhYGI1GNZVQYWGhtBdwdXU1pk6ditat\nW8PZ2RkDBw6Eq6trg3HhRejVq5dwjHuOu7s7Fi1ahPj4eFuBW5vu5q+3t7fFDVN+2LLc5nzxxRcg\nhNRLgwnUukyfO3fOZh2mQuIPMBeYaUxyW8ybN0+z63lVVZVqBGxqn7Z582ahzV9uZd+lSxc8ffpU\n/dxoNKo+aklJSVJt2rBhA+bNm6d+L0VRhG0jDxw4gKCgILi7u+PMmTOorq7GqlWrsGrVKrs2s7UG\nGa0rops3bzZ0atMVFX+Q6x6tWrXCqlWrhMMUh4eHN3ijCwoKEBUVZbMObm9oWgcPB809im3x6NEj\nMMYwbtw4ofPr8u6774Ixhh07dph9LmJRUVNTg4ULF8LJyclMUJwffvgBn3zyifTDWLfnjo+PFyr3\n008/qaMG04fX9HfW0lPxF0fdDI0iSFiHNF1RWeulGGMYNWqUzW/PQxT7+/ujoqICUVFR9d5Au3fv\nxoYNG6zWY5otg5OZmal+LoLskNVSeUtuKr1797bZhgULFgi1MyEhAXPnzhV2aUlLS0NSUhImTJiA\nmTNnorS0VKgcYwwPHjyo93l2drbqqa2Fnj174vPPP9dUtmXLlkhMTERcXJw6/OvUqZMlM7KmKypb\nwz/GmE3D2qioKHTr1s1aV47s7GybD3tD4pk+fbrQA5CSkgKDwWCWZ7eiogILFy5Uv8uxY8es1mHp\nOps2bVLf+NaglNpMomd6HdlMhgBUY2dbVuvl5eVwdnbG3r17UVhYiMzMTHTp0sVsnieT7pXXycMK\naOX8+fOqmGzEhW+6ourevbuZgN5//31cv34dM2fOVD+zldcpKioKsbGxVs/heZ6sYcndJDMzE4wx\nIY/bDz74AP3791f/fePGDdXZUlEUuLm5WV28yMjIqNfGbt26md0fa8hknWSM4fDhw0LnmnL79m20\naNFCKLUPXyjibR8yZAj27NmjhhmQZdmyZaCU4rvvvpMuy+HxPqZNm2br1KYrKuCfQ8C6q2w3btwA\nY8xmLqOoqCirXrUAMHnyZJs/pKWeiud7Esl2ERwcrLaja9euUBQFs2bNQllZGV5//XUoimLTDcVS\nTx0SEgJXV1eb7U9OTobBYLDZTn6diIgIoXMtYS0rZEOUlpZi06ZN8PLywpUrV4TLmfb2okNPS5SV\nlam9VN14JhZoHqIydY2urKzEW2+9BcYY2rdvb/Xb2xJVcXGxkBuIJVHJuAy88cYbGD58uLqylZmZ\nCaPRqL6tRRYvZsyYYSaotWvX4vHjx/Dx8RFaqJg/f77NMGqPHz8GY6zB3MEiCDyU9UhJSQFj8qmK\nli9frnm1j1NTU4MZM2Zg5syZoJSKvFCah6gYY9iyZYs65OKHrcAtUVFRDa7OffHFF2CM4b333rNa\nB28HIQTbtm1T812JluV07ty5Xri1ffv2ScXIsETLli2FHqqamhowxrBixQqLK4BAre/YoUOHLC5U\nXLlyRV3tNBqN9eZOFRUVuHjxIgYNGiT9HSil8Pf3lyrz/vvvq88B93fTwt69e9WVP0opPvnkE1tF\nmraoHj58WC+TIT+WLFkics/UACuenp4IDw+Hp6en2vOcP39eqA6+aWq6hGyPG7ojCQ0NlXpTz507\nV72Hzs7O8PX1VbMqWpuj3rhxQ+0t674cTD+TfUmEhYWhW7du0osTjDGcPHlSqowlRo0aBUopQkJC\nRJPHNW1RAUBOTk49QTk7O4t8eQDAuXPnEBERocZC4HW8+eabwnUAtZNhRVHg6+srnGf3tyAsLExK\nVDU1NThx4oTFF5VIuDKj0Yg1a9YgOjraTFRr1qzRFASGD4cbiwMHDqjzKcH5nNDzrLt+NGGWL19O\nfvrpJ/LNN980dlOkWbx4MXny5AmJj49v7KbIoPtT6eg4GN2fSkenMdBFpaPjYHRRSfLjjz8SSqnm\nYCvHjx8nlFKiKAo5deqUg1v3+6a0tJT88Y9/JP7+/o3ajiYhqu+//568/PLLhFL6QkxsnZ2dNTlL\nEkLIwIEDCWOMMMbI66+/TkpKSuxuT2BgoN11iHDhwgW17UuXLiU5OTmkuLjY4dd58OCBdJljx46R\nXr16kZycHJKXl+fwNsnwwouqffv2pH///iQ9PZ0wxsisWbNIjx49hMrevXuX7N69m0yZMoUMHz6c\nxMbGktjYWJKcnKy5Pfv37ydTp06VjjNHCCHz5s0jhBBSVFREHj9+TDw8PEhAQIDmtmzdupW4ubmR\nUaNGSZUrKSkhJSUl0u7vx44dI0VFRaSoqIh07NiRdO3alfj7+5M//OEPJCsrS6ouTlZWFklOTiZ/\n+tOfVMH+8Y9/lIqJqCgKefXVV8mzZ8/IuHHjSMeOHcnIkSNtlquqqiLJyclk06ZNqidzTU2Npu9h\nhuja+3M+6nH//n0EBATUMwfKycmBoijo0aOHVds7xhiioqLUY/bs2er/U0o1RUc9c+YMGGM4ffq0\ndFneptu3b6v/zs3NBSEE9+7d01SfjLkUzzpIKUVCQgLCwsLg5eWFb7/9VpNlOofnx/r222+Fyzg7\nO6tmWkFBQQgKCsKDBw/sCoFtyvTp023eF74/17lzZ+zZswd79uzB4sWLbZk+Ne3N348++qjBh6Zd\nu3ZQFAWXL19u8KZZ28ybMmWKJpux4cOHgzEmHWIYqLWIt2TYyhjD5s2bpevjqTRNMzxaY8+ePfVc\nxW/evAlKKX788Ufp63MOHjwISilOnTolXIa349q1a5qvaw1PT08cPHjQ6jncWLtu5hduhdMATVdU\nX375pSqob775xuK30xon4ty5c9K2exz+FhNJwWMKT5vToUMHi3XKiioyMhKKomDUqFF2xXMAgLNn\nz2qOi+7i4mItP26DvPLKK6qwfH194eHhoSbps5e0tDSh3pux+nnOysvLm29PpSiKzQwbtnoqa+W0\n9FI8+bWs8Sdg2ScLqPWVIoRIxbqorKxU7e1k6N27N1q3bo127dqhb9++uHr1qjrs++yzz7Bnzx7h\nuioqKuDq6oq1a9dqSrJAKa3nZVBZWYlRo0Zh7Nix0vVx0tLS4OzsLOSC4ufnB8YYfHx84OfnB19f\nX1VQCxcubKhY0xRVaWkpFEWpF6jFFN6TyYqKu3toeTPzhNqyaUkBwGAwWBTy2bNnpQU+aNAgEEKE\ngtaYoigKFixYgKFDh6pzSkopjh49ilGjRmHfvn3CdRUVFYFSiosXL2LJkiU2k/CZkpqaCkopvv76\n63p/KywsFP5tvvrqKyQnJ8NoNKK6uhqlpaWqAXZeXp7N8levXq1n/9irV6/mKaq9e/eiU6dODd4M\nHjJMdsiRnZ0Nf39/MMasCrYh+vbti6CgIJt+SXWJj4+HwWColwPJ19cXBoNBKpxWSkoKFEXBsWPH\npNKjArXCrhvtiDvohYeHo0OHDuqQzFbwlJqaGsTHxyM+Ph7vvPMOvL29hRd+fHx8kJyc3ODiiDVR\nlZSUqPPhGTNmYPv27Rg1apQ6+oiIiLA7u2OzFNX9+/cbnCv9+OOP6N27t6YgKsOGDYOiKNi4caN0\nWQCqNbYsXFRz5841+9xgMAh75AK1PfjAgQM1B5CZPHkyFEVBaGgoNm/ejNDQUAQGBmLlypUoLS1F\naWkpEhMTERkZKeoGocIXPETIzc21uspnrZ6hQ4fWi4URGBho5oISFxcn3nALNEtRAbC4jP7BBx9o\nmksAwPr164W8fBsiNzcXjDHpXgqoXXUzGAwICgpCaWkpgoODwRjD6tWrpRzsNCQos0hZWRmKi4tR\nXFws3dtZ4u7du6CUomvXrjbPtZa0r6ioCPPnz7fq2mPJh2vkyJHq3xctWoR27drZ5Z7TbEW1Zs0a\n9aZ16tRJ/f+XXnpJavwO/DPmXmJiolQ5TklJCXr37q0p/gKHz6l477Rp0yap8p06dUJAQAC+/PJL\nzW1wJEajEXFxcerDLRKrAwB27txZL/G1aUgwW4sla9aswZo1a2A0Gu32mm6IZiuq8vJydOnSBSEh\nIVAUBd7e3ujSpYumuRAP3qiV4uJidO/eXZOrOMdUVCdOnJAu7+LiYnfSakcxffp0NeBMdHR0vWVp\nWxiNRvTp0wft2rVTj5UrV0p7/z4vHCGqZu1PdejQITJkyBASGRlJTpw48TwuodPM4BlDqqurLf1Z\nd1LU0XEwupOijk5joItKEB8fH4fXefHixUZPUKZjzqlTp0hFRYVddbzQosrJySEffvghefXVVwlj\njLz55pskPz/frjqjo6M1+UKtWrXKrutyampqSHFxMXF3dyd//vOfybZt2zTXRSklV69edUi7GpuJ\nEycSDw8Psm/fPuEyRUVF5OOPPyZZWVl2PxfvvvsuURSFDBw40P4Ml6IrGs/5qMfTp0/h6elZz5Sk\nc+fOcss5JsTFxYEQghEjRkiXlXFtsAbfLvD19RVOCdQQsi4XpuTk5ODtt98WyqAiSllZmXTCNaDW\nyJkvq4tSUFAAPz8/s7js48eP12Rxz4Or+vr62gqZ1nSX1IFaE3wfHx8MHz4cT58+xdOnT9WbZ8lu\nzBbkH7H/4uLiEBcXh4yMDOGyDx8+lN4fs8Thw4dBKcXo0aPtrmvmzJlmIbFFMI2bOGTIEDCmLcuH\nKWVlZVi8eDGcnZ2hKAr69esnVb53796glGraWOdUVFSguLhYtbYRtacsLCzEZ599JhNLsmmLypQ5\nc+bAzc1NtSqWtQQYMWKE2jtxUREJJ8W33nrLTFTu7u6glOLu3btC5aurq7Fu3TqhZAQi3LlzB66u\nrpoiu7q6ugKwT1Q8BZGiKBg0aBCMRiMqKiqQl5cntUmemZkJSik+++wz6TZY4sqVK6rPmwi8d5Kg\neYjqhx9+UHuoYcOGCUVSrXcnLAhIRlRdu3ZVhXz69Gm4ublh6tSp6Nixo1D5n3/+GYqiSEfGbQie\n+UQWxhgGDhwIoDYbiBZR5eXloVWrVlAUBb/88ovZ3wYNGoSsrCzhuvbs2YOsrCy7zaWqqqpw5coV\nNcdV9+7dbZapqamBoiiyKXiah6i4oLZs2SLz5f95FxqYQ4mK6uLFi3BycgJQKyhT6wxRg1hrScm0\nxGW34UhntRw3kbp06RIYsy8NDefevXsYMWKEVI/Dk7Vp7bkHDBiguvHUnXeLeDAwJp9gDs1FVDU1\nNRg6dChcXFzAGMOCBQuE74C1YZ6oqLp3765azTs5OWHKlCnq30TMn7p3724xk6Gbm5tmI1nGGIYO\nHaqpHBfVrVu34OHhgdjYWOn5DPeuNTVulfHazcvLQ4cOHcxsIC1lE7FGcXFxvfNzc3Mxa9Ysod/F\n9KU0efJk9OvXD8OHD8fw4cOxa9cunDp1ylJ7moeoTOEZBEW9TfniREN/E4EHSuH/bxqfIigoyGb5\nuqI5d+4ckpOT4evri0OHDmkW1fr16zWVe/fddwHUTtJDQ0Mt+npZw3T4ZyoqGUFMnjwZlFJUVVWh\nqqoKX3/9db34GfYg0oubnjN48GD4+vrWS4vr4eFRd4W2aYnq8ePHQits7733HiZOnGjzPAAWh368\n9xL1u6GUqoa8Tk5OuH//Pm7fvg1fX18hN3jTH89oNIIQoqbiZIxJrwSmpqYiPDxck4Ft3WESP2S8\nfi0h2+NyUU2fPh2ZmZkoKytDdHS0VVGlpaUJvUx52ANbhISEYNu2bVbnc9999x18fX3h6enJP2pa\nosrOzsabb75p9cbNnz8fBoNBOGOfJfFY670sQSlVheni4gIfHx+4uLigdevWQuUVRUFKSgpSU1PV\nSD2m+Z1k5zQrV67E22+/LVWG8+uvv2LLli3YsmUL8vPz1bQ6WkWVlpamOk7KiIoHepk8eTIqKyvV\nEAr79+9vsMyMGTNsRrEqLi5W51q24JkYx40bZ3F7pbi4GFOnToWXl5fpAlPTEhVQm5Xe3d0d6enp\nePLkCZ48eYLw8HCztyqlFKtXr7Z50wBzUfEsiDL7U0DtnO6HH36Am5sbKKUYMGAAnj17Jlx+8ODB\nZkLq3LmzmWOdLIwxpKWlaS5vqT6TN3GD51haFPD29kZISIj0NSml8PT0RE5ODry9veHq6mozQhVf\nrfT398fy5cuRmJiIxMREPHv2DImJidiwYYPaLpmEcPfu3cOYMWPUsoMHD0aLFi0wePBgXL16te7p\nTU9UQG0iLksBOXr16oXo6Gip1TLeK/FDVlAvIowxHDp0SFOsQEvwZWhRHj9+bPc1L1y4gAEDBoBS\nKr2BXVVVhZiYGIwcOVK1orh+/TquX7/+W/hkCT3PL6Trx/79+0lxcTG5evUqycjIUJOalZWVERcX\nF+FKo6Ojyf/+7/8SQgjJyMgg//qv/+rAJjcOiqKQ4OBgcv78efKHP/zB7vr+5V/+hVRVVTXkP/TC\nUl1dTQoLC4m3t/dveVndn0pHx8Ho/lQ6Oo2BLiodHQfzuxFVUVERGTZsGGnfvn1jN0WnmfPCi6qk\npITMmzeP/Nd//RehlJL33ntPuo6ysjLSokULcujQIXL9+vXn0Ep5FEUhYWFhdtWxbds2Kc/hDRs2\n2HW93xPbt28nmzZtIj///LN8YdFlwud8NAjPJ2V6yFoTTJ06FQaDAUlJSVLlKisr4ezsjH79+mHS\npEmYN2+ew5ZtFUXBkSNH7KpDJA+TKePHj3dIAM3fA4GBgZYMl5vmPpUpjx49AqUUSUlJqK6uRk1N\nDZYuXSpk2s+5desWGGPCAR9NMRXyDz/8gLCwMFBK7bbsjouLQ0REhN2x/BRFQUREhPD5lFJN9wEA\njhw5oslj2hrz5s0DIQS7du2yu66HDx+qItCSYgmofYnGxcXBx8dHrauOJ3DTF1Vddu/eDUqp6ooh\nwty5c6VilpvCxWzKzJkzcfz4cU31cQgh9XyRZFm7dq1Fn6aGyMnJwZw5cyyagU2fPh3JyclWy5eW\nlqJTp07qZrGHh0e9Izs7W6gtkZGR9UYfWlixYgUiIyPrWXvcuXNHqh6eDZIxhpdeegl79+5FUFCQ\nJX+z5iUqbh9majUuUmbs2LEIDw8XOl+Etm3bIjU11a46GGN2WSZcu3YNbm5umDZtmvBwNDY2Fj/9\n9FO9zwsKCtRMIiJ88803CA0NVR/CsLAwTJs2De7u7sIJHLiQvL29kZubi9DQUMyZM0c6AcTQoUMt\nmlCJpNLhVFZWYvTo0WCM4c0331RHIc1eVPxH6NChg1nOXFtkZGSAMYYbN24Il2mImpoaeHp6glJq\n17xk0aJFmhwMTeF5mGTYsmWLRVG1bNkSlFJbAU9UysvL8fnnn5t9NmHCBLi5uQmJYsmSJaCU4v33\n31c/43EqKKX4+eefhdrBjXIZq82KyZNIiN6Xqqoq9fxp06bV+ztjzFIu5qYtqqqqKsyePRuUUnh5\neWHnzp1CN8uUjIwMGAwG3Lx5U80HZXqIwCP2mB5bt27VHAiGMctZFUW5fv06FEVBfHy8VLlff/0V\nPj4+as9WXl6O1atXIzExUXXB0IrMw7xgwQIMGzYMQK0rDE+qLTMM3Lhxo9o7rVy5EkBt1hDGGDZs\n2GCzPJ9/1U1vBNT6mQ0aNKih79O0RdW/f3/1RsuknDGFi6pNmzaqkCIjI9G+fXthUQ0ePBj9+vVD\nYmIizp07h1WrVoFSioCAAE1t0poelePt7Y3x48drTgs6atQo3L17Fz179gSlFNXV1RgyZIhdWTRk\nRHX+/HlERkbi3r17CAkJAaUUrq6u6iKQCK1bt1ZF9cknn+Do0aPYunUrGGMYMWIEbt68CaB2/luX\nmpoaTJ06FW5ubhbr5oJqIDRA0xUVTyIWHBxs8YuLwod/jDH1oeGZGO0dghUXF0t77WZmZkJRFM0v\niczMTLPvIkteXh6+/vprREREqIsKFRUVdnncnjp1Cowxqez0Tk5O6guTJ4DjArMFn//UnUdZ+n9L\ncU14rt+6XLt2TRVU3eGtCU1XVGPHjkWbNm3sTjXJeyqDwYDs7Gzk5+erq4GBgYF21Q2Ixagw5dNP\nP7UrcdsXX3wBDw8PzeUtYa+o9u3bh549e0q55Dx8+BAJCQlm82PR4d+jR48QHByMvn371hNScHAw\nJruUeQIAAAHsSURBVE2ahB07duDSpUsWI0XxMqYUFxfD3d1dFZSVCFNNV1SMMbz99tuYN2+exQRh\nooLgoho8eLAqLk9PT+FgnLb2o2QfRi1zIc4777xjd+9qCXtEdfToUTDG8PTpU7vbYc/SelBQkHDZ\nqKgo1ds5ISFBXeULDQ216nn8D5quqEwFNHLkSDXSjunxW5CWlgYPDw8MHz7cTGC7du2Cv78/hg8f\nLlWfPb2UoiiYMWOG5vINUVNTg3HjxmnKheyIYTSHUopWrVpJl6usrARjDB06dJAuwxjDxIkTZcKk\nNV1RKYqCMWPG4ODBg6Jf9rmxaNEiBAYGoqqqCu+++y4CAwNVwcvG7Gvfvr3mdrRt29ZmjAat7Nu3\nT9r8qqysTHOoNEtoXfy5ePGipjgbPJKT5PZI0xWVzosPT05uaYVNC5RSLFu2TLrc2rVrZaPM2oPQ\n86x7/uroiCPk+Wt43q0QRD5hlI7OC8oL70+lo9PU0EWlo+NgdFHp6DgYXVQ6Og5GF5WOjoPRRaWj\n42B0UenoOBhdVDo6DkYXlY6Og9FFpaPjYHRR6eg4GF1UOjoORheVjo6D0UWlo+NgdFHp6DgYXVQ6\nOg5GF5WOjoPRRaWj42B0UenoOBhdVDo6DkYXlY6Og9FFpaPjYHRR6eg4mP8PzGopVptDhV4AAAAA\nSUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAANUAAADMCAYAAADkmebQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXlUVFeex++9D2jWZpFhHQWkoYWWox49astoa1oPcmSC\nR9w1iQvxiLvGRCeJuydRsU0nio5G22WiOC6jiRPNcYvEiKhRXIMSMUgEtyCrLEUV3/mDea9rr/te\nlWKR9znnHbHq3Vv3Vb3vu9tvoQCIioqK42Ct3QAVlbaGKioVFQejikpFxcGoolJRcTCqqFRUHIwq\nKhUVB6OKSkXFwaiiUlFxMKqoVFQcjCoqFRUH86qICuqhHvYejDFkZWW9yM/g4lUR1QulW7duJCUl\nhVy4cKG1m/LKsHfvXkIpJSkpKa3dFLtpbGwkfn5+5NKlS2T69OmK6qivrycuLi6OaRCAV+F4oVBK\npeP9999HfX39i/5Ih9LU1ARCCCilWLBgAZ4+fQqdTqe4vrq6OgiCAMYYIiMjUVpa6sDWvnyGDx8O\nSqlddRw7doynDq77ubXFZFFUaWlpCA4OBmMMgYGB+OSTT3i/HwM++ugjUErx888/o6GhAV26dIG3\ntzd3+YkTJyIoKAiCIEAQBHh5eWHUqFEYNWoUMjMzMXHiREycONFqHVqtFsePH0enTp0QGRmJbt26\ngVKKhoYG7nasXr0aq1evhru7OxhjYIxh1KhRKC4u5q4DABoaGiAIApYvXw4AKC4uxltvvQXGmOy6\nRDZt2gRvb2+pXQsWLFBUjxIqKiqQkJCA6upqu+tydXW1dYpziqq6ulr6cRhjSEpKkv7u3r27rC+p\noKAAlFJ8/vnn0muVlZWglGLDhg1Wy1ZXV0MQBMyfPx/Pnj0zeK+wsBABAQHw8vKCRqOx2Gvcv38f\n/v7+WL16NQoLC/Hzzz9j4MCBoJQiKSkJGo1G1vXoc/78eTDGsGPHDu4yw4YNAyHE4AE1ePBgvPXW\nW7hz5w4YY1i2bJnVOt555x289dZbqK2tRUBAAFxdXXH9+nVotVpcv34dHh4euHfvnkm5uro6LF++\nXHo4iQdjDK6uroiIiEBERIT0APvss8+4rsneHkqf+Ph4aLVaa6c4p6h27twJxhgGDRqEvLw8NDc3\nIy8vD4mJifD09JT1JTU1NSE4OBiTJk1CUVERNBqNJKqgoCCrZYcNG4bevXubrTMwMBAeHh4oKiqy\nWseAAQMQFxeHiooK6bU+ffrYfSNs374dISEh6NOnD+7cucNdTryJ9W+c58+fS+IODQ1FTEyMxfLi\ndxcaGor4+Hikpqbi1q1b0vsLFy60+OD79NNPJSF16dJFOk6ePInvv/9eOu/rr7+GIAjYvXu3zetZ\nuXIlBg8ebPM8Hh4/fgxBEGyd5pyiopRiwoQJJlczatQouLq6Yv369Ta/IH2GDh1qMKcSj7y8PKvl\ndDodXF1dER4ejkOHDgFouWkYY3jy5Amam5tltUPkl19+wVdffSV7+AcA9fX1iI6ORmxsLPbu3Sur\nbHJyMoKCgqzOn5KTky2Kqrm5Ga6urqCUgjFm9vtjjNk113v48CG3oFJTU00eTmfPnkVGRgbGjRsn\n+7PHjBmDuLg4W6c5p6j69u0LxhhycnKQk5ODx48fIyQkxGBIaDwcs0THjh2lm3fQoEHIysrCt99+\nCy8vL0yfPp2rjszMTAQFBcHPzw+CIODy5ctc5SxRUVGBmJgYVFdXyxJm//79pevfsmULSkpKZH0u\nY4zrnI4dO5q8fvDgQbi6uoIxhqamJpP3f/31V0RFReGjjz6S1SZ9unXrBkEQkJWVZfPchoYGUEpx\n48YNAP9ciBJHM/Hx8bI/39vbG2+//bat05xTVOLwTzwiIiIMJuaMMWmSbQvxyzbm7NmzPJNSCXF+\nJQgCfvnlF+5y+pSXl+Pp06doaGhAWloaysvLZZW/ePGiwffi5uaGH374gavs06dPbQ5tjh49CkEQ\nzC66vP7662CMYfTo0WbL9ujRA4wxxauIt27dkr5fHnbs2IHOnTujqakJpaWl8PX1xYYNG6DRaHD2\n7FlFogoJCcG6detsneacogKA/Px8REVFScd3332Hmpoa6HQ6ZGRkcD11AcuiamxslD2vEQQBAwcO\nBGMMjY2N3OX69u0LSin8/f3Ro0cPREZGwsvLy2AompmZKast586dw6lTpySBVVVVWT0/Ozvb6g1b\nV1cHxhhOnjxp9v2amho8f/7c4nuMMWzevJn/AvRwd3eHIAhYsmQJ99CREIKTJ0+ipqZGGoloNBrM\nnj0bXl5euH79uqw2NDc3w9fXl+eh4LyissbmzZvtEtXz588xfvx4RaKqq6tDr169kJ6eLmvuMHPm\nTIPl6hkzZoBSCnd3d+zfvx+PHj2S1RaRrl27gjGGhw8fWj3PlqgOHTrE/Z3qU1tbi6SkJAQGBsru\neQHg9u3bIIRw91Ai4nwqNDQUlFJ06dIF/fr1A6UUvXr1kt2OCxcu8G4DtG1RVVZW2jw3MDAQlFJo\ntVpUVVUhOzsblFJJIHLo06eP9LcgCFixYoWs8vqUl5crWqgQycnJQbdu3cAYQ2Jios3z8/PzTW7c\nBw8eYOnSpRAEAb6+voo2xMVFCzk9t4i4X3bmzBnZZQFg+fLlWLhwIcLDw7Fw4ULF9QAt8znO62+b\nogIALy8vMMZsrtY8f/4ciYmJBkMtpb1Chw4dpL8FQUD79u0V1QP8c6ItR1Rr165FcXExXFxcwBhD\nTEwMampquMsnJSVJS+ri/GXOnDmyHy4i48aNQ1RUlKIe6p133oEgCHj8+LGiz3YkGo1GTi/ddkU1\nZswYaT5hi+fPn0vDgk2bNsn9KAlBEHDo0CEsWLAAgiBg5cqViusqKSmRJarKykqDBYrjx4/b2qQ0\noaamBnv37pVEJXdJ3hh/f3/MnDlTUdlevXrJHvK9KOrr6+Hm5sZ7Otf9TAFu49sXySvRCGvU1dWR\nDh06kL/85S/kv/7rv4inp6fiuvLz84mPjw/5wx/+4MAWvjx0Oh1xc3MjOp1Odll/f3+yZMkSMmfO\nnBfQshcO5TpJFZXKy+LixYskNDSUtG/fvrWbohRVVCoqDoZLVL8JfyoVlZfJb1ZUK1asaO0mKObB\ngwfk/v375N/+7d9IYGAgSUxMbO0mkWvXrpGffvpJcfm6ujryl7/8RXa5jRs3krS0NEIpVyfycuBd\n0XjBx0vHw8NDcdmdO3di586divZ2fvzxR4wePRqUUslNW6lxLtCycckYQ25uruI6HMHVq1exceNG\nxeXF/ccff/xRVjmi5+6elZWF27dvK27DjBkzsGjRIqsfx3O0tpisiio/P1/aXzpy5Ajvd2OT27dv\nyzINKi0txdq1a+Hh4WHW4t3FxcVmHc3NzZKVu/ExePBgm0vkT548sbinNHToUMn37GXi5uYmCWnF\nihUWTZl44N0iMUa0yhg2bJj0fx6jXGMWL14sOcRawblF1a5dO8liOiwsDM3NzaCUol27dtxflEhA\nQID0t7iBykt6eroknqioKMTFxSEvLw95eXm4du0aVx0XL15EaGio5Cemv+k5efJkMMYsurTo2/gx\nxlBQUGByzqNHj8zelIWFhWYfAuYOueTm5hq4f7QMepTx9OlTMMZ4rMStIvZYSnorR4rKQZEuHEtz\nczP53e9+R/Ly8si7775LNm3aRCilZOvWrSQ9PZ1UVVURX19f7vqqq6ulv1etWkUCAgK4y3733XeE\nEELGjRtHtmzZQjw8PPgvhBCi1WpJamoqefz4Mfn9739PDhw4QH7/+99L77/++utk+/btFss3NjYS\nQghxc3Mjnp6eJCIiwuSc4OBgs2VPnTpFQkJCyKhRoyzW/9///d/k0aNHvJcjMWHCBHLr1i3p//bM\nad544w1CCCHp6emK69i4caPisoQQUlNTQwghJCgoyK56CCGvZk81b948VFZWora21mTIk5aWxt3T\nVFVVYcSIEQamNGFhYdy2amvXrjV4mru5uVn1jDXH559/DsYY/Pz8zL5/69Ytqz3V0aNHTbx1zaF0\n+JScnCyrp9LpdBg/fjy+/PJL6bWcnBzF3sz+/v5cRsHGiMM+40McBspFNOGy4c3tvMM/Sz/QsGHD\nQCnl9oWilCIjIwOVlZW4c+cOunTpgu3bt6OhoYFr/P/hhx+aHSq5ublx27yJQz5L7hmMMYSHh1v0\nRBaNVq2RmZmpeE4ld/hHKTWIcVFcXIwzZ84oGv6dPXsWhBD069dPdlkAFgUkd06Vk5MjicoGzisq\nX19fk6upqKgApRRvvvmmLFGNHTsWnp6e0s1z5swZbreN58+f49atW9Jx+PBhdO3aFZRSdOrUyWZ5\nca5jzc6OMYYhQ4ZYvQZrP7ZWq4WbmxsYY7LiVejXzysqMbrVvHnzsHz5cgQHB8Pd3R2+vr6KeqqA\ngABQSvH06VPZZa0hV+A5OTlgjPGUc15RPX36FJRSJCcnw8/PD5RS9OzZE0DLjZqcnGzzi6qrq8OC\nBQtw9epV6HQ6UEq5PYZtkZKSAkoppk2bZvW8H3/8ET4+PmbfmzlzJteQjfx/5NXCwkKT995//33F\nwz4RSqnFoak+Yhiz4OBguLq6Ijg4GHv37sWKFSsU+adlZ2fb1W5rKBGVIAhYvHixzap5jtYWk1lR\nAUCXLl2k1b4DBw5IsREyMjJsBm0xpr6+HpRS2eN2S4hhxr7++mur51kTlSiG8+fPW61jy5YtYIzh\n4MGDqKqqQlNTEwoLC3HlyhWpjps3byq+FkopRo0aZfO88vJyabXTWOByRXXjxg14eHiYjVbFg7XV\nPXGuJYd58+ZBEARcunTJ1qnOLSpzbNiwQdEww93dXZbvEdCywbtv3z6cP39eOtq3b28wt7IVgObH\nH38EY8wgSIt+D8X7pDa3t8UYw+HDh2Vdkzl4RWUNuaKyt3cVFyTEuVNWVpZBDHW5tGvXDiEhIVwf\nzXO0tphkiYpSii1btvCeblBOLvPnzze7SCE+YZ88eWKzjubmZml1y9PT00AQcv2hunTp4pCeyRhK\nKXJycuyqgzGG8ePHc52bkZGB0NBQxdFwAcsrf0otKjw9PR3qTv9K7lOZQ6PREMYYGTx4sOyyGzZs\nkF1m3rx55MyZM2Tu3LmkoKCA/Prrr2T48OHEz8+PdO/enasOSin5xz/+QdLS0khDQwMhhJA///nP\nZPTo0UQQBFntuXr1quxreJlER0dznTd16lQSERFhdr+Nlz/+8Y/k9u3bpFOnTiQrK4ucOnWK/PWv\nfyXTpk1TVJ+HhwcJDAxU3B5jnMb14z//8z/Jn/70J9K3b9+X0Z7fDIwxcubMGdKvX7/WboozoPpT\nqdiGMUZmzZpF/v73v7d2U5wBVVQqKg5GdVJUUWkNVFE5MQ0NDeS1116TjH6dicbGRpKamkpKS0sN\nDJ7bAqqoONm1axdhjBHGGJk0aRK5e/duazdJgtdCXKvVkvr6evLrr7+StWvXkrVr15K///3vRKvV\nvuAWGlJUVET+/Oc/kyNHjpD27duTTp06vdTPf+Hwrr2/4MMqe/bswdSpUzF48GC7/Hb0Yawl6bK1\nIP9vvvmmxY1XuZuXGo0G7du3h7e3N2bNmoXdu3dj5syZ8PLyUnwNb731FgRBMJtkzRhrvlTu7u7c\nnzl06FDJWVPMqrJ161bu8mIc+/DwcAAtzpcNDQ0ICQkBpVR2Irz8/HzU1NTg4MGD8PHxASGE2wF1\nx44dJr+pmMZJNFLu0aOHfpG2sflL/n9jr6ioyG5RlZaWGqSkYYwhNTXV4vmJiYlo3769ZHdYVVWF\nlJQU2aLq0KEDGGNmPXftsSwQ28HjykIpNXCOjI2NlYx1eTfHV69ejXnz5plYp7i4uHBb7e/fv9+q\n2721tpSWlppkYtQ/hg8fjtjYWK5AnWJiBcaYFBZBDE2gfxilxXV+UYkiEt0miEIzlPz8fCQkJBg8\nnfv372/ThrCyslLKgqjVag3yZMnJ6kgIsWgJotQP6fPPP4cgCOjfv79Nq3vR9lGf2NhYLF26FKdO\nneJuw2effYbw8HC89tpryMjIQHZ2NkaNGiXL0j00NNSq201YWJhFq3VLolq9ejXKysqg0+mwZs0a\nWaLST2igHwmYMYZTp04Z95zOLSpzvZJcQdXV1SEqKkp6GjPGFGUvNM6Z5enpiX379nEFfqmpqcGY\nMWNMXn/8+DGio6MVmetkZWVBEATExMRwu3tQSnH48GGTIDODBw9WJOyLFy/i4sWLUlx43jpsnafT\n6RAWFqYozrpovmTu+zZGFJU4UhEzqIj+bxZwblEZExUVZTMPkzGikBhryZg+aNAgeHt7o6ysjKt8\nYWGh1TkVY4zL2ZFSisDAQMydO1fyLKWUYsmSJbKuB2gZgpL/dweRw/79+6WbX8yZRQiR/h0+fLjs\ntgAtycIZY9zxOnjERynF6dOnZbdFdDTkSbqgP/zTP2zM6dqOqIqKihQN+wgh6N+/v+Q28vDhQ1BK\nLSY3M0bfvSIsLAynT5+WHBbXrVsHxhiOHj1qs55Vq1ZJaVfd3NwwYsQIdOnSRVHGjUGDBoExpijA\n/5AhQ0wWKUQLcyVuGE1NTZg4cSJGjhzJXYZXVPv27ZPVlqKiIl7vXQAtxs6ffvop4uPj5Sw+tR1R\nEUIQFRVl6zSb7Ny5E35+frKHFk1NTSZxMXQ6HRhjBnmreJk8ebJBVndexBsnLS0Nd+/elV0eaFkx\npJSitrZWmouJTpxy0+KI+b9EdDqdzfStPL27h4eHLN+3qVOnSqKQO5weN26c2dU/C7QNUYnDnXPn\nzvF8R6ipqTF7w/3888/w8fFBeHg4qqurueoSaWhoMHiK6XQ6jBw5Eowx5Ofny6oLAL744guL+XMt\ncefOHWkJfe/evYoSrR0+fBiUUrOhwOSKqrq6GpRSgzxdxcXFNkXVvXt3nDp1yuL7Dx48MF7Gtom4\nYPHuu+/KKtfU1IShQ4di7NixWLJkCQRBMMhDZoa2ISq5w76wsDBQSjF79mzcvXtXOsT5g5Kosnfv\n3pV+MP15VlRUlOx9FaAlYMm3334rq0y7du2k3LhKOXjwICilJje1VqsFpVTWnNXV1RWfffaZwWvt\n27e3KSpRjMYhEWpqarBlyxY5uaIAtMRFFAQBkZGRssoBkPJHP3jwAGvWrLG1SAG0BVFNnTqVu4cy\n5tq1a5g0aRJ69uyJXr164aefflJUD9DSy+kPEQRBkP00FamsrLQVsNEEMTCJvUPg2tpaKbPka6+9\nhiNHjkhzq9DQUO56jh49ajZMQHR0NFf5Bw8eYObMmQZzu+TkZHz88cfcbQCAr7/+GowxxalJxWGj\n/sqfDZxbVOfOnXOI9YRGo1HUm+gjDv/EhYYPP/xQcV2jR4+WvXKXn58PxpjsYas5fvjhB7NWFbxz\ntJ9++gm+vr746KOPTN578803ZbXl2rVroJRiypQpssoBLdkoIyIiIAiCtJcoFzH+x29moULOPMpZ\nePbsGYKCgmRvDbxKrFmzxmIwU3vd8uUgbgTLnUcZU1BQIPV2HIkiuO5n1Z9KRYUf1Z9KRaU1UEWl\nouJgnEpU9+7dI7/73e9auxlOy/3794kgCMTFxYVMmzaNlJWV2VVfWloaqaqqclDrWpcHDx6Q3bt3\nE0EQZEe6MoF38vWCDy42b96s2KrbHkQr78jISMTGxmL9+vVYv369rAyI+jv9Op0Os2fPfhFNtYm4\nJSDHTs4SlFLcv3/fIe06fPgwUlNTER0dbXVz2BxLly5Fx44dsX79esUZJQcMGCB9N1b8y5x79c8c\ncjNUOALR8LJDhw7Yt28f9u3bh8zMTPTs2RMuLi7chp/6e1NXrlyRHbpa5P79+wgODgalFKWlpbLL\n19bWorGxUXLAFATBVkpOi1BKERERoags0PKwEsWdmZmJ8vJym5vHxixbtky6jpiYGAQEBMDNzY3L\ncVNEdFbk2GdrW6IqLy/nEtW4ceOQmJhosPcQHh4u/S03nrooKkvL+1OnTpUMdi1RXV1t4OF75coV\nHDt2TFY7AODmzZvSdXTo0AG9evWCj4+P5EQpF41GI/VaShAt3JVCKZXsDzUajaxUQHv27EG7du3A\nGDOJgT579mwEBgYahNu2xPbt28EY44o4jLYmqhkzZoBSioEDB1o9T98nRkwjWllZibNnzyI8PByz\nZs2SZTcnimrmzJncZYy5cOGCwcNAiahKS0ulFKdhYWHIzs7G3/72N+l6J0+ejKtXr8puW0hIiOIN\nVHtHDvox3NevX88tUI1GI/VOKSkpZt8XBAHz58+3Ws+dO3cQGxsrZzO+7Yhq5MiRoJRi5cqVdmVy\nFz075Vgyi6Ly9/dHSUmJolxKycnJCAsLk/5/5coVbv8j4J/mOIwxnD171uC9nJwcuLq6gjGmKIvg\nmDFjIAgCvvjiC9ll7RFVc3MzunXrBo1Gg5KSEvj7+3NbjIhmRebymInY6oGbm5uVxBppG6ISU1/K\nNbQ0hyiqn3/+mbuMJWc2fZHYglJq4He1ceNGXLhwAeXl5VzWFZRSxMTEWLQiP3bsmM1QA2VlZdL8\nRRAE9OzZEx9++CGSk5PtGv4pFZVOp8PVq1cREREBSin3wzIqKgqJiYlWz8nNzbUpGDG3l769YVNT\nExYsWCANK820qW2IauzYsaCUKjZg1UcU1dSpU7nLaLVaLF++HKNHj0ZhYSE++OAD6QfjNTeilGLh\nwoWYNGkS4uPjpQyClFKbsS5Ez9qDBw9aPY/nJtIXlfHfSrB3+Nfc3AxKKQYMGMB1/tOnT6XhqjXi\n4+NtXldqaipCQkIkT+y8vDwkJSUZPDjNZGZxflEVFBSAUqrIoc8SckVlDvHL//XXX7nO/+WXXwwE\nGB8fzy3I2bNngzEGHx8fdOvWDYMGDcLKlSuxYsUKdOjQAaGhoYiNjYWXlxdmzJhhsZ4xY8ZIbg1N\nTU0Gq3+tJSo3NzeUlJRw59lKTEyEIAjYsGGDwetnzpxBRkYGoqOjpevZsGGD1d9nypQpkrPq+fPn\nJSGJi05ffPGFufvEuUV1584dydWbN0evLcQJ7ssWlTGzZs3iFpXoDGl86Mff4IkR8fnnn0vzrpqa\nGmzcuFGKdSHXal7EHlEdPHhQcjfhFZX4EBCzTz548ACrVq0yeDgIgoD09HSbdfn4+EgeyAMHDkSP\nHj3w1VdfSe+/8847WLp0qXEx5xZVaGgoKKVcy6K8iMO/HTt2cJe5fv06vv/+e+n/+nMsuYnbROLj\n42Wdn5WVhejoaIP5XLdu3fDtt9/Kmh+mp6ebDP/Gjh0rJaaTi1JReXp6omPHjgBa9u94A/FMmzYN\nPj4+ZoexMTExmD59OqZPn85V15IlS9C1a1fJrcaYNjf8u3fvnkW3b3tQsvonDr327t0r3XxxcXGy\n4znoI1dUjiYzMxO5ubnSk1qj0cDHx0d2z6tEVPPmzcPNmzdRWlqKzp07y97ArqqqwoQJE9CxY0fE\nxMQoCmcgot/THzhwAAcOHICfnx8YY1i+fHnbWqi4d+8ePDw8pEmko6isrETPnj1lmeaYG3rZI6ia\nmhqLybWdDSWimjVrFoKCgkApxRtvvPGCWvbC4Lqff1P+VLdu3SIASOfOnV/Gx6m0PVR/KmOePn1K\nQkJCWrsZKm2c31RPpaJiJ2pPpaLSGqiiagVqamrI8uXLSXx8PPH39yc6nY67bH19PRkzZgz505/+\nJCWhay3Gjh0rOfUJgsCdCK+hoYGEhYURxphU9vr163a3549//CPJzs62ux674V3ReMGHAadOnZKC\nX+ofSkNRAUB2dra02bls2TLF9dhLVlYW2rdvb7CaKGcpe+7cuSYbv61BYGCgyaoob2zFxsZGJCcn\nY//+/Xj+/DkuXboEFxcXu1d7KaVmQ6c5EOddUp87d65Z/xalFuozZsww2DDUD1XMg1arNbmJQkJC\nZNUh2vCJ+14icXFxsuphjGHlypU4ePAgVq9eDT8/P1nl9cnMzJSyIsoV56lTp9C7d28cPnwYYWFh\nYIxh/Pjxsttw584d+Pv74+LFi7LLGkMpxa5duxSVbWhowJ07d/Dhhx9i8uTJljaRnVdUQIsZiS0j\nUl70QwLLtXXz8PCQzIJyc3Nx8+ZNyfVajk2imNBAic+TSG5uroF36oMHDxSFOwYgWWh8+eWXmD17\nNt5//33F7WKMKfIiqK+vB2MM/fr1U/zZIjU1NaCU2vSobmxslMzfxEN/VOTv7y+lSjWDc4tq9OjR\nDtsk1X8Ki70Fb4hh8ct+9uyZ9Nrq1atBKZUVD/3777+3+3pqamoMesgBAwbAw8NDdj0VFRWSjxgA\nREREKMoHBbT0NIwxdO7cWXbZ1NRUjB8/XlF8e2O2bNkCV1dXm+eJ4tM/+vbti02bNuHYsWOorq7G\nggUL4O3tba64c4uqtrYWbm5uKC0tBaUU3t7eaNeuHdzd3WUZ2GZnZ0vpbrKzs6WeatWqVTbLjhkz\nBmFhYXj06JHB6+KcSA4jRoyAm5sbbty4odhmEGjpYcTh2oEDB2QbGz9+/BiM/TOdjfjUVsJnn30G\nxhgSExNlR90tLi52WLyRO3fuQBAEXL9+3e66VqxYAUqpJYdJ5xYV0OIDtGLFCoPXtFqtrARljDHs\n3LkTQEv87ZqaGlRVVXGJavTo0YiLizNIaSpmrVByQxQXF6NPnz5gjOGjjz5CZWWlrPKXLl0yGK7I\nRRzyrVy5UnJxaNeunaK6ampq4O7urmihRIwh4ijc3NwcJlBKqbXpgfOLylJ+XjmiIoSYRNapqqri\nGv5Nnz4djDEsWrQIDQ0NeOONNxAQEGDXqltdXR0WL14MxlqyTfBSUFAALy8vadjGGLOYnNscxsH4\ne/TogfHjx0vzRR6qq6uxePFiLF68WEq0oOR78PHxQadOnWSXswSllDvjiDXETJtvvfWWpVOcX1SW\n4BWV6Guj7x5RVlaGkJAQrp4KAIKCgsz6L8ldQTRm9+7dYIxxW2kb38DHjh0DYwx79+61Wq6kpESK\nJqUf9Umn06Gurg6MMcybNw8HDx60OiytqKgwu4zOGENaWhpqa2u5rqO8vBzDhg2z+MD89NNPERcX\nB8YY1yK3LaDNAAAgAElEQVRMp06d4O/vL7vXN6ahoQHt27fHpEmTrJ3WNkXV0NBg4vlpCTEOgb6o\nFi1aBEEQuG/mkpISrFu3Dh06dMD06dPx7NkzUErtXrF68uQJGGPIzs7mOp8xhq1bt0r/502PKgpq\n+/btFuvlydbR2NhoIqb4+HgpnkPnzp25Uhb17NkT+/fvN3jt3r17mD59ujSsTklJwaFDh2zWJbbf\nEZ7h8+fPB6XUlluQ84vqyJEjBv8vKyuTNXZmjIEQgpqaGoPXRAc5JYgJtJUEshQ5ffq07KGTeP4n\nn3yCwYMHc2/+zpkzx2KASjFKEw8pKSnS5+nHMNRvG8934unpiXHjxmHhwoWglMLHxwd9+/bF8+fP\nLfZeltBoNA6ZS4mxMji2WpxfVDNnzpSWW69du4YOHTrIitkXGRkJxhh69+6N5ORkxMbG2uXUJi7H\n8kQ/DQ0NRVxcHN588028+eab6N+/v3TzBQYGyvbJEvfG9Ieic+fO5R52mSMhIYHbAuGLL76Q9rWM\nmTZtmiyLikePHpmsqCrBUaJKS0tDUFAQj8WO84vqxIkTCAoKwowZM+Di4iI77ndpaSkCAwOlZXQr\nE1AuDh48CMYY140srrS9/fbbWL58uXTk5OQoSvpWVVUlLWG/88472Ldvn5JLkGhqakJsbKys+IOv\nIkqD1uhjLg+yBbjuZ9X1QwYXLlwgffr0kWUA+6ry7Nkz8oc//IHcvHmThIWFtXZzWo0TJ06QpKQk\n0tzczHM6l+uHKioVFX5UfyoVldbgNyOqR48ekYiICPLJJ5+0dlNeKZqbm8l7773X2s1oUzilqLRa\nLREEgRw9etTs+8bj448//phs2rSJ3L9/n8ydO/dlNNHh/M///A+hlBLGGElISCDfffcdccTQ/U9/\n+hMpKCiQXc7V1dUxWQfbIE4pqh07dhBPT0+LE+zq6mqT8//93/9d0Wf9+c9/JgkJCWTZsmVk6NCh\nZNmyZaS+vl5RXfZw+vRpwhgjlFJy//59kpqaSv73f/+XaLVau+q9e/cueffdd2WXa25ulsr9+uuv\nsstTyjU9cU54lwlf8GERYzOc6upqE5Mba5w8edIu481t27ZJBpv6hyN8gOTw4YcfYuXKlSavx8TE\nKKovNzcXlFJF5j0jR46UQivv378fY8eOle1Aeu7cOURFRVlMpvcqUFtbi1u3bknhqdEW9qmWLFmC\noKAg6f9iIHleE5bGxkZMmDDBIDWoIxCFxXsj7d+/X8pEIXof25MYQKShoUFxelBKKdatW2fX5wNA\nfn4+FixYoLj8nj17MHjwYOzZs8fqeWKGlOTkZMyfP9/sMWDAAJP8XTzk5eVh6dKl6Nevn+RaQynF\n9OnTsX//fv39UecWVXl5OSIjIw2cxbp27QpBELiTg4lhnpU64FlCjuuH2LOKIvLw8MCcOXOwb98+\nm2l0bLFw4UKDhw4vVVVV8PHxkW0WZKkNjrC9IzayKObn58PV1dVkxECMYpkosX7XH4n0798f/fv3\nN7FPFJvJc7S2mMyKSqPRSC4W4jDv6tWrEAQBvXr14v6yRAe8u3fvcpfhQfzyeSgpKYGPjw927dpl\nYomxadMmnDlzhvtz16xZg6SkJAwcOBAJCQlITk7mNg3Sx9PT08AeUimi168c0zFz7Nmzh9sT2xqe\nnp6yzZYaGxtBKcW0adN4rsN5ReXl5YWgoCB89913AFp6LUIIkpOTAYDbXEnMwSSKSqfToW/fvmCM\noW/fvrK9ZrVarZQq1ZLVNy8//fQTvL29uSNEVVRUYPTo0Rg9ejQ2b94Mf39/Ral8amtr4eLiguzs\nbISEhEhPf14WLlyI0NBQbNu2DYwxuLu7y26DMYQQRaZbxmzZsoX7WvLy8jBmzBgey3R9nFdUgiAg\nKioKubm5yM3NRceOHSVv2QULFmD37t1c30C3bt0MRPXTTz8ZWHfL7cEKCwtBKUVoaKjdcRW2bNli\n15yqrKwMc+fO5XK30GfPnj3IyMhAWFgYKKX4/PPPuW9EMZPhjh07pO8wMzNTSfMlPv74Y7sy3Ouz\nc+dO7mtZtGgRBg8eDEKInEUW5xXV5cuXMXz4cKSlpUlzkS5duuD8+fOynmgDBw6UYjmIlt3FxcVS\ndkK5wvDx8QGl1CFzNEEQzCUVkwVjjDsfk0hiYiIopRg7diy++uorUEoxevRorrLe3t7QaDRSFCTR\nlyo3N9dA3PX19ZYCp5hACLG5SMFLeXm5rF5Xo9GgoKAAM2fORGpqKk/sEOcVlT7e3t7o06cPCgsL\nbV2wCUePHjVxlxg2bJiiGHWiL5ecVT9LaLVaMMaQlZVlVz0TJkzgntuJTJw40WCSv3jxYu75FSEE\nOTk5CAsLQ0hICEpLS6VMj3379sWUKVMwZcoUREZGol27djbrq6qqQlRUlEOGfoA8URlfsyAIPEN6\n5xfVDz/8AEEQcPnyZVkZA/URw3GJosrMzJTty3P27FkQQuDm5oaCggJF7RCpr69HREQEbt++Lavc\n/fv3TV7LyMhQlGCcMYanT5/KLpefn48hQ4Zgzpw5Ju+dOXMG3377Lb799lvuva+pU6c6NAeZHFFR\nSpGdnS31sI2NjTzh3pxbVNXV1ejcuTM8PDwseq6+aMTwaJRSJCUl2d1DAS0reHLnUosWLTKYC7q4\nuEiRjOxJQNfaREVFObQ+MdLW8uXLbZ47YsQIk+PAgQO2ijm3qOrq6tC7d2+HbFAqRRwqiVndHQEh\nRPaGbXNzM6qrq7FhwwbExcXhvffeQ4cOHVBbW+sQobcWU6dOddjQT2TDhg3IyMhwaJ16cN3Pqj/V\nSyY4OJgUFRURb2/v1m5Km6S2tpb8/ve/53U6lIvqT/WqcebMGfK73/1OFdQLxNvb+0UJihu1p1JR\n4UftqVRUWoPfhKiamppIx44dSXR0NHFxcSEuLi7km2++ae1mcdPY2Ej+9V//laxcudLhdd+4caNV\nszHayz/+8Q+SkpJC5s6dSy5dumR3fb/88gsZOXIkoZQqz8rIu6Lxgo8Xypo1ayRL8ZSUFKSkpDgk\ntJU1bt++jaysLAwbNszuuo4ePYrDhw87oFWmiPHZ5YZ/e1XQt1C3NxQ3AIMslxcuXDB+2zmX1K9d\nu4ampiY0NTXh6NGjSEhIMDH3p5SiV69eSE1N5fqi8vPzcefOHYPXlIqqpKQEc+bMsRkdlrTMEw2O\nYcOGISsrS7YlhSAIdgXNtMTHH38sxRG0hkajwbBhw/Dee+/h4cOH0Gg0BkdOTo5ZB0pbCIKAnJwc\nJCQkKL0EfPbZZwBa9jWViqq+vh4pKSkICwtDx44dERkZiW7dupnbrnBOUd28eVMSjre3N3bs2IHy\n8nITT9/y8nJLPi9c8Ijq6tWr8PT0RL9+/RAREWHiYGirDrGnEv81JzR72jpq1CjJ8VEuly9fBmMt\nGRB5rLRra2tRUFCApUuXYunSpRg0aBA6dOiAoUOHglKKiRMnyvr8cePGSdYMnIEszaLRaPD222+D\nUirb60CkZ8+e0kNSo9Hg+PHjGDFihLlTnVNU9+7dA6UU+/btk/L+XrlyBVeuXFH0hVmCR1T9+vWT\nxNOvXz+kp6ejtLQUBQUFiI6OVtTbGYtLaVs//fRTqW2xsbGyN8lFFxgbWS64oJSipKSE+/xbt24Z\npDO1R1STJ09GYGCg4pzBTU1NYKwlD/PMmTMBoG2KqmvXrsjKyoK7uzsopZgyZQr69+8PPz8/u50O\nq6qqIAiCTUPUQ4cOQRAEfP/99ybvderUCYIg4MSJE7I+W19McoaAxqKaP38+GGOSVbVOp4MgCCgr\nK+Ou054cW/o0NTUhIiJClsW/mJu3pKQE9+/fV+S9nJeXB0qplNBPCWKyCX1nWJ1Oh969e7c9UQUE\nBFj9wiil+Prrr/m+OSN8fHzsWqQQxWac+YKHrKwskzkWD8btFQQB7777rslrvKIShztDhw7la7gV\nLly4INtSXownceHCBWmoL8NRUKK+vh6pqakIDAzEmDFjZJc351cn+ty1OVFRSvHjjz9atGsrLy9H\n586dbfq/FBUVYdy4cRg/fjwqKipw/PhxeHl52fV027NnDwRB4PZBMsYRcypBEPDFF1+YvMYrKtEY\n1xGxJWbOnKnIheX48eOglGLChAk4duyYNNSXS0NDA1JSUkAplXU9ok+YcQ7puXPnSimLzOCconr4\n8CHX8jGlFG+//bbF97t27Yq0tDTs3bsXWVlZDoliRAiRnm5Knqz63L59W5pf2aJTp04GN66vr6+B\nqNasWYP169dzfW5eXh4YY4qe7MbU19cjKCgIjx8/tqsee+ZU+lBK8f7773OdGxsbC8aYyVzUxrDY\nOUXFS8eOHa3GR9D/Ys6cOWMgCN7sgebqFJ3Z5Kw0iXtW5l4nhNj0rZo8eTKWLFki/b+4uNggAA5v\njwe0xA90lMuImK/rVRJVSkoK17nGotJqtfjggw/apqiqqqrg4eGBoqIiqyG0PDw8LAa0LCgoQExM\nDLZv346uXbvCy8vLxHGO98kusmzZMikNp1wsDfXEnorHYVEQBAQGBkqbtDdu3EBISAgEQeCO2VFe\nXu6wBQrgn6Kyl7lz59pVvrq6GiNGjIC7uzv3KqQoqrFjx2LUqFHS99KhQwdrGSGdU1RAy1Ojffv2\noJTCxcUFmZmZ+OSTT1BeXo4jR47Az88PqampVkNKifs3GzdutPrl8iLWp2Q+JvZIljaEeWhsbERm\nZqY0fPXx8cHhw4dlxe7bv3+/waqhvSxevNghopK7rN+7d2/Mnz8fffr0kSwp1qxZI6uO5uZmg5FL\nu3btcPz4cVvFnFdUQIuT4hdffGE2gCKl1O5oRnIQl+EXL16seIMRgFlRvUzEnspRoho+fLhDRDVg\nwABZ5xO9AJr29HI7duzAkCFD0KVLF94QAFz3s+r6wcGTJ09IWFiY3ckA2hqiIa69/ktDhw4lhw8f\ndkSTXjRqJkUVFQej+lOpqLQGqqhUVByMU4hKp9OR2tpaKXPftm3bWq0tP/74o+ToeOPGjVZrh6NI\nS0sjf//73+2qY9euXWTXrl2koaFBcR0nTpwgI0aMIGVlZXa1RSlvvPEGoZQSLy8vMm/ePPsq413R\neMGHVUQrAF9fXyxbtgzXr1+3uUyj0+mwfv16rF+/HpRSvP766+jcuTOampoUh/UqLi6Gl5eXlBJH\nKUVFRQ4JIllRUYHw8HC76mCMKc7ftWvXLoSEhEjL0koMY0XCw8NBKbXp22XMo0ePpGi7I0eOlL2y\n+fDhQ/Tu3Ru+vr6YOHEi1q5da21F07mX1EUKCgokvx85iD+0q6srgoODERwcDDc3NzDGMG/ePFl1\niYh7Vd98842i8kCLoIiC5XRzn/vs2TOEhYUpbkt5eblsB8GmpiZkZmZK36+Pjw8KCwtRWFgovZaU\nlMRdn/FWCS/FxcUGghaP3Nxc7jrGjh1rkiRu4sSJ1ix1nF9Uq1atkpWK1BbiD88TwdSYgIAACIIg\n2xnPmD179oAQIqununjxouThasykSZMUewVHRUXJFlVFRQV69OgBxhhee+01g2CY9+7dk2WxERMT\ng4ULF6K6uhqxsbH47rvvuGPVFxUVIT4+3uAICgqS4uXLRaPRYM+ePSbW/0Y4v6i6d++OoKAgh0Rh\nvX79OkJDQ8EYk53Xqba2FoIgICkpSXbqGmOioqJk91LBwcEWM41kZWUp7jkppdixY4esMqJohgwZ\nYvV9WzQ1NYFSivz8fACQ8nRRShVvTn/22WeKRTV8+HB4enra+mznFtXjx48RFRWlOOPf559/jujo\naJPhAWMM0dHR3EagZWVlCAoKgiAIOHnypJS7VxAERckB5A79jh07ZjUtTVJSkiJRpaenyxZ39+7d\n4efnh/fee8/iOYwxm2lX8/LyIAgCtm7davLeG2+8ITu1zoULFzBgwADFdo1du3blTb7n3KICWn5E\nJaL66quvDETUu3dvyaxp//798Pb2BmOMy+TI19fXwG2EMYaioiI8evQIjDE8f/5cVtvkiOrQoUNw\nd3e3auOoRFRarRaEEEyePFlWOcYY8vLyLL7v7e0NLy8vm6Lw8/ODi4uL2fcGDBjAJapffvlFCgmg\nf3zwwQc2y4qUlJTAzc1Nzm/o3KL69ttv4ePjI4mqubkZw4cP57LIfvLkCRhj6NWrF2bNmmUSfuub\nb74BY4zLqc84o7y+rZlSUU2dOpXr3EOHDsHNzQ0rVqzAw4cP8ezZM4OjqKgI4eHhshO/zZgxQ/YT\nvaGhAYwxiwkFxPfFFLKWaG5uBqXUkmctKKVcOYSjoqIkIXl7e0vzKTnXVVxcDFdXV8ydOxdbt261\nZp0u4tyiAoCRI0di8ODBOH36tJS1z1FuC4wx/O1vf7N6jjiXEkVlnPlQrqjOnTsne5ECaFn2Xbhw\nockRHx8PxhgePnwoqz5fX1+z+a6ssXPnTjDGzOb20ul0UvI3Wx68r732GkaMGGEyd6mpqUG/fv24\nl9QLCgpMUt9s3rxZsQNpaWkpDhw4AHd3dyxcuNDSac4vqpKSEmlZXHQo4xWVrQUFHlGdP38ejP0z\nYZzY4z148ACdO3cGIUTWwoW48ucolPQ4ALiHvvqkp6eb/aznz5/Dz88PjDHEx8fbrCcmJsYkFAAA\n9OrVy64wYwAkYdvjlb1mzZq2vU/13XffSb2Tm5ub1OXzsHjxYqxatcrse+Iqka2l6Lq6OpPhH2Mt\nSdfCw8NlrwTKGfrxoERUV69eVSRE0UkzISEBSUlJiImJkX4bFxcXbN68mauemJgYg2yUGzduhKen\nJ9q3b88z/DLL2LFjpUWp2bNnK6pDpLq6um2LCmhZ2UlKSpKSYvPeEOIYX9zpFw+57vTl5eXYunUr\nvL298ejRI7vCI78KohLj3PF6C+uzdu1ahIWFSce2bdtQXV0tq45du3YZbPYGBATIXmhZu3YtHj16\nhOzsbOn3jIqKkhU8pqysDMHBwZgwYQJycnLwww8/SMFgrGxetw1R2UNOTg66d+9udlm9NXC0qD79\n9FNF11JUVMQdy8HRiAsV4sGbH1if8ePHG/yWJ0+exLNnz2TX8/XXX2P69Ono3r271J5FixZZK8J1\nP6v+VCoq/Kj+VCoqrYEqKhUVB6OKSkXFwaiiagPodDoyfvz41m6GXfj7+5MjR47ILrdt2zbCGCOR\nkZGka9euL6Bl8lFF9ZK5desWuXv3Ltm6dStZunQpEQSBaDQau+p8/PgxOXHiBKmrq3NQK18uJSUl\npLq6mnTv3l122Q8++IAQQkh6ejr5j//4D1lla2trydatW4kgCORf/uVfSHFxsezPNwvvMuELPgzQ\nz45h7nU5NDU1YcGCBRgyZIjkZiAybNgw7iXdkydPml2a5wmfrNVq8f777xvEch8yZAjWrVuH8PBw\neHp62rX/RSmVbYP4KrFt2zZMnjxZtstHcXExKKWK3HG0Wi1cXV2xa9cuKdwzR4x9592nEgVl6eBF\n3HtYvHgxiouLMWXKFFBKMX36dERERGDIkCE2zWImT54sfeH60WCrq6u5N5EFQUCfPn2wbds2k/fK\nysogCAI2bdpks57GxkaT3f78/HyrriH6XL58GbNmzTL7cJgyZQpXHUBLupmLFy9i3bp1mD9/vnQo\nSbxWVVUFQggKCwtll01PT8eWLVtklwMMM6l06tQJvXv3VkVli7i4OFBKsW7dOsntQ6fTwdvbWxJb\ndna21To0Gg0YY/Dz8zPoCXQ6nZScmwfGmIkxrsikSZMwatQom0/byspKzJs3DxEREdJr9fX1iIyM\nxOrVqy2W27ZtG7Zv3464uDgEBwdj0KBBOHHiBJ49e4by8nLp37Nnz2LFihUWw0g3Nzfj5MmTUnRY\nV1dXKfyy/vHaa6/h6NGjtr+U/2fdunUghMi2zPj555/BGFMsKvG3u3XrFpKSkrBkyRKe39N5RQVA\nSjgtHvrxyHmIj483a7bS0NCAr776CufOnbNaXqvVgjGGwsJCg96surpasgHktQ7v1auXSW+ydu1a\n+Pr6cvUypaWlCAkJwYYNGwxeDwgIQLt27ayWpZRyJUAAgBMnTsDX19fk9aCgIEydOpVrqJuenm7R\nrcMcosEyj7uHPq+//joopZKoTp06hcTERCQmJuLDDz+0WV5M3Cf6lJ08ebJt91QWr8gB8cfDw8PR\npUsXm+eJPZFWq4VWq8XChQsNhktyclw1NjZi8uTJ+Oijj/Dpp58iIiJCcs/nwXjIp9Vq8cYbbyAs\nLMzmXOrYsWPw9/fn+pxevXopshK/ePEiLl68iJSUFFk9TkNDAyilGDx4sOzPFEXVu3dvKZrS2rVr\ncfr0aVBKbT4ARCdTQRCwatUq1NTUICoqytbHti1RWVq8kMOjR4/g5uaGy5cv2zz3k08+MZl39OjR\nA8OHD4eHhwdPhggT9OviGfKJGCdk2Lx5MyiliI2Nxfnz562WbWhoQFxcnM3PKCkpkZUn6ty5c5g0\naZKUzodSinbt2snKqii61shNAg4Au3fvlobxgiBI+brEeSePx3hhYSE+/vhjMMak/GU2aDui0h/6\n8Q5ljHn77bdBKZUVmUmr1eLSpUvQarXQ6XR47733wBgzu+BgjR07dsDNzU1xJsdvvvnGJJSXi4sL\nzp07x51Kx1qP1tDQgAkTJtiso6KiAi4uLkhJSUF5eTl++OEHDB06FGvXrlUU0SktLU2R97TYlk6d\nOpk8cJYvX64oE8mxY8fg4eFh1hlVj7YjKlFQSqLkiIh+P/YQFxfHvYyujyik4cOHIzw8HIIgyEoF\npNPpcOrUKWzatAmUUnTo0EFRJkhz1NfX4/XXX+cKLfD+++/jq6++AtDSk7u6usp+wOjDmLIkeiLp\n6ekGAtJoNBg/fjw6deqkqL60tDTpt7p586a5U9qGqBwx7PP29saMGTPsymn19OlTMMawePFi2WUZ\nYwaLDIcOHULnzp1lT87FoY29YdKM23by5Emuc8vKyvDOO+9wOyTyfPbTp08Vl1+0aJHZ3GVKEnsD\nQG5uLt577z3J58wMbUNU9gz77t27h4yMDFkRUy3BmLzop/oIgoBhw4Zh48aNSE5OhpubG7y8vHDt\n2jXuOvbv3w9CCL788ktFbTDm4MGDCA4OdkhdSnF3d+deRLFEYWEhdu3ahWHDhmHXrl2yw5sZIwgC\nvL29LQ3RnV9U4lxKKWJc7Hv37imuA2jpIRhrCcJpYVhglSFDhhjMpwRBwMcffyyrjtzcXIfGt+jS\npYviJ7qjcNQQ1pFMnToVgiBYilHv3KISBaV0HtXY2Ag/Pz/cunVLUXl9tm/fDsYYunfvrjjEskqb\ngOt+Vj1/VVT4UT1/VVRag9+kqH799Vfi4eHR2s1oFZ49e0bGjx9PGhsbW7spL4y//vWvdiWgs5ff\nnKiGDx9OgoKCyJw5c7jO37t3L2GMEcYYCQkJIYwxEhcXRyilZO7cuaS2tvYFt9hxTJ8+nYSEhJB9\n+/aRq1evtnZzDMjIyCCUco2uiE6nM/s6AHL58mVy+vRp4u7u7sjmyYN38vWCD5vU1NTYHd5Lq9VK\nexm8e1ZiojhLh3Ho4VeZmJgYuLq6wtXV1WqiAXvqV4oYDNMeCgsLQSm1a0NaZMaMGeZedv7Vv969\ne8Pd3V0SgtK0OkBLyGVKKTw9PbmsB0TErB/G1NfXo7y83CG5s3ioqKhAcHCwWWHzOloqMZHiZdu2\nbcjIyFBUds+ePXBxcVEsqubmZikphSO2CZ4/f46QkBBzbzm3qMaNG2d3bG2RmzdvglIKLy8v2WU7\ndOjgsOCbpaWlSElJwbvvvovjx4/j+PHjuHLlCo4fP25TGBqNBitXrsTgwYPh4+NjICoee8aHDx9K\nvZSjePDgAbRaLerr6xEQEKAooGVRURGio6PtEpX40LWUkUQOP/30ExhjlqxWnFtUycnJigwjzZGQ\nkABKqa3Uk2bRF9XNmzd5k4OZJTo62qxZjXjw2sHt2bPHIKQ1D7m5uQ4VVWVlJSiluHz5Mj744APF\nv5WY/EEM3SyX1atXg1KKfv36Kfp8AAYPJWN7QiOcW1SiO4GLi4t00/n4+Mhy2W5oaJD8bjQaDaqr\nq9GvXz+rmQCNEUVl7vDy8uLqSRMSEqQ0M42Njfjhhx9k2/3pc/PmTTBmO2OhPtnZ2dLw7+HDhyYW\nHoIgYNy4cTYdLysqKqRRxMOHD9HU1IT4+Hj06dNH9nXk5uZKorLlwmIOMcWpPQ86APD390dzc7Nk\nOWPFJM65RSUKSd+UhVKK0NBQri9KP2Z3RUUFPDw8DHoFOTZ05qzStVotPD09uRYqjMXYvn177s82\nh5grSs4iiX5PpX9s3rwZmzdvRvv27aXXrLliGGeRr6+v5wpNYK0uJcO+vLw8BAUFYdeuXTh16hTO\nnz+PJ0+eYMyYMdx17Nu3D15eXmCsJSl4YGAgrly5Yq2I84sqMjLS4LXIyEhu942zZ89KP5qYOmfM\nmDHIzc1FYmKiNZ8Zbt5++22uG7u4uBjHjx9HSkoK3Nzc7F50EZO9yfFDMhZVXl6ewQrgjRs3pPcs\n5UM+ePAgXF1dkZOTg6amJmzcuBHe3t4ghMgWVVFRkUEqHrmI/nGZmZkmw2jelV3RY7i4uBihoaEg\nhODJkyfWLOedW1Tm8PHx4V5soJQiNTVV+luktrYWwcHBOHv2LO/HWmTgwIE2RcUYMwmNlpKSwt3j\nWqpTydM9ICDA4gpgeXm5zdVB/Rs3ODgYjx49QmVlJVxcXGSFWJs2bZpBz61keZ9SitmzZ4NSipMn\nT6K2thbNzc2ora3FwIEDueq4cOECtFotmpubpRQ6Npw+256o5Az/KKWS34+fn5/0emJiIrdPkq3e\nJCQkxKaoZs2aBVdXV4SEhEiHu7u7Yuc8nU6nWFTTpk2TeqPc3FzJleXhw4eIjo62uZChLyrx5jt6\n9CjeeustWe0Qg71QShW7alBKcenSJenBKXL+/Hns379fVl1iXqqvv/7a1qltS1Q6nc7skNAS7u7u\nGIemE9wAAAHHSURBVDlyJEpLS7F8+XLph4yOjsb169dtlp89ezYYa0nSHBISgnXr1qGoqAjr1q3D\nunXrsGLFClBKufap9Id/4qEUMdGb0p5Of5hnfOTl5Vkc+lnio48+4rkZDRB/CyWrfSLiQpYYqyM2\nNtZkvsdLQkICr6Nm2xBVU1MTnj9/jkGDBpk8lV4kOp0OKSkpCAsLM7vy5+bmhp9//vmltUdESfDL\nF43SnupVoLGxUc6GONf97NJ6BlJ8JCQkkIcPH5KqqipSX1//0j6XMUaOHDlCqqurye7du8nJkyfJ\nl19+SRYsWEAIIWTChAkkMjLypbVHn4SEBLJmzZpW+WxHwBgjSUlJrd0MQggh9fX1ZOjQoQ6tU/Wn\ncjJ27txJPvnkE5KTk0N8fX1buzm/NbgsflVRqajwwyWqV2X4x2fzr6LiBPzm/KlUVF40qqhUVByM\nKioVFQejikpFxcGoolJRcTCqqFRUHIwqKhUVB6OKSkXFwaiiUlFxMKqoVFQcjCoqFRUHo4pKRcXB\nqKJSUXEwqqhUVByMKioVFQejikpFxcGoolJRcTCqqFRUHIwqKhUVB6OKSkXFwaiiUlFxMKqoVFQc\njCoqFRUH83+Dm27bZwGx8wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "def show_batch_of_images(img_batch, fig_size=(3, 3)):\n", " fig = plt.figure(figsize=fig_size)\n", @@ -387,11 +505,41 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[ 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.]\n", + " [ 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.]\n", + " [ 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.]\n", + " [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]\n", + " [ 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.]]\n", + "[[ 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]\n", + " [ 0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]\n", + " [ 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.]\n", + " [ 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.]\n", + " [ 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]]\n", + "[[ 0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]\n", + " [ 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.]\n", + " [ 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.]\n", + " [ 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.]\n", + " [ 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]]\n", + "[[ 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.]\n", + " [ 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [ 0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]\n", + " [ 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [ 0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]]\n", + "[[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]\n", + " [ 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.]\n", + " [ 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]\n", + " [ 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [ 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]]\n" + ] + } + ], "source": [ "mnist_dp = data_providers.MNISTDataProvider(\n", " which_set='valid', batch_size=5, max_num_batches=5, shuffle_order=False)\n", @@ -438,14 +586,44 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": { - "collapsed": false, "nbpresent": { "id": "c8553a56-9f25-4198-8a1a-d7e9572b4382" } }, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAADgCAYAAAD/ujrhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4XPWV8PHvUffITcXdloTBGGNboZgSJ5Qk9AAGTIBg\nDMZFZpNsNpu8JGTZ3bxJHrJseJMsu5sEySU2jmO6wRRTTMA2hGYcI9u44CK5FxU3jcpIc94/7pU8\nkkbSSJrRjKTzeR49mrlz595zXebMr9zfEVXFGGOMCUVctAMwxhjTfVjSMMYYEzJLGsYYY0JmScMY\nY0zILGkYY4wJmSUNY4wxIbOkYXolETklIqM7+N53RWR2uGMK8dwdjtuYcLCkYbo9EfmpiKxssu2L\nFrbdBaCqfVV1V1fGGQ7hjltEzhaRl0TkqIiUicgbIjI2XMc3PY8lDdMTrAEmi0g8gIgMAxKB85ts\nO8vd15w2EFgBjAWGAB8DL0U1IhPTLGmYnuATnCRxnvv8MuAdYFuTbTtV9QCAiKiInOU+XiQivxeR\nV0XkpIh8JCJn1h9cRK4Wka0iclxE/heQgNfiRORfRaRYRI6IyJMiMsB9bbGI/Mh9PMI953fd52e6\n3+yb/R8UkbNEZLV7vhIReTrgNXVfH+52VdX/eEVEA/abKSJbRKTcbT1kB/uDU9WPVXWBqpapqg/4\nHTBWRDLa9Tdgeg1LGqbbU9Ua4CPgcnfT5cBa4L0m21prZdwF/BxIA3YAjwCISCbwAvCvQCawE/hK\nwPtmuD9fA0YDfYH/dV9bDVzpPr4C2BUQzxXAWlX1B4nll8Cbbiwjgf8Jcs0H3K6qvqraF1gOPOXG\nPAX4F+A2YJD7Z7GslWsPdDlwSFVLQ9zf9DKWNExPsZrTH8iX4XxQrm2ybXUr71/ufuuuBZZyuoVy\nA7BZVZ9zv4n/F3Ao4H3TgN+q6i5VPQX8FLhLRBLc833VbU1cDvya0wnnilbi8QHZwHBVrVLV91q7\ncBH5CXAOMNPd9ADwH6q6xb2eXwHntdTaCDjOSOD3wA9b28/0bpY0TE+xBucDOh0YpKpfAH/DGetI\nBybQeksjMBF4cVoMAMOBvfUvqLPC596AfYcDxQHPi4EEYIiq7gQqcBLQZcArwAF3oLm1pPFjnC6w\nj0Vks4jMbGE/ROR64J+AW1S10t2cDTwuIsdE5BhQ5h5vRCvHGYTTuvmDqobaKjG9UEK0AzAmTD4A\nBgBzgPcBVPWEiBxwtx1Q1d0dOO5BYFT9ExGRwOfAAZwP6XpZQC1w2H2+GrgdSFLV/SKyGrgPp+tp\nQ7ATquohN2ZE5KvAKhFZo6o7Avdzk89i4DZVDUxke4FHVHVpKBcoImk4CWOFqj4SyntM72UtDdMj\nuN+y1+F0rawNeOk9d1tHZ029CowXkdvcLqfvA0MDXl8G/LOInCEifXG6gp52u4XASRrfCzj/u+7z\n91S1LtgJReRbblcRQDmggL/JPv1xZjk9HKT76gngpyIy3t13gIh8q4Vz9QfeAN5X1Yda+XMwBrCk\nYXqW1cBgnERRb627rUNJQ1VLgG8BjwKlwBjcloxrIbDEPf5uoAr4xyYx9Qs4/3uAp414LgI+EpFT\nONNh/ynIvRkX4EyT/V3gLCo35uXAfwJPicgJYBNwfQvnutU93/1NZmNltRKf6cXEijAZY4wJlbU0\njDHGhMyShjHGmJBZ0jDGGBMySxrGGGNCZknDGGNMyHrczX2ZmZmak5MT7TCMMaZb+fTTT0tUdVBb\n+/W4pJGTk8O6deuiHYYxxnQrIlLc9l7WPWWMMaYdLGkYY4wJmSUNY4zp5pYuXUpOTg5xcXHk5OSw\ndGlIa1V2SI8b0+iMDUc2sO7wOiYNmcR5g89r+w3GGBNlS5cuJS8vD6/XC0BxcTF5eXkATJs2Lezn\n63FrT02aNEk7MhC+/vB67n/jflSV5Phk5l0zzxKHMSa21NWCtxS8Jc7vihJyrp5D8aGyZrtmZ2dT\nVFQU8qFF5FNVndTWftbScP1171/xu5U3q+qqWLZ1GbmDcolrXsLZGGPCo8YbkADcZFBRcjoxNN1W\ndazZIfYcOhH00Hv27IlIyJY0XFdlXcVTW5+ipq4GgNd2v8a2sm3MyZ3DdTnXER8XH+UIjTExTRWq\njje0AAJbA823ucnA5w1+rLgE8GSAJxNSM2BYrvs4092e4T7OJGvhtRTv3dfsEFlZkVnd3rqnAtSP\naVww+AIOVRyioLCAncd3kt0/m1kTZnHjmTeSGJcY5oiNMTGprhYqy5p882+SCAJbA95S8NcGP1ai\nx/nQ96Q3fNg7v9MDHgdsSxkIIiGF2XRMA8Dj8VBQUNCuMY1Qu6csabTCr37e3vM2BYUFbC3byoi+\nI5g5YSa3nHULSfFJYTmHMaaL+Cobf+OvKG29NVBZ3vKxUgY0+bDPCGgZZDZPEEmeiF7a0qVLefjh\nh9mzZw9ZWVk88sgj7R4Et6QRRqrKmn1ryC/MZ2PJRgZ7BjNzwkymjplKSkJKWM9ljAmBKlSfaOGb\nfwutAV9F8GNJfEB3T+Oun6DbPOkQ3/N6HCxpRICq8sGBD8gvzGf9kfVkpGRw3/j7uHPsnXgSI/tN\nwpgezV8H3rIm3/xbaw2Ugt8X/FgJfVro+mmhNZAyEOJswosljQj75NAn5Bfm89HBjxiYPJDp507n\n2+d8m35J/SJ+bmNinq+qjW/+9Y/d7ZXlQAufRSkDmnzYt9EaSErt0kvtKSxpdJENRzZQUFjA2v1r\n6ZfYj7vH3c30c6czIHlAl8VgTESpQvXJFr75t9AaqDkV/FgS1yQBtNUayOiRXUGxyJJGF9tcupl5\nhfN4e8/beBI83HXOXdx77r1k9Mno8liMaZW/zvlm355ZQe5U9GYSUlr+sA/WGrCuoJhlSSNKtpdv\nZ17hPN4oeoPk+GRuP/t27p9wP4M9g6MWk+nhaqvb+ObfZJu3jBa7gpIHNJkW6iaCRgkgIEEkpYY8\nNdTENksaUbb7+G7mb5zPq7teJU7iuG3MbcycMJPhfYdHOzQTy1Sdrp32zAqqORn8WBIHfZomgFZa\nA54MSLCp5L2VJY0YsffEXhZsWsBLO18ChZvPupnZE2Yzqv+oaIdmuoLf73QFtTkOUL+tFOqqgx8r\nPrmFrp9grYFM6woy7WJJI8YcPHWQhZsW8sIXL1Crtdxwxg3MyZ3D6AGjox2aaY/amtBmBdX/riwD\nd02zZpL7t5AAmkwLrd+W1Ne6gkzEWNKIUUe8R1i8eTHPbn+Wqtoqrsm5hjkT5zA2fWy0Q+t9VKGm\non2zgqqDLw4H0mQmUFs3iWVAQnKXXq4xrbGkEePKqsp4cvOTLNu6DG+tl6+N+hpzc+cyPnN8tEPr\nvvx+ZxXQZt/8A7p+mt4jUFsV/FjxSaENBNdv6zMQbFFL043FdNIQkXTgaSAHKALuUNXyJvtkA8tx\nqgsmAv+jqk+0dezukjTqHa8+ztItS/nzlj9zsuYkXxnxFR7IfcBqeYDTFdSwYFyQG8KaJgNvGWhd\n8GMl9Qs+ENzQAmjSGkjuZ11BpleJ9aTxa6BMVR8VkYeANFX9SZN9ktz4qkWkL7AJmKyqB1o7dndL\nGvVO1pzk6W1P8+TmJymvLueSoZeQl5vHRUMvQnrKh1dNRSvf/JtuK4Xq4y0cSKBPWujTQj0ZkGhr\nhBnTmlhPGtuAK1X1oIgMA95V1RY79UUkA/g7cGlPTRr1vD4vz25/lj9t+hOlVaWcP/h85ubOZfLw\nybGVPOq7gpp982+lNVBbGfxYcYmtTwtt2hrok2ZdQcaEWawnjWOqOtB9LEB5/fMm+40CXgXOAh5U\n1d+3dezunjTqVdVW8cIXL7Bw00IOew8zIWMCebl5XDnqysgkjzrf6QXjWhsHCEwKLXYF9Q3yYd9S\nayDTuoKMiQFRTxoisgoYGuSlh4HFgUlCRMpVNa2VYw0HXgRuUtXDQV7PA/IAsrKyLiwuLu5s+DGj\npq6Gl3a+xIKNC9h/aj9j08aSl5vHVdlXtV6Ktr6MZNBv/kG2VbXRFRSYBIKNAwRus64gY7qdqCeN\nVk/azu4p9z0LgddU9bnW9uspLY1GVPF5S3jti+XM3/4MRZWHGZ2czpz+47lO+pNQf/NYYDJosYxk\nYisJIEhroE8axFtVYGN6ulCTRrQ+DVYA9wGPur9farqDiIwESlW1UkTSgK8Cv+vSKCOlURnJ1loD\np+sLJPprmQLcCLyZ6qFgYA0/rS7jj746ZtfEc2NCBompg2DwuOZLQwQmiOT+1hVkjOmwaCWNR4Fn\nRGQWUAzcASAik4AHVHU2MA74jYgoIMD/U9WNUYq3db7K1mcFeZskiKpjLR+rvivIkwnpZ8DISY1a\nA/GpGVzvyeTaPmn8tXwzBZsX8e9lW3giNZlZE++wUrTG9ELhKPcaKru5L9Dej2H3Whh+HqTlhD4r\nqKUyknEJrXT9BGkN9Elvd1eQqrJ2/1ryP8unsKSQwX0Gc/+E+5l69lT6JPTp2J+DMabbWLp0KXl5\neXi9p7ukPR4PBQUF7UocMT2mEUkdThrbXodld7a+T6KnjQTQZHA4ZUCXdQWpKh8c/ID8z5xStOkp\n6cwYP8NK0RrTw9TW+TlwrIrdpRUUl1bw/SmTOX70YLP9srOzKSoqCvm4sT6mEXsOfhbwRODcKXD+\n9MYJIil2P3xFhMnDJzN5+GTWHVpHfmE+v/30tyzYtIDp46Zz97i7rRStMd1EbZ2ffeWVFJVWUFRS\nQVGpl+JS5/feMi+1/tNf9o8fPRT0GHv27IlIbNbSqLf3Y1h8s1OhLD4J7lsBoy4Of4Bd6LOjn1FQ\nWMCafWvol9iPb4/7NtPHTWdgSrNbYowxXcxXnxhKKigqraC41MvuEqf1sK+8slFi8CTFk52RyhmZ\nHrIzUsnJ8JCTkUpOZioXTxwbNEFEqqXRZtIQkR8G2Xwc+FRVN4QcURfp9JhG0VrIuazbJ4xAn5d+\nTkFhQUMp2jvPuZP7zr3PStEaE2E1tX72lruthBKv03JwWw37yiupC0gMqUnx5GSmkpORSnaGp+Fx\nTqaHQX2TW7ypN+bGNETkL8Ak4GV3041AIc5ig8+q6q9DjqoL9Mj7NMLki/IvmFc4j9eLXm8oRTtj\n/AyGpA6JdmjGdFvVtXXsLaukuLTCbSnUJ4cK9pdXEpAX6JucQE6m20pwk8MZmalkZ6SS2Tepw6s9\nhGP2VDiTxhrgBlU95T7vi7O0x3U4rY1z2xVZhFnSaJuVojWmfap8dewr97K7xNssORw41jgx9EtJ\naEgEp7uRnG6ljNSOJ4ZIC2fS2ApMVFWf+zwZ+ExVzxGRv6vq+WGJOEwsaYRu78m9LNh4uhTtTWfe\nxOyJs8nqnxXt0IzpclW+OvaUeRvGGBoGn0u8HDheSeBHZf/AxJDpJAdnzCGVNE9izCaG1oQzafwb\ncCun79q+CeeO7t8ABaoamTtIOsiSRvsdqjjEwk0LeX7786dL0U6cw+iBVorW9CyVNU5iqB9wLip1\nkkRxaQUHT1Q1SgwDPYlOIghICNluyyEttefdQBvW+zRE5CJgsvv0fVWN2U9lSxodd9R7lMWbF/PM\n9meoqq3i6uyrycvNs1K0pluprKlzZyOdTgpFbovh0InGlRrTPImnB5wDupFyMjwM9PS8xNCacCeN\neGAIAfd1qGpkJgF3kiWNziurKmPJ50tYtnUZFb4Krhx1JQ/kPmClaE3MqKiupdjtPtpdWkFxyenB\n58Mnqhvtm5Ga1Gg2UsPgc3oqAzyJUbqC2BPO7ql/BH4GHAbqcNaBUlXNDUeg4WZJI3yOVx/nL1v+\nwpItSxpK0c7Nncv5g2NqGMv0UKeqaxtPVQ0YfD5ysnFiyOyb5CYEd/C5PkFkeuifYokhFOFMGjuA\nS1S1NFzBRZIljfA7VXOKp7Y91VCK9uKhFzM3d27PKkVrouJkle/0FNWAO593l3gpOdU4MQzql9xo\nwLl+fCE7w0M/SwydFs6k8Q5wtarWhiu4SLKkETn1pWgXbV5ESWUJ5w8+n7zcPL4y/CuWPEyLTlT5\nKC7xut1I7jiDO+ZQcqqm0b6D+yU3m42U7T7um2yrHkVSOJPGAmAszr0ZDalfVX/b2SAjwZJG5FXV\nVrF8x3IWblrIoYpDjM8Yz9zcuZErRWti3vFKX6PlMAKnrZZVNE4MQ/unNLQSAhNEdoaHVEsMURPO\npPGzYNtV9ecdjC2iLGl0HV+dj5d2vsT8jfPZf2o/Z6edTV5uHldnX916KVrTLR3z1gR0HzVeK6nc\n62u077ABKY3udq4fZ8hK9+BJssQQi2xpdNNlfH4fK3evZF7hPIpOFDF6wGhmT5zN9WdcT0KcfUB0\nF6rKMa+vYcntpmslHWuSGIYPSCHHTQqnF9JzWgwpifFRugrTUZ1OGiLyX6r6AxF5GWi2k6re3Pkw\nw8+SRvTU+et4s/hNCgoL2HFsB1n9spg9cTY3jr6RxHgbqIwFqkq513f65rZGg88VnKg6PXQpAsMH\n9Am6VtKodEsMPU04ksaFqvqpiFwR7HVVXd3JGCPCkkb0+dXPO3veIb8wny1lWxiWOoxZE2Zx65hb\nrRRtF1BVSitqGmYhNb3J7WRAYogTGD6wT6PZSPU3uY1Ms8TQm1j3lIm6hlK0hfkUHrVStOGkqpSc\nqml0/0J9t1JxiZeT1Y0Tw8g0T7PB55zMVEam9SE5wRKDCU9LYyNBuqXq2c19JlSqyocHPyS/MJ9P\nD39Keko6942/jzvH3klqYmq0w4tZqsrRk9UNU1SLmgw+V9TUNewbHyeMTOsTdK2kkWkekhJsYoJp\nXTiSRrb78Lvu7yXu73tw7gh/qNNRRoAljdi27tA6CgoL+ODgBwxIHsA94+7h7nF30z+pf7RDiwpV\n5cjJ6kZTVAPHGbwBiSEhThiVHtBiyPCQ7d75PDKtD4nxlhhMx4Vzym2z5c9FZL2qXtDJGCPCkkb3\nUHi0kILCAlbvW03fxL7cPe7uHluK1u9XDp+soqik+VpJxaVeKn2NE0NWfWJoslbS8IGWGEzkhDNp\nbAC+q6rvu88nA39Q1fPCEmmYWdLoXraUbqGgsIBVe1bRJ6EPd429i3vH30tmn8xoh9Yufr9y6ERV\nw2qqxaWnV1YtLqugyudv2Dcx3mkxnFG/VlLA7KThA1NIsMRgoiCcSeNCYCEwAGexwnJgpqquD0eg\n4WZJo3vaUb6Dgo0FvFH0BklxSTFZitbvVw6eqGp053P9+EJxqZfq2tOJISk+jqwMT0PltuzM01Xc\nhg/sQ3yc3TlvYkvYZ0+JyAAAVT3eydgiypJG91Z0vIj5G+fzyq5XiJM4bj3rVmZNnNVlpWjr/MqB\nY5XNFtErKq1gT5mXmsDEkBBHdron6FpJwwZYYjDdS7jraXwTGA+k1G9T1V90Irh04GkgBygC7lDV\n8hb27Q98Dryoqt9r69iWNHqGfSf3sWDTAl7c8SIo3HjmjcyZOCcspWjrE0OjpOC2HvaWVVJTdzox\nJCfENa7BELAkxtD+KcRZYjA9RDi7p54APMDXgPnA7cDHqjqrE8H9GihT1UdF5CEgTVV/0sK+jwOD\n3P0tafQyhyoO8adNf+L5L57H5/dx/RnXkzcxr81StLV1fg4cq2q4d2F3QC2GvWVefHWn/92nJMad\nvuM5s/ENbkP6WWIwvUM4k0ahquYG/O4LrFTVyzoR3DbgSlU9KCLDgHdVtVlNUXc85UHgdWCSJY3e\nq6SyhMWbF/P0tqepqq3iquyrmDVhDqlkNavFUFTqZW+Zl1r/6X/bnqT4hlZC07WShvRPttV5Ta8X\natIIZTW5Sve3V0SGA6XAsM4EBwxR1YPu40M4pWQbEZE44Dc494Vc1cnzmW7KV+dnX3klRSV+0qtv\n4xupk/mk/CVW7V7FW8Vv4Ts5jpqSr+OvGkWqmxjGDevH9ROGNrr7eVA/SwzGhEMoSeMVERkIPAas\nx7lLfH5bbxKRVcDQIC89HPhEVVVEgjV3vgO8pqr72vrPLiJ5QB5AVlbn+7xN16qp9bO33NtsZdWi\nkgr2H6ukLqDF0Dc5geyMb3JpxjfxprzLtvjXqOr3ey4afCnfu+AfuGBITN4+ZEyP0a61p0QkGUjp\n7AyqULqnRGQpcBngB/oCSTj3h7R6J7p1T8Wm6to69pZVNi7U497LsL+8koC8QL/kBHfJ7eaDzxmp\nSY1aDE1L0V409CLm5s7l4qEXW8vCmHYI55iGB/gRkKWqc0RkDDBWVV/pRHCPAaUBA+HpqvrjVvaf\ngY1pxLwqXx17y7zNCvUUlVZw4FiTxJCSwBnuHc/14wz1XUnpTRJDKLw+L89tf45FmxdxtPIo5w06\nj7zcPL464quWPIwJQTiTxtPAp8C9qjrBTSJ/68wd4SKSATwDZAHFOFNuy0RkEvCAqs5usv8MLGnE\nhCpfHXvKGpfzrO9WOnC8ksB/TgP6JDa5h8H9nZHKQE9iRD7Mq+uqWf7FchZsWtBQijYvN48rR11p\n1QSNaUU4k8Y6VZ0UuAaViHymql8KU6xhZUmj8yprnMTQUKjHHV8oLq3g4ImqRokhzZPY6Ka2wMHn\ngZ7o1c7w1flYsXMF8zfOZ9+pfZyddjZzcudwddbVxMfZUuDGNBXO2VM1ItIHd5l0ETkTqO5kfCbK\nKmvq3LGFxje3FZV4OXSiqtG+6alJ5GR4uHR0RrO1kgZ4YrMiX2J8IlPPnsqUs6awcvdKCgoLeHD1\ng5wx4AzmTJxjpWiN6aBQWhpXA/8KnAu8CXwFmKGq70Y8ug6wlsZpFdW1jQaci0tOF+o5fKJx3s/s\nm0R2/Z3PAWslZWekMqBPbCaG9qjz1/FW8VvkF+az49gORvUbxeyJs7lp9E1WitYYwtQ9JU6n80jA\nC1yKs2Dhh6paEq5Aw623JY1T1bUNxXkCC/UUlVZw5GTTxJDcMAspJ2Dp7awMD/1TescHp1/9vLP3\nHfI/a1yK9pYxt5Acnxzt8IyJmnCOaWxU1YlhiyzCemLSOFnla7aAXn3955JTjRPDoH7J7pLbjesx\n5GSm0jfZumPqBStFO2PCDG4/+3YrRWt6pXAmjcXA/6rqJ+EKLpK6a9I4UeU73X1U4hbqcZNDyama\nRvsO6Z/cMAspcK2k7AwPqZYY2kVV+ejQR+R/ls+6w+tIT0nn3nPv5a5z7rJStKZXCWfS2AqchTM1\ntgKni0qtRnj7Ha/0Nb65LWDaallF48QwtH9Kw4Bz4HTV7AwPniRLDJHw6eFPKSgs4G8H/malaE2v\nE86kkR1su6oWdzC2iIp20jjmrWl2c1v91NVyr6/RvsMHpDSajVQ/dTUr3UOfJJsWGi0bj26koLCA\nd/e9S9/Evnz7nG8z/dzppKWkRTs0YyIm7EWYuotIJw1V5ZjX1zALKXCtpOLSCo4FJAYRGD6gDzkN\nK6qevo8hK91DSqIlhli2tWwrBYUFvFX8Fn0S+nDn2Du5b/x93a4UrTGhsKTRAZ8Wl/PhrlIuPSOd\nnMzUgLudKxq1Hk5U1Ta8RwRGDOwTtFDPKEsMPcKO8h3M2ziP14teJzEukdvPvp37x98fU6Vojeks\nSxrt9M7Ww8xavK7R+kj14gRGpPVpNOBc32IYld6H5ARLDL1B0fEiFmxawCs7X0FEuOWsW5g1cRYj\n+o6IdmjGdJoljXZ6fNV2frfqC8AZ6b/ynMFMvzSL7IxURqV5SEqwdYuMY/+p/SzYuIDlO5Y3lKKd\nPXE22f2DDv8Z0y10OmmIyEncpUOCUdWYnFLS0aTxaXE50+Z/iK/WT2JCHEtnX8qF2TbwaVp2qOIQ\nizYv4rntz+Hz+7gu5zrycvM4c+CZ0Q7NmHYL5+ypXwIHgSU4X8KnAcNU9d/DEWi4hWVMY3SGJQwT\nsmClaPNy8zgn/Zxoh2ZMyMKZNJqtaGur3BrTXHlVOUs+X8Kyrcs45TvFlSOvJC83j4mDus2CCqYX\nCzVphNJRXyEi00QkXkTiRGQazk1+xpgAaSlpfP+C7/PG7W/w3fO+y/oj67n7tbuZ+9Zc1h9eH+3w\njAmLUFoaOcDjOKvbKvA+8ANVLYpwbB1iLQ0TKyp8FTy19Sme/PxJyqrKmDRkEnO/NJdLhl5i1QRN\nzLHZU8bECK/Py/NfPM+fNv2Jo5VH+dKgLzE3d66VojUxJWzdUyJytoi8LSKb3Oe5IvKv4QjSmN7A\nk+hh+rnTWTl1JQ9f8jCHvYf5ztvf4a5X7+LtPW/jV3+0QzQmZKF0T60GHgTyA8q9blLVCV0QX7tZ\nS8PEOl+dj5d3vcy8wnnsO7WPMWljyMvNs1K0JqrCORDuUdWPm2yrDbqnMaZNifGJ3DbmNl6+9WV+\n9dVfUeuv5cHVD3Lrilt5eefL1Prtv5eJXaEkjRK3Lnh9jfDbce7bMMZ0QkJcAjedeRPLb17OY1c8\nRkJcAv/y3r9w0/KbeH778/jqfG0fxJguFkr31GigAJgMlAO7gXts9pQx4eVXP+/ufZf8wnw+L/2c\nYanDmDlhJreOudVK0ZqIC/vsKRFJBeJU9WRng4skSxqmu1NV3tv/HvmF+Xx29DMG9RnEjPEz+NbY\nb1kpWhMx4Zw99U8i0h/wAr8TkfUick04gjTGNCciXDbyMpZcv4T518wnZ0AOj617jOuev475G+dT\n4bN7a030hDKmMVNVTwDXABnAdODRiEZljEFEuGTYJSy8diGLr1vMuPRxPL7+ca557hr++NkfOVFz\nItohml4olKRRf/fRDcCTqro5YFuHiEi6iLwlIl+4v4OuDigidSKywf1Z0ZlzGtOdXTDkAp64+gn+\ncsNfuGDIBfxhwx+49rlr+e/1/015VXm0wzO9SCgD4X8CRgBnAF8C4oF3VfXCDp9U5NdAmao+KiIP\nAWmq+pMg+51S1b7tObaNaZjeoL4U7ariVaQkpFgpWtNp4VzlNg44D9ilqsdEJAMYoaqFnQhuG3Cl\nqh4UkWE4SWhskP0saRjTip3HdjJv4zxW7l5JYlwiU8dM5f4J9zM0dWi0QzPdTDiKMJ2jqltF5IJg\nr6tqh5ftFJFjqjrQfSxAef3zJvvVAhtwbiZ8VFVfbOF4eUAeQFZW1oXFxcUdDc2Ybqn4RDELNi7g\n5Z0vg+DXGwZaAAATlklEQVSUop0wi5H9RkY7NNNNhCNpzFPVOSLyTpCXVVW/3kYAq4BgX3ceBhYH\nJgkRKVfVZuMaIjJCVfe794r8FfiGqu5s7bzW0jC92f5T+1m4cSHLdyzHr35uHH0jc3LnWCla06aY\nXuU21O6pJu9ZBLyiqs+1tp8lDWOcUrSLNy/m2e3P4vP7uDbnWvIm5nFW2lnRDs3EqHC0NG5r7Y2q\n+kIHY0NEHgNKAwbC01X1x032SQO8qlotIpnAB8AUVf28tWNb0jDmtJLKEp7c/CRPbXuKytpKrs6+\nmjkT5zAuY1y0QzMxJhxJ40+tvE9VdWYngssAngGygGLgDlUtE5FJwAOqOltEJgP5gB9navB/qeqC\nto5tScOY5sqryvnzlj/zly1/4ZTvFFeMvIK5uXOtFK1pENPdU5FkScOYlp2oOcGyLctYsmUJx6uP\nM3n4ZPJy87hwSIdn0JseIqxJQ0S+CYwHUuq3qeovOhVhhFjSMKZtFb4Knt72NIs3L7ZStAYI79pT\nTwB3Av+Icyf4twCbimFMN5aamMrMCTN5ferr/OSin7DnxB7mvDmHe1bew5p9a+hpPRAmfEK5ua9Q\nVXMDfvcFVqrqZV0TYvtYS8OY9quuq+bFL15kwaYFHKw4yLj0cczNncvXsr5GnISy2pDp7sJZua/S\n/e0VkeGADxjWmeCMMbElOT6ZO8+5k1dvfZVfTP4Fp3yn+MG7P2Dqiqm8vvt16vx10Q7RxIhQksYr\nIjIQeAxYDxQByyIZlDEmOhLjE7l1zK2suGUFv/rqr6jTOh5c8yC3vHQLK3ausFK0pn2zp0QkGUhR\n1eORC6lzrHvKmPCp89exas8qCgoL2F6+nZF9RzJ74mxuPvNmEuMTox2eCaNwLlgYD3wTyAES6rer\n6m87GWNEWNIwJvz86mf13tXkF+azuXQzQ1OHMnPCTG4bc5uVou0hwpk0XgOqgI04N9oBoKo/72yQ\nkWBJw5jIUVXeP/A++Z/ls+HoBjL7ZDqlaM/+Fp5ET7TDM50QzqRRqKq5YYsswixpGBN5qsonhz4h\nvzCfjw99THpKOtPPnc5dY++ib1K7qhmYGBHO2VMrrSa4MSaQiHDxsItZcO0Cnrz+ScZlOKVor33+\nWv644Y8cr47ZYU/TSaG0NG4F/oyTYHw4N/ipqvaPfHjtZy0NY6JjU8kmCgoLeGfvO6QmpvLtc77N\nvefeS1pK0GrOJsaEs3tqNzAF2Kjd4DZRSxrGRNe2sm0UFBbwVvFbpCSkcMfZdzBjwgwrRRvjwpk0\n1uDUvvC3umOMsKRhTGzYeWwn8zfO57Xdr5EgCUw9eyozJ8y0UrQxKpxJYxEwGlgJVNdvtym3xphQ\n7Dmxh/kb51sp2hgXzqTxs2DbbcqtMaY9Dpw6wMJNC3nhixfwq59vjv4mcybOIWdATrRDM4Qpabg3\n9v2nqv6fcAYXSZY0jIlthysOs2jzIp7b/hw1/hquzbmWORPnMCZtTLRD69XC2dL4QFW/HLbIIsyS\nhjHdQ0llCU9+/iRPbXVK0V6VdRV5uXlWijZKwpk0/giMAJ4FKuq3d6ZGeCRZ0jCmezlWdayhFO1J\n30muGHkFebl55A7qNvcU9wjhTBrBaoV3qkZ4JFnSMKZ7alqK9svDvkxebh6Thrb5OWbCwGqEG2O6\nJa/Py9PbnmbR5kWUVZVx4ZALmZs7l0uHXWqlaCMonOVeR4rIchE54v48LyI2V84YExGeRA/3T7if\n16e+zkMXP8Tek3vJeyvPStHGiFDWnvoTsAIY7v687G4zxpiI6ZPQh2njprHytpX826X/Rom3hO++\n/V3ufOVO3i5+G3/3uN+4xwllTGODqp7X1rZYYd1TxvRMPr+PV3a+wvyN89lzcg9nDTyLvNw8rsm+\nhvi4+GiH1+2Fc5XbUhG5R0Ti3Z97gNLOh2iMMaFLjHNK0b50y0v8x2X/gV/9/HjNj7nlpVt4acdL\nVoq2i4TS0sgG/gf4MqDA34Dvq+qeyIfXftbSMKZ38KufVcVOKdpt5dsY0XcEsyfOZsqZU6wUbQfE\n9OwpEUkHnsYpIVsE3KGq5UH2ywLmA6NwEtYNqlrU2rEtaRjTu6gqq/etJv+zfDaVbmKIZwgzJ8xk\n6tlTrRRtO3Q6aYjIv7fyPlXVX3YiuF8DZar6qIg8BKSp6k+C7Pcu8IiqviUifQG/qnpbO7YlDWN6\nJ1Xlbwf+Rn5hPn8/8ncrRdtO4UgaPwqyORWYBWSoaodrOorINpzl1g+KyDDgXVUd22Sfc4ECVf1q\ne45tScOY3k1VWXd4Hfmf5fPRoY9IS07j3vH3WinaNoS1e0pE+gH/hJMwngF+o6pHOhHcMVUd6D4W\noLz+ecA+twCzgRrgDGAV8JCq1gU5Xh6QB5CVlXVhcXFxR0MzxvQgG45sIL8wn/f2v0f/pP7cM+4e\n7h53NwOSB0Q7tJgTrlVu04EfAtOAxcDjwcYeWnjvKiBYtZWHgcWBSUJEylW1UU1IEbkdWACcD+zB\nGQN5TVUXtHZea2kYY5raXLKZgsIC/rr3rw2laKefO530lPRohxYzQk0aCa0c4DHgNqAAmKiqp9oT\ngKpe1cqxD4vIsIDuqWCtln3ABlXd5b7nReBSnERijDEhG585nse//jjbyrYxb+M8FmxcwNItS/nW\n2d9ixvgZDPIMinaI3UZrYxp+nEp9tTgzlxpewhkI79/hkzoJqTRgIDxdVX/cZJ94YD1wlaoedRdO\nXKeqv2/t2NbSMMa0ZdexXQ2laOMl3krREvtTbjNwxkaygGKcKbdlIjIJeEBVZ7v7XQ38BidRfQrk\nqWpNa8e2pGGMCdXeE3uZv2k+K3asAIEpZ05h1sRZjOo3KtqhdbmYThqRZEnDGNNewUrRzp44mzMG\nnBHt0LqMJQ1jjGmnI94jLNq8iGe3PUt1XTXX5VzHnNzeUYrWkoYxxnRQaWVpQylab62Xb2R9g7zc\nPM7NODfaoUWMJQ1jjOmkY1XHWLp1KUs/X8pJ30kuH3k5ebl5fGnQl6IdWthZ0jDGmDA5WXOSZVuX\nseTzJRyrPsalwy5lbu7cHlWK1pKGMcaEmdfn5Zltz7Bo8yJKq0q5YPAFzP3SXL487MvdvhStJQ1j\njImQqtoqnv/ieRZuWsgR7xFyM3PJy83j8pGXd9vkYUnDGGMirKauhhd3vMjCTQvZf2o/49LHkZeb\nx9ezvk6chFLjLnZY0jDGmC7i8/t4dderzN84n+ITxZw18CzmTJzDtTnXdptStJY0jDGmi9X563i9\n6HXmFc5j5/Gd5PTPYfbE2dww+gYS42K7mqAlDWOMiRK/+nl7z9sUFBawtWwrI/qOYNbEWUw5cwpJ\n8UnRDi8oSxrGGBNlqsqafWvIL8xnY8nGhlK0t425jZSElGiH14glDWOMiRGqygcHPiC/MJ/1R9bH\nZClaSxrGGBODPjn0CfmF+Xx0MLZK0VrSMMaYGLbhyAYKCgtYu38t/ZL6cc+4e5g2blrUStFa0jDG\nmG5gc+lmCj47XYr2rrF3ce/4e7u8FK0lDWOM6Ua2l29nXuE83ih6g5SElC4vRWtJwxhjuqFdx3ex\nYOMCXt31KvESz21jbmPWxFkRL0VrScMYY7qxvSf2smDTAl7a+RIQ+VK0ljSMMaYHOHjqYEMp2jqt\ni1gp2lCTRvdaUcsYY3qZYX2H8fClD7Ny6kruHnc3bxa9yZQXp/Dg6gfZXr4dgKVLl5KTk0NcXBw5\nOTksXbo0YvFYS8MYY7qR0spSlny+hGVbl+Gt9TJi2whW/9dqqiqrGvbxeDwUFBQwbdq0kI9r3VPG\nGNODHa8+ztItS/nnq/+ZmpKaZq9nZ2dTVFQU8vGse8oYY3qwAckD+M5538FX6gv6+p49eyJyXksa\nxhjTjWVlZbVre2dFJWmISLqIvCUiX7i/04Ls8zUR2RDwUyUit0QjXmOMiVWPPPIIHk/jRQ89Hg+P\nPPJIRM4XrZbGQ8DbqjoGeNt93oiqvqOq56nqecDXAS/wZteGaYwxsW3atGkUFBSQnZ2NiJCdnd3u\nQfD2iMpAuIhsA65U1YMiMgx4V1XHtrJ/HnCFqrb5p2AD4cYY036xPhA+RFUPuo8PAUPa2P8uYFlk\nQzLGGNOWhEgdWERWAcEWS3k48Imqqoi02NxxWyITgTda2ScPyIPIDf4YY4yJYNJQ1ataek1EDovI\nsIDuqSOtHOoOYLmqBp9X5pyrACgAp3uqozEbY4xpXbTGNB4DSlX1URF5CEhX1R+3sO+HwE9V9Z0Q\nj30UKO5EeJlASSfe3x31tmvubdcLds29RWeuOVtV21yHPVpJIwN4BsjC+YC/Q1XLRGQS8ICqznb3\nywHeB0apqr+LYlsXymBQT9Lbrrm3XS/YNfcWXXHNEeueao2qlgLfCLJ9HTA74HkRMKLrIjPGGNMa\nuyPcGGNMyCxpNFcQ7QCioLddc2+7XrBr7i0ifs09bpVbY4wxkWMtDWOMMSHrlUlDRK4TkW0issOd\n8tv09WQRedp9/SN3Fle3FsI1/1BEPheRQhF5W0SyoxFnOLV1zQH7TRURdWfvdWuhXLOI3OH+XW8W\nkb90dYzhFsK/7SwReUdE/u7++74hGnGGi4gsFJEjIrKphddFRP7b/fMoFJELwhqAqvaqHyAe2AmM\nBpKAz4Bzm+zzHeAJ9/FdwNPRjrsLrvlrgMd9/A+94Zrd/foBa4APgUnRjrsL/p7HAH8H0tzng6Md\ndxdccwHwD+7jc4GiaMfdyWu+HLgA2NTC6zcAKwEBLgU+Cuf5e2NL42Jgh6ruUtUa4ClgSpN9pgCL\n3cfPAd8QEenCGMOtzWtWZ1Vhr/v0Q2BkF8cYbqH8PQP8EvhPoCrIa91NKNc8B/i9qpYDqGprqzF0\nB6FcswL93ccDgANdGF/YqeoaoKyVXaYAT6rjQ2Cgu/JGWPTGpDEC2BvwfB/N7wVp2EdVa4HjQEaX\nRBcZoVxzoFk431S6szav2W22j1LVV7sysAgK5e/5bOBsEXlfRD4Ukeu6LLrICOWa/y9wj4jsA14D\n/rFrQoua9v5/b5eo3NxnYpeI3ANMAq6IdiyRJCJxwG+BGVEOpasl4HRRXYnTmlwjIhNV9VhUo4qs\nbwOLVPU3IvJlYImITNAuWmWip+mNLY39wKiA5yPdbUH3EZEEnCZtaZdEFxmhXDMichXOKsQ3q2p1\nF8UWKW1dcz9gAvCuiBTh9P2u6OaD4aH8Pe8DVqiqT1V3A9txkkh3Fco1z8JZtghV/QBIwVmjqacK\n6f97R/XGpPEJMEZEzhCRJJyB7hVN9lkB3Oc+vh34q7ojTN1Um9csIucD+TgJo7v3c0Mb16yqx1U1\nU1VzVDUHZxznZnWWsumuQvm3/SJOKwMRycTprtrVlUGGWSjXvAd32SIRGYeTNI52aZRdawVwrzuL\n6lLguJ6uX9Rpva57SlVrReR7OPU54oGFqrpZRH4BrFPVFcACnCbsDpwBp7uiF3HnhXjNjwF9gWfd\nMf89qnpz1ILupBCvuUcJ8ZrfAK4Rkc+BOuBBddaC65ZCvOYfAfNE5J9xBsVndOcvgSKyDCfxZ7rj\nND8DEgFU9QmccZsbgB04ZbLvD+v5u/GfnTHGmC7WG7unjDHGdJAlDWOMMSGzpGGMMSZkljSMMcaE\nzJKGMcaYkFnSMD2aiNSJyAZ3RdfPRORH7t3gnT3ucBF5LhwxBhzzF+4Nlu15T5F7v4UxXcKm3Joe\nTUROqWpf9/Fg4C/A+6r6s+hGFh7u3eyTVLUk2rGY3sFaGqbXcO90zwO+594tmyMia0VkvfszGUBE\nnhSRW+rfJyJLRaTRyqnueze5j2eIyAsi8rqIfCEiv256bhG5SERecB9PEZFKEUkSkRQR2eVuXyQi\nt7uPi0Tk525cG0XkHHd7hoi86bac5uMsf11/jh+KyCb35wfutgdF5Pvu49+JyF/dx18XkaVh+8M1\nvYYlDdOrqOounDuHBwNHgKtV9QLgTuC/3d0W4C5kKCIDgMlAWyvhnuceYyJwp4iMavL63919AC4D\nNgEXAZcAH7VwzBI3tj8C/8fd9jPgPVUdDywHstw4L8S58/cSnHW05rhLw6x1zwfOQpR9RSTR3bam\njWsyphlLGqY3S8RZXmIj8CxOgR5UdTXOekaDcFZIfd5dIr81b7vrWVUBnwONKh+679/prn10Mc4K\nu5fjfHivbeGYL7i/PwVy3MeXA392j/kqUO5u/yqwXFUrVPWU+97L3PdeKCL9gWrgA5zk0dp5jWlR\nr1t7yvRuIjIaZ82lIzjf2g8DX8L5AhVYiOlJ4B6cdcdCWbsncFXgOoL/31oDXA/4gFXAIpxWz4Nt\nHLOl47VJVX0ishun5fQ3oBCnSuNZwJaOHNP0btbSML2G23J4Avhfd8G6AcBBt67CdJwP8HqLgB8A\nqOrnYQphrXvMD1T1KE5hr7E4XVWhWgPcDSAi1wNpAce+RUQ8IpIK3MrplsRanO6tNe7jB4C/d+dF\n+0z0WEvD9HR9RGQDTldULbAEp2sI4A/A8yJyL/A6UFH/JlU9LCJbcJYSD5ePgCGcHksoBIa288P7\n58AyEdmM03LY48a7XkQWAR+7+81X1b+7j9fi1En5QFUrRKQK65oyHWRTbo0JQkQ8wEbgAlU9Hu14\njIkV1j1lTBPuDXZbgP+xhGFMY9bSMMYYEzJraRhjjAmZJQ1jjDEhs6RhjDEmZJY0jDHGhMyShjHG\nmJBZ0jDGGBOy/w9be5Mk1KLi3wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAADgCAYAAAD/ujrhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VGXax/HvPemFhIQUaggtBJAeEMHQm4Ci2MVFRUAF\nKVb0dXfV3VWxraAiCrhWEBsogkroRZTeew01BRIC6e15/ziDhpAyJJmcmeT5XNe5puRkzi9DmDvn\nPE2UUmiapmmaLSxmB9A0TdOchy4amqZpms100dA0TdNspouGpmmaZjNdNDRN0zSb6aKhaZqm2UwX\nDa1aEpFUEWlcxu9dJSKjKjqTjccuc25Nqwi6aGhOT0SeF5FfCj13qJjn7gFQSvkqpY5WZs6KYI/c\nIqJEJM1akFJFZHZFvr5WtbiaHUDTKsAa4DkRcVFK5YlIHcANaF/ouabWfbWrtVVKHTY7hOb49JmG\nVhVswigS7ayPo4GVwIFCzx1RSp2BP/+6bmq9/6mITBeRxSJySUQ2iEiTyy8uIv1EZL+IpIjI+4AU\n+JpFRP4uIrEikiAin4uIv/Vrn4nIU9b79azHHGd93EREkkTkqv+DItJURFZbj3dORL4u8DVl/Xrd\nAmcGqSKSLiKqwH4jRWSfiCSLyBIRaVjud1nT0EVDqwKUUtnABqC79anuwFpgXaHnSjrLuAd4GQgA\nDgOvAIhIEDAf+DsQBBwBuhX4vgetWy+gMeALvG/92mqgp/V+D+BogTw9gLVKqfwisvwbiLFmqQ+8\nV8TPfMZ6qcpXKeULLADmWTMPBf4PGAYEW9+Lr0r42QHWiEiciMwXkfBS9tWqMV00tKpiNX99IEdj\nfFCuLfTc6hK+f4FSaqNSKheYw19nKIOAPUqp75RSOcBUIK7A9w0H/quUOqqUSgWeB+4REVfr8W60\nnk10B97gr4LTo4Q8OUBDoK5SKlMpta6kH1xEJgORwEjrU48Cryml9ll/nleBdiWcbfQAwq2vcQZY\nZM2vaVfRRUOrKtZgfEAHAsFKqUPAeqCr9bnrKPlMo2AhSMc4YwCoC5y8/AVlzPB5ssC+dYHYAo9j\nMdoKQ5VSR4A0jAIUDSwCzohIc0ouGs9iXALbKCJ7RGRkMfshIjcBE4FblVIZ1qcbAtNE5IKIXACS\nrK9Xr6jXUEqtUUplK6UuWF+rEdCiuGNq1Zv+a0KrKn4H/IHRwG8ASqmLInLG+twZpdSxMrzuWaDB\n5QciIgUfY/xlXvAv+DAgF4i3Pl4N3AG4K6VOi8hq4AGMS0/bizqgUirOmhkRuRFYJiJrCjdUW4vP\nZ8AwpVTBQnYSeEUpNecaf9Y/I1Cg3UbTCtJnGlqVYP0rezPwJMZlqcvWWZ8ra6+pxUArERlmvWQz\nAahd4OtfAU+ISCMR8cW4FPS19bIQGEXj8QLHX2V9vE4plVfUAUXkThGpb32YjPEhnl9oHz/gR+CF\nIi5ffQg8LyKtrPv6i8idxRyrlYi0ExEXa/63gdPAvuLfEq0600VDq0pWAyEYheKytdbnylQ0lFLn\ngDuBKcB5oBnWMxmr/wFfWF//GJAJjC+UqUaB468DvEvJ0wnYICKpwEJgYhFjMzoAzYF3CvaismZe\nALwOzBORi8Bu4KZijhUKfA1cxGioDweGWNtvNO0qohdh0jRN02ylzzQ0TdM0m+mioWmaptlMFw1N\n0zTNZrpoaJqmaTbTRUPTNE2zWZUb3BcUFKTCw8PNjqFpmuZUtmzZck4pFVzaflWuaISHh7N582az\nY2iapjkVEYktfS99eUrTNE27BrpoaJqmaTbTRUPTNE2zmS4aBWxP2M7sXbPZnlDk5KNaYSc3wtq3\njVutVFtik5m+8jBbYpPNjqJpZVblGsLLas3JNYxfOR4UuLu4M6v/LNqFtCv9G6ujvBzY/DEseQFU\nPrh4wAMLoUFns5M5pLx8xVcbT/DSwj3kK4W7q4U5o7rQsWGA2dE07ZrpomG189xO8q0rb+bk57A5\nfrMuGgVlpcLhZbB/MRxaApkpf30tLxuOr9VFo4DMnDzWHTrH0r3xLNsXz/m07D+/lpObzx9Hz+ui\noTklXTSsbqx3Ix/v+phclYtFLESFRpkdyXypCXDgF6NQHF0FeVngFQiRQ6BWM1j5CuTngMUC4dFm\npzXdhfRsVuxPIGZPPKsPJpKRk0cND1d6RobQLMSX91YcIidPISJ0aVzL7LiaVia6aFi1C2nHR/0+\nYuLKiYR4h9A2uK3Zkcxx/gjsX2QUipMbAQU1w6DTwxA5GBp0ARfrr01YF/hmBFhcoE71PCs7lZzO\n0r3xxOyJZ+PxJPLyFaF+HtzesR79W9amS+NauLsaTYfdmtTiiW92kJyeTUSobymvrGmOqcqtpxEV\nFaXKM7hv/qH5vLj+Rd7p+Q59G/atwGQOKj8fzmwzCsWBnyFxv/F87TbGGUXkYAhtBVLM6p8HfoWv\n7obBb0OnUZWX2yRKKfbHXSJmTzwxe+PYc+YiAM1CfOnfKpR+LWvTpp4/FkvR79f2kxe4dfpvTOzT\njCf6RVRmdE0rkYhsUUqVeolFF41CcvNzGbZwGEopFgxdgKulCp6M5VrbIPYvNgrFpbMgLhDeDZoP\nhshBxtmFLZSCT26CpKMwYRu4+9g3uwly8/LZHJv8Z6E4lZyBCHQMC6Bfy1D6tQylcbDtZw6PfbmF\nNQcTWf1sL4J8PeyYXNNsZ2vRqIKfiOXjanFlYvuJTFo1iYVHFjKs2TCzI1WMzItweKm1IXspZF0E\nN29o2sc4o2jWH7wDr/11RaDvy/C//vDHB9D9mYrPboKM7DzWHEokZk88K/bHk5yeg7urhRubBvF4\nr6b0aRFKcI2yfeA/PaA5MXvjeX/FYV66pVUFJ9c0+9JFowi9w3rTJrgN07dPZ1CjQXi6epodqWwu\nxRlnEvsXw9HVRqO1dxC0HGoUisY9wM2r/McJux6aD4Lf3oWoh8tWfBxAUlo2y/fFE7M3nrWHEsnM\nycfP05U+LULp3zKU7hHB+HiU/79Mk2Bf7oqqz5wNsYzs1oiwWt4VkF7TKoe+PFWMTXGbGLlkJE92\nfJKHrnuoApJVksSDfzVkn7a+DwGNjLaJyCFGt1iLS8UfN2EfzOgKXcbCgFcq/vXt5MT5dGL2xhGz\nN57Nx5PIV1DH35P+LUPp36o2nRsF4uZS8WNg41Iy6fHmSm66rjZT72lf4a+vaddKX54qp061O9Gt\nXjdm75rN7RG34+fuZ3akouXnG8XhcqE4f9h4vm576P13o1AERxbfkF1RQlpA23th40y4/lGo2cC+\nxysjpRR7zlwkZo9RKPbHXQIgsnYNHu/VlP6tatOqrh9i5/ertr8nD3VrxEdrjjCmexNa1nXQ3y9N\nK0SfaZRgf9J+7vzpTh6+7mEmdZxUIa9ZIXIy4dgaOLAY9v8MaQlgcTXGSkQONi4V+der/FwXTsJ7\nHaD1nXDrB5V//GLk5OWz6VgSMXvjidkTx5mUTCwCUeGBxhlFy9qmXCJKSc8h+o0VdGgYwKcP6YGR\nmrn0mUYFiAyMZFCjQczZN4f7WtxHiHeIeWEyLhgN2PsXGSOzs1PB3Rea9rU2ZPcDr5rm5QPj7KLT\naNgwA7qON84+TJKWlcuag4nE7I1n+b54Lmbm4uFqIbpZMJP6RdAnMoRaJvdc8vd2Y2yvpkz5ZT9/\nHD2vB/xpTkGfaZTi5KWT3PLDLdza9FZevOHFCntdm6SctjZkL4Lj6yA/F3xCjC6xkUOgUXdwdbAu\nm2nn4d12xlnPvXMr9dDnUrOMhuw98aw9fI7s3HxqervRJzKU/q1CiW4WhLe7Y/2dlJGdR8+3VlK3\nphfzH+tq98timlYcfaZRQRrUaMCdEXfyzYFvGNFyBI38G9nvYEoZDcoHFhvtE2e2Gc/Xago3PG5c\neqoXZUzb4ah8akHXCbDyP3Big9Gzyo6OnUtj6d44YvbEs+VEMkpB/QAvhl8fRv+WtekUHoCrHRqy\nK4qXuwuT+kbw/PxdxOyNZ0Cr2mZH0rQS6TMNG5zLOMeg+YOIrhfN2z3frtDXJj/PmK7jckN28jHj\n+fqdjLaJyCEQ7GQjh7PTYFo7o9g99HOFNsLn5yt2nU4xejztiedQQioALev40b+V0T7Rok4Np/qL\nPTcvn/5T12AR4deJ0Q5d5LSqS59pVKAgryAeaPUAH+74kD3n9tAqqJwDsnIyjAkA9y82JgRMPwcW\nN2PcRLcJEHET+NWpkOymcPeBHs/Cz0/DoRiIGFCul8vOzWfDsfPE7Iln6d544i5m4mIROocHct/1\nYfRtEUqDQOcd6+DqYuGZ/s15bM5W5m89zV2dHLPnmaaBSWcaIhIIfA2EA8eBu5RSyYX2aQgswFgo\nyg14Tyn1YWmvbY8zDYDU7FQGzR9ERGAEs/vPvvYXSE8yPkD3L4LDyyEnHTz8jJHYkYOgaT/wrELd\nLvNy4P1OxqjzR9de89iQS5k5rD5ojMheuT+BS1m5eLm50D0iiP4ta9M7MoQAH3c7ha98Silu/WA9\nCRczWfl0Tzzd7DCWRtNK4OhnGs8By5VSU0TkOevjyYX2OQvcoJTKEhFfYLeILFRKnanssAC+7r6M\nbjOaNza9wfoz6+lat2vp33ThhNEldv8iiF0PKg9q1DHGM0QONhqLXavOB98VXNyMcSLfPwy7voW2\n95T6LQkXM1lqbcj+/ch5svPyCfRx56bWtenfsjY3Nguqsh+mIsLkgc25b9YGPv/9OGO6NzE7kqYV\nyawzjQNAT6XUWRGpA6xSSjUvYf9awDagS2lFw15nGgDZedncvOBm/D38mTdkHhYpdO1ZKYjfbVx2\n2r8Y4nYazwdHWkdkD4Y67R27Ibsi5efDzB6QeQEe31xkT6/DCanG1OJ749h24gIAYYHeDGhljMju\nEBaASzEzxlZFI/63kR0nL7Dm2V74e7mZHUerRhx6llsRuaCUqmm9L0Dy5ceF9msALAaaAs8opaYX\n83pjgDEAYWFhHWNjY+2WfeGRhbyw7gXe7P4mAxsNhLxcOPmHtVAsMs4uEGhwvXHZqflgCGpqtzwO\n7/Ay+PJ2GPg6dHmU/HzF9lMX/pwx9mhiGgCt6/n/OXVHRKivUzVkV6Tdp1MY8t46xvVqwjMDIs2O\no1UjphcNEVkGFNV/8AXgs4JFQkSSlVLFrn0pInWBH4CblVLxJR3XnmcaAHn5edyx8HayMy/wg3tz\n3A7FQEaSsU52457WEdk3ga+JAwEdiVLkf3ozuXF7eLXZPBYfuETipSxcLcbqdf1bhdK3RSh1a1bA\nxIlVxPivtrF0bxxrnulFiJ+TTpapOR3T2zSUUsWuYCQi8SJSp8DlqYRSXuuMiOwGooHvKjiqbdLO\nwcFfcdn/M5NOb+XxYH8WJCznrmb9jELRpA946NXYLkvJyGHVgQRi9sZz/vhNzJO1BO+aSeeIcfRr\nGUqv5iH4e+vLL0V5ql8Ev+w6y7Tlh3jlttZmx9G0K5jVEL4QeACYYr39sfAOIlIfOK+UyhCRAOBG\n4J1KTZl07K+pxU/8Diof/OrTvcXddMg+yAzPiwy5eSrebs7b3bMinU3JYNleY2rx34+cJzdfEeTr\nQb+20SQkDWBswq/I0CngG2x2VIcWHuTDvZ3DmLvxBKOiG9MoqOotbKU5L7PaNGoB3wBhQCxGl9sk\nEYkCHlVKjRKRfsDbgAIEeF8pNbO01y7X5akTG4yePjnpcGY7JOwxng9pVaAhuy2IsC1hGyN+GcGE\n9hMY3WZ02Y7n5LYcT2LRrrNk5eSx58xFdpxKAaBRkM+fA+3aN6hpLH167hBMv95YEnbQGyYnd3wJ\nlzLp8cYqercIYfp9HcyOo1UDprdpmKXMRWPvQvhmBEaNAmq3NrrGNh8EgUVPHTJ++Xg2x2/ml2G/\nUNPT5MkCK5FSihmrjvDmkgOX3y2ahfhya/t6DGgVSpPgYhqyF06A7XPh8U3FvqfaX96OOcB7Kw7z\n0+M30rq+v9lxtCrO1qJRTfp+2uDcQf4sGOICrW6DG8aV+OE2ocME0nLSmL2rDIP9nNTm40nc8eHv\nvFGgYLgI3Nq+HuN6NaVpSAlTePR8zhjkt+q1SsvrzMZ0b0yAtxuv/7rf7Cia9iddNC5r1B1cvYyC\n4eJuDLwrRbOAZtzc5Ga+2v8VZ1PPVkJI8xxOSGXM55u548PfOZmUzqM9GuPpZsFFwM3VYtu03n51\n4fpHYOc3ELfb/qGdXA1PN8b1asq6w+dYd+ic2XE0DdCXp650ciMcX2sUjAa2LYpzJvUMQxYMYXDj\nwfy727/LdlwHlnApk2nLDjFv00m83Fx4pHtjHo5uhLe7K1tik/9cB6Jjw2J7TF8pIxmmtTXGsQz/\n1r7hq4DMnDx6v7WKoBoe/DiuW7Udv6LZX4V1uRWRJ4t4OgXYopTaXpZwDqtBZ5uLxWV1fetyT+Q9\nzNk3hwdbPUiTmlVj+oe0rFxmrjnKrLVHyc7N5/7rwxjfpxlBBRYu6tgwwPZicZlXANz4BCx7CY7/\nBuHdKjZ4FePp5sIT/SJ45rud/LwrjsFtnHgiS61KsOXyVBTwKFDPuj0CDARmicizdszmNEa3Ho23\nqzfvbn3X7CjllpOXz5d/xNLjzVVMW36IXs1DWPpkD14eet0VBaNcOj9izMG17EVj6hWtRMM61Cci\n1Je3Yg6Qk5dvdhytmrOlaNQHOiilnlJKPQV0BEKA7sCDdszmNAI8A3iw1YOsOLmC7QnOefKllOLX\n3XEMeGcNf/9hN42DfJg/tivTh3eo+HEC7t5Go/ipTcYYGK1ELhbhmQGRHDuXxjebT5odR6vmbCka\nIUBWgcc5QKhSKqPQ89Xa31r+jVqetZi6dSrO1k60JdboEfXol1uwWIRZI6L4+pEudAi7xktP16Ld\n/VCrGSz/lzF/l1aivi1CiGoYwLRlh8jIzjM7jlaN2VI05gAbRORFEXkR+A2YKyI+wF67pnMi3m7e\nPNL2EbbEb2Ht6bVmx7HJkcRUHvliM7fPMHpEvTasNb9OjKZfy1D7N7i6uEKff8C5A7Bznn2PVQWI\nCJNviiThUhb/++2Y2XG0asym3lMi0gm4vIDEb0op+80IWE72nrCwJDl5Odzywy14u3nz7c3fXj11\nuoMo2CPK09XCoz2a/NkjqlIpBbN6Q2oCjN8CbnpyvtI8/OkmNh5PYu2zvajpXUXXYtFMUdGD+7YC\n32KspJcgImHlCVdVubm4Mb79eA4mH2TxUce7Vp+WlcvUZQfp+eYqvt50kuHXh7H62V6M79Os8gsG\nGGuH930JLp6CTbMq//hO6JmBzUnNymXGqiNmR9GqqVKLhoiMB+KBpcAijPUtFtk5l9Ma2GggLQJb\nMH37dLLzss2OA1zZI2rqskP0bB7M0id78K+K7BFVVo17QJPesPZtyEwxN4sTiKztx23t6vHp+uOc\nTckwO45WDdlypjERaK6UaqWUaqOUaq2UamPvYM7KIhYmdpjI6dTTfHvQ3MFrxfWI+mB4R8eaObXv\nS8agv9+mmZ3EKTzRLwKlYOrSQ2ZH0aohW4rGSYzBfJqNutbtSufanZm5cyZpOWmmZDClR1RZ1WkL\n190Ov38Al+LMTuPwGgR6M7xLGN9uOcnhhEtmx9GqGVuKxlFglYg8LyJPXt7sHcyZiQiTOkwiKTOJ\nz/d8XqnHLtgj6kRl94gqj14vQH4OrH7d7CRO4fFeTfF2d+XNJQfMjqJVM7YUjRMY7RnuQI0Cm1aC\n1sGt6RvWl0/3fMr5jPN2P17ipSz+/sMu+r+zhnWHzvFUvwhWP9OTezuH4erimL24rlCrCXR8ELZ8\nBud1I29pavl6MDq6MUv2xLP1RLLZcbRqRE9YaEdHU45y24+3cW/kvTzX+Tm7HCMtK5dZa48yc40x\nR9R914cxodAcUU7jUjy82w4iBsKdn5idxuGlZeXS482VNAn2Zd6YLo59Jqk5vHJ3uRWRqdbbn0Rk\nYeGtIsNWVY39G3Nb09v4+sDXnLp0qkJf26F7RJVVjVDoMhb2zIcz28xO4/B8PFwZ37sZG44lsfpg\notlxtGqi2DMNEemolNoiIj2K+rpSarVdk5WRI51pAMSnxTN4wWD6NezHa9HlX3xIKUXM3nhe/3U/\nRxPT6BweyHODIh2zgbssMlNgWjujcXzED2ancXjZufn0+e8qfD3cWDz+RmNpXU0rg3KfaSiltlhv\nVxe1VWTYqizUJ5T7WtzH4qOLOZBUvkbLyz2iHvliCxZx8B5RZeXpD9FPwdGVcHSV2Wkcnrurhaf6\nNWff2Yv8tPOM2XG0aqCkM41d/Ln+6dUcdayGo51pAKRkpXDT/JtoH9Ke6X2mX/P3H0lM5c1fD/Dr\nnjiCa3jwZL8I7uxY3zkauMsiJxPe6wi+wTB6pTFyXCtWfr5i8HvrSMvKZdmTPXB3raK/F5pdVcQ0\nIkOAm4Ffrdtw6/YL8HNFhKwu/D38efi6h1lzag1b4rfY/H0Fe0StPZTIk87WI6qs3Dyh1/8Z7Rp7\n9SWq0lgswrMDm3MiKZ2vNp4wO45WxZXae0pEtiml2hd6bqtSqoNdk5WRI55pAGTkZjBk/hDq+Nbh\ni5u+KLGnS5XqEVVW+XkwoxvkZcO4DeDiZnYih6aU4p6Zf3AkMZXVz/TCx8OEucQ0p1aRExaKiHQr\n8KCrjd+nFeDl6sWj7R5lR+IOVp5cWeQ+uXn5zNlQxXpElZXFBfr8E5KOwLYvzU7j8C5PnX4uNZvZ\na/XU6Zr92PLh/zDwgYgcF5FY4ANgZHkOKiKBIrJURA5Zb4ttyRURPxE5JSLvl+eYjuC2prcR7hfO\nu1vfJS//r4V0lFIs2RNH/6lreGHBbhoFeTvmHFGVrflN0OB6WDUFstPNTuPwOoQFMKBVKLPWHuV8\nql4fTbOPUouGUmqLUqot0BZoo5Rqp5TaWs7jPgcsV0o1A5ZbHxfn38Cach7PIbhaXBnffjxHUo6w\n8Igx1KVgjygBZo2I4ptHbqhaPaLK6vLU6alxsOFDs9M4hWcGNCc9O5fpK/Woes0+bLrwKSKDgVaA\n5+Vr8Uqpf5XjuEOBntb7nwGrgMlFHLcjEIrREF/qtTZn0K9hP66rdR3vbp3OL7/XJmZvEsE1PHj1\nttbcFVWFe0SVVcOu0GwArJtqTDPiHWh2IofWNKQGd3Ssz5d/xDLyxnDqB3ibHUmrYmxZT+ND4G5g\nPCDAnUDDch43VCl11no/DqMwFD6uBXgbeLqcx3Io51Kz8cscyrnMeH5LXPhnj6j7rq/iPaLKo++L\nkHUR1r1jdhKnMKlvBAj8d+lBs6NoVZAtn1JdlVIjgGSl1MvADUBEad8kIstEZHcR29CC+ymj+1ZR\nXbjGAj8rpUqdf0NExojIZhHZnJjomNMppGXlMm3ZIXq+uZLlW/0IcW1DzbpreSi6tjmr5jmT0FbQ\n5m7YOBNSTpudxuHVrenFg13DWbDtNPvjLpodR6tibCkal5cHSxeRukAOUKe0b1JK9VVKXVfE9iMQ\nLyJ1AKy3CUW8xA3A4yJyHHgLGCEiU4o51kylVJRSKio4ONiGH6nyFOwR9c6yg3SPCCbmie68N/AF\nLman8MluPTGfTXr9H6h8WF3kr4BWyNieTfD1cOXNX/XU6VrFsqVoLBKRmsCbGGuFHwe+KudxFwIP\nWO8/APxYeAel1HClVJhSKhzjEtXnSin7TBVrB0X1iPr+sa7MuL8jjYN9aVmrJQPDB/Llvi9JTHfM\nsyOHEtAQoh42ut8m6ssupanp7c6jPZqwfH8Cm44nmR1Hq0Js6T31b6XUBaXU9xhtGZFKqX+U87hT\ngH4icgjoa32MiESJyOxyvrbptsQmc2cRPaI6NryyR9T49uPJycvho50fmRPU2UQ/BW7esKI8fTCq\nj5HdGhFSw4Mpv+ynqi2BoJnHloZwbxH5h4jMUkplASEiMqQ8B1VKnVdK9VFKNbNexkqyPr9ZKTWq\niP0/VUo9Xp5jVoajiak8+sUWbp+xntikdF69rTVLJnUvdtW8ML8wbo+4ne8Pfs+Ji3r6h1L5BkPX\n8bDvJzjleKP+HY2XuwsT+zZjS2wyy/cVdQVY066dLZenPgGyMNoYAE4D/7FbIieUeCmLf/ywm36F\n5oiypUfUo20fxc3Fjfe3Of3YxcpxwzjwDoJlL4H+67lUd0U1oFGQD28s2U9evn6/tPKzpWg0UUq9\ngdEAjlIqHaPrbbVXsEfUVxtPMPz6MFY/24sJfZrZ3CMqyCuI+1vczy/Hf2Hv+b12TlwFeNSAHs/C\n8bVweLnZaRyem4uFp/pHcDA+lQXbdM8zrfxsKRrZIuKFtVusiDTBOPOoti73iOr51pU9oso6R9RD\n1z1ETY+aTNs6zQ5pq6COD0HNhsbZRn6+2Wkc3qDr6tC6nj/vLD1IZk5e6d+gaSWwpWi8iDEiu4GI\nzMGY9uNZu6ZyUEopYvbEMcDaIyq81pU9osqqhnsNRrUexfoz69lwdkMFJq6iXN2h998hfpexNKxW\nIotFmDwwktMXMvjyj1iz42hOrsSp0cVova0PpANdMC5L/aGUOlc58a6dvaZG33oimdd+3sem48k0\nCfZh8sDIYhu4yyIrL4shC4YQ5BnE3MFzK+x1q6z8fPgoGrJTYdwmo5BoJbp/9gb2nElh9bO98PPU\nU81rV6qQqdGto7V/tvZ2WqyUWuTIBcMejiam8tiXWxj2wXqOn/+rR1T/VrUr9IPdw8WDsW3Hsvv8\nbpbGLq2w162yLBbo8yIkH4etn5mdxilMHhhJcnoOs9YcNTuK5sRsuTy1VUQ62T2JgynYI2rNwWvr\nEVVWtzS5hSb+TXhv23vk5ufa5RhVSrN+0LAbrH4dslLNTuPwWtf3Z3CbOsxee4zES9W6WVIrB1s+\n/a4HfheRIyKyU0R2ichOewczw5bYZKYuPcjk73b+2SPqvs5hrHrm2npElZWLxYUJHSZw/OJxFhxe\nYNdjVQki0PdlSEuEPz4wO41TeLp/c7Lz8nlvxSGzo2hOypZPwQF2T+EANh47z/DZG8jJM9p4ujQO\n5NXbWpergbssejXoRbvgdny4/UOGNB6Cl6tXpR7f6TToBJFD4Ld3IWok+ASZncihNQry4e5ODZi7\n4QQP39iF+2TDAAAgAElEQVSIhrWq8SJfWpnYMo1IbFFbZYSrTMv2JvxZMCwC0c2CK71ggLFs56SO\nk0jISGDuvrmVfnyn1OefkJMGa982O4lTmNinGa4uwtsxeg4v7drpBRysBlxXGw9XCy4C7q4WujSu\nZVqWjqEd6V6/Ox/v/piUrBTTcjiN4ObQ7j7YNBsu6OlYShPq58nIbo1YuOMMu0/r3y/t2uiiYdWx\nYQBzR3fhyf7NmTOqy1WTC1a2Ce0nkJqdyse7PzY1h9Po+TwgsPI1s5M4hUd6NMHfy403luip07Vr\no4tGAR0bBjCuV1PTCwZA88DmDG48mLn75hKXFmd2HMfnXx86j4YdX0G8no6lNP5ebozr1YQ1BxNZ\nf6Ra9aLXyqnYoiEil0TkYnFbZYasrsa1G0eeyuPDHR+aHcU5RD9lzE21XE+dbosRN4RTx9+T1389\noKdO12xWbNFQStVQSvkB04DngHoYo8MnA1MrJ171Vr9Gfe5ufjcLDi/gaIoekFUq70DoNhEO/gKx\nv5udxuF5urnwRN8Idpy8wJI9+mxWs40tl6duUUp9oJS6pJS6qJSaAQwt9bu0CjG69Wg8XTz11Om2\n6vIY+IbqqdNtNKxDPZqG+PLGkgPk5unJH7XS2VI00kRkuIi4iIhFRIYDafYOphlqedXiwVYPsjR2\nKbsSd5kdx/G5+0CPyXDyDzj4q9lpHJ6ri4Wn+zfnaGIa3205ZXYczQnYUjTuA+4C4q3bndbntEoy\notUIAj0Dmbp1qr72bIsOIyCwidG2ka+nAi/NgFahtA+rydRlh/TU6VqpbBncd1wpNVQpFaSUClZK\n3aqUOl4J2TQrHzcfxrQZw8a4jaw/s97sOI7Pxc2YOj1hL+z8xuw0Dk/EmDo97mImn64/bnYczcHZ\nskZ4hIgsF5Hd1sdtROTv9o+mFXRnxJ3U863H1K1TyVf62nOpWt4KddrBylchV0/OV5oujWvRs3kw\nH6w8TEp6jtlxNAdmy+WpWcDz/LXc607gHnuG0q7m7uLOuHbj2J+0n1+P6Wv1pbJYoO+LkHICNukB\nkrZ4dkAkl7JymbH6iNlRNAdmS9HwVkptLPScnrfbBIMbDyYiIIL3tr1HTp7+a7BUTXpDox6w9i3I\n1EOLStOyrh9D29blk9+OEZeSaXYczUHZUjTOWdcFv7xG+B3AWbum0opkEQsTO0zkVOopvj/0vdlx\nnEPflyD9PKx/z+wkTuGp/s3JV4ppy/XU6VrRbCka44CPgEgROQ1MAh4rz0FFJFBElorIIettkfN2\niEieiGy3bgvLc8yqIrpeNB1DO/Lhjg9Jz0k3O47jq9fBaN/4fTqkJpidxuE1CPRm+PUN+WbzSY4k\n6oWttKvZ0nvqqFKqLxAMRCqlbqyA3lPPAcuVUs2A5dbHRclQSrWzbreU85hVgojwRMcnOJ95ni/2\nfmF2HOfQ+x+Qmwlr3jQ7iVMY16spHq4W3o7RkxlqV7Ol99REEfED0oF3RGSriPQv53GHApcXdv4M\nuLWcr1ettA1uS+8GvflkzyckZyabHcfxBTU1xm5s/gSSjpmdxuEF1/BgVHRjft4Vx46TF8yOozkY\nWy5PjVRKXQT6A7WAvwFTynncUKXU5XaROCC0mP08RWSziPwhIrqwFDChwwQycjOYtWuW2VGcQ4/J\nYHGFla+YncQpjI5uRKCPO6//ul8PKNWuYEvREOvtIOBzpdSeAs8V/00iy0RkdxHbFfNWKeM3srjf\nyoZKqSiMEehTrQ3yRR1rjLW4bE5MTLThR3J+TWo24ZYmtzBv/zzOpJ4xO47j86sDXR6FXd/C2Sq5\nxH2FquHpxuO9mrL+yHnWHtJTp2t/saVobBGRGIyisUREagClji5TSvVVSl1XxPYjEC8idQCst0W2\nUCqlTltvjwKrgPbF7DdTKRWllIoKDg624UeqGsa1G4cgTN8+3ewozqHbJPCsCctfNjuJUxjeJYz6\nAV68sWQ/+fn6bEMz2FI0HsZoqO6klEoH3IGHynnchcAD1vsPAD8W3kFEAkTEw3o/COgG6NV1Cqjt\nU5t7I+/lpyM/cShZd5EslVdNiH4SDi+DY2vNTuPwPFxdeLJfBLtPX2TxLt3LXjOUtAhTpPVuO+tt\nYxHpADQEXMt53ClAPxE5BPS1PkZEokRktnWfFsBmEdkBrASmKKV00ShkVOtR+Lj58O62d82O4hw6\njwG/erDsRT11ug2GtqtHZO0avB1zgBw9dbpGyWcaT1lv3y5ie6s8B1VKnVdK9VFKNbNexkqyPr9Z\nKTXKen+9Uqq1Uqqt9VbPBVGEmp41GXndSFadXMW2hG1mx3F8bl7Q8zk4vQX2LzI7jcNzsQjPDGjO\n8fPpzNt00uw4mgMoaeW+0dbbXkVsvSsvolaa4S2GE+QVxNQteup0m7S9D4IijKnT8/SMOKXpHRlC\np/AA3l1+iPRs/X5VdyVdnhpW0laZIbWSebt582ibR9masJU1p9aYHcfxubhCn3/CuYOwY67ZaRye\niPDcTZEkXsrif+v0OJfqrqTLUzeXsA2xfzTtWgyLGEZYjTCmbp1Knl54qHSRQ6BeFKx8DXIyzE7j\n8Do2DKRvi1A+Wn2U5LRss+NoJirp8tRDJWwjKzOkVjo3ixvj24/n8IXDLD622Ow4jk/EmMzw0hnY\nONPsNE7h2YHNScvOZfrKw2ZH0UxkS5dbRGSwiDwrIv+8vNk7mHbt+of3p0VgC6Zvm052nv5rsFSN\noqFpX1j7X8jQ02WUJiK0BsM61OfzP2I5fUGfnTmSOXPmEB4ejsViITw8nDlz5tjtWLbMPfUhcDcw\nHmMk+J0Y3W41B2MRC5M6TuJM2hm+OaCXObVJnxch8wL8NtXsJE7hiX4RAExdetDkJNplc+bMYcyY\nMcTGxqKUIjY2ljFjxtitcNhyptFVKTUCSFZKvQzcAETYJY1Wbl3rduX6Otczc+dMUrP11NalqtMG\nWt8Jf3wIF/UAttLUq+nFiC4N+X7rKQ7FXzI7jga88MILpKdfuUxCeno6L7zwgl2OZ0vRuHwemi4i\ndTGWfa1jlzRahXiiwxMkZyXz2d7PSt9Zg14vQH4urH7d7CROYWyvpvi4u/LGEj11uiM4ceLENT1f\nXrYUjUUiUhN4E9gKHAe+sksarUK0CmpF/4b9+WzPZ5zL0JPNlSqwEUQ9BFs/h3O6kbc0gT7ujOne\nmKV749kSm2R2nGpLKcWcfXNwC3Qr8uthYWF2Oa4tizD9Wyl1QSn1PUZbRqRS6h92SaNVmPHtx5Od\nl83MnbpnkE26PwOunrDi32YncQoPRzciyNeD1385oAeUmiAhPYHHlj3GlI1TiB4djZeX1xVf9/b2\n5pVX7LMMgC0N4S4icouITMBY+vVhEXnSLmm0ChPuH85tzW7j24PfcvKSnv6hVL4hcMM42PsDnN5q\ndhqH5+3uysQ+Tdl4PImVB/QyupVpWewyhi0cxpb4Lfyjyz9Y+upSZs2aRcOGDRERGjZsyMyZMxk+\nfLhdji+l/ZUgIj8DmcAuCkyJbm0UdzhRUVFq8+bNZsdwCAnpCQyeP5jeYb15vbu+Xl+qzIvwbjsI\nvQ4e0EvSlyYnL5++/12Nl5sLP0+IxmIpdZkdrRxSs1OZsnEKPx75kVa1WvFa9Gs08m9UYa8vIlus\n6xeVyJY2jfpKqWFKqReVUi9f3iogo2ZnId4hDG8xnJ+P/cz+pP1mx3F8nn4Q/TQcWw1HVpidxuG5\nuVh4qn9z9sdd4scdp82OU6VtS9jGHT/dwU9Hf2JMmzF8MeiLCi0Y18KWovFLBawJrplkZOuR+Ln7\nMW3rNLOjOIdOD4N/GCx7GfL1VOClGdK6Dq3q+vF2zEGycvX0NRUtJz+Hd7e+y4O/PgjAZwM/Y3z7\n8bhZim78rgy2FI0/gAUikiEiF0XkkohctHcwrWL4ufsxqvUo1p1ex6a4TWbHcXyuHtDr/+DsdqN9\nQyuRxSJMHhjJqeQM5m6wTxfP6upYyjH+9vPfmLVrFrc0uYXvb/mediHtSv9GO7OlaPwXY0Cft1LK\nTylVQynlZ+dcWgW6N/JeQrxD9NTptmpzF4S0NHpS5eWYncbhRTcL4obGtXh/xWFSs/TU6eWllOLr\n/V9z1093cTr1NO/0fId/d/s3Pm4+ZkcDbCsaJ4HdSn/aOC1PV0/Gth3LznM7WXFCX6svlcXFmF4k\n6agxdkMrkYgw+aZIzqdlM2vNUbPjOLVzGecYt3wc/9nwHzqGdmT+LfPp27Cv2bGuYEvROAqsEpHn\nReTJy5u9g2kVa2jToTTyb8S0bdPIzdd/DZYqYgA06GKMEs9OMzuNw2vXoCY3XVeb2WuPci41y+w4\nTmnFiRUM+3EYG+M28nzn55nRdwbB3sFmx7qKLUXjGLAccAdqFNg0J+JqcWVC+wkcSznGwiO6O2mp\nRKDfy5AaD3/MMDuNU3h6QHMyc/N5f4UeVX8t0nPSeWn9S0xcOZHaPrX5Zsg33NfiPkQcswuza0lf\nFBEXoIZS6ulKyqPZUZ+wPrQJasMH2z9gUKNBeLp6mh3JsYV1gYib4LdpEDUSvAPNTuTQmgT7cldU\nfeZsiOXhGxvRINDb7EgOb0fiDp5f+zynLp1iVOtRjG07FjcX83pG2aLEMw2lVB7QrZKyaHYmIkzq\nOIn49Hjm7Z9ndhzn0OefkHUJ1v3X7CROYWKfCCwi/FdPnV6inPwcPtj+AQ/88gB5+Xl8MvATJnaY\n6PAFA2y7PLVdRBaKyN/0GuHOr1PtTnSr141Zu2ZxMVv3nC5VaEtoey9smAkpp8xO4/Bq+3vyULdG\n/LD9NPvO6t+vosRejOWBXx5gxo4ZDG48mO9u+Y6OoR3NjmUzW4qGJ3Ae6I1eI7xKmNRhEhezL/LJ\n7k/MjuIcej0PKFj1mtlJnMJjPZpQw8OVN37VsxAUpJTi24PfcudPdxJ7MZa3erzFKze+Qg1352oi\nLrFNA4y1wisjiFZ5IgMjGdRoEF/u/fLPMRxaCWqGQafRsGEG3DAeQiLNTuTQ/L3deKxnU17/dT8b\njp7n+sa1zI5kuvMZ53lp/UusOrWKLnW68J9u/yHUJ9TsWGViyyy39UVkgYgkWLfvRaR+eQ4qIoEi\nslREDllvA4rZL0xEYkRkn4jsFZHw8hxX+8vj7R4nNz+XD3d8aHYU5xD9FLj56KnTbfRg13BC/TyY\n8uv+aj+gdPXJ1QxbOIz1Z9YzudNkPur3kdMWDLDt8tQnwEKgrnX7yfpceTwHLFdKNcPozvtcMft9\nDryplGoBdAb0HMwVpIFfA+6IuIP5h+ZzPOW42XEcn08t6DYB9i+CkxvNTuPwvNxdmNQ3gm0nLhCz\nN97sOKZIz0nnX7//i8dXPE6wVzDzhszj/pb3YxFbPnYdly3pg5VSnyilcq3bp0B5R5wMBS6vRfoZ\ncGvhHUSkJeCqlFoKoJRKVUqlF95PK7tH2j6Cu4s77217z+wozqHLWPAJgWUvQTX/69kWd3asT+Ng\nH95ccoC8/Or1fu0+t5u7Ft3Fdwe/46FWDzF38FyaBTQzO1aFsKVonBeR+62LMbmIyP0YDePlEaqU\nOmu9HwcUda4WAVwQkfkisk1E3rSOG7mKiIwRkc0isjkxMbGc0aqPIK8gRrQcQUxsDHvO7TE7juPz\n8IUez0Lsb3B4mdlpHJ6ri4Vn+jfncEIq32+tHj3PLl/yvf/n+8nKy+LjAR/zZNSTuLu4mx2twthS\nNEYCd2F8uJ8F7gBKbRwXkWUisruIbWjB/axzWhX1Z4grEA08DXQCGgMPFnUspdRMpVSUUioqONjx\nht07sgdbPUiARwBTt041O4pz6PAABITrqdNtNPC62rRtUJOpSw+SmVO1p04/efEkD/76INO3T2dA\n+AC+v+V7OtXuZHasCmfLGuGxSqlblFLBSqkQpdStSqlS50BWSvVVSl1XxPYjEC8idQCst0W1VZwC\ntiuljiqlcoEfgA7X9uNppfF192V0m9H8cfYPfj/zu9lxHJ+rO/T+B8Tvgt3fmZ3G4YkIkwc250xK\nJl/8Hmt2HLtQSrHg0ALu+OkOjl44yuvRr/N699fxc6+ak4EX2+VWRP5ZwvcppVR5upEsBB4Aplhv\nfyxin01ATREJVkolYowT0eu42sHdze/mi71fMHXrVK6vc73TN9TZXath8NtUWPEfaHmrUUi0YnVt\nEkR0syCmrzrM3Z0b4Ofp+KOebZWcmcxL619ixckVdK7dmVdufIXaPrXNjmVXJX06pBWxATwMTC7n\ncacA/UTkENDX+hgRiRKR2fDnFCZPA8tFZBcgwKxyHlcrgruLO+PajWPv+b3ExMaYHcfxWSzQ5yW4\nEAtb9ABJW0weGMmF9Bw+Wn3E7CgVZu2ptQxbOIy1p9fydNTTzOo/q8oXDACxpQ+1iNQAJmIUjG+A\nt5VSDtn9NSoqSm3erE9IrlVefh53/HQH2XnZ/HDrD6YuJ+kUlILPboaEfTBxO3g416heM4z/ahtL\n98ax5plehPg572SZGbkZ/Hfzf5l3YB5NazZlSvQUmgc2NztWuYnIFqVUVGn7lXgdwjoI7z/AToxL\nWR2UUpMdtWBoZedicWFih4mcuHSCBYcWmB3H8YlA35cg/Rz8Pt3sNE7hqX4R5OYp3l1xyOwoZbb3\n/F7uXnQ38w7MY0TLEcwbMq9KFIxrUWzREJE3MdoVLgGtlVIvKaWSKy2ZVul61O9B+5D2zNgxg4zc\nDLPjOL76UdDiZlj/HqSdMzuNwwsP8uHezmHM23iS4+eca2GrvPw8Zu+azfDFw0nLSWNW/1k80+kZ\nPFw8zI5W6Uo603gKYwT434EzInLRul0SET19ZRUkIjzR8QnOZZxjzr45ZsdxDr3/CTnpsOYts5M4\nhfF9muLmYuGtmANmR7HZqUunGLlkJNO2TqNPwz7Mv2U+Xep0MTuWaYotGkopi1LKSylVQynlV2Cr\noZSqmn3JNNqHtKdn/Z78b9f/SMlKMTuO4wuOgPb3w+aPIblqdimtSCE1PBkV3YhFO8+y65Rj/34p\npfjx8I/c8dMdHEw+yKs3vsqb3d/E38Pf7Gim0n0rtatM6DCB1JxUZu+abXYU59DjORALrHzV7CRO\nYXT3xgR4u/HGEsedOv1C5gWeWv0Uf//t70QGRvL9Ld9zc5ObHXYJ1sqki4Z2lWYBzbi5yc3M3TeX\nuLQ4s+M4Pv960HkM7Pwa4nabncbh+Xm6Ma5XU9YeOsdvhx2vLWj96fUMWziMlSdX8kTHJ/i4/8fU\n9a1rdiyHoYuGVqRx7cahUHyw/QOzoziHG58ATz9Y/i+zkziF+7s0pK6/J6870NTpmbmZTNk4hUeW\nPYKfux9zB81l5HUjcbEUOeVdtaWLhlakur51ubv53fx45EeOXKg6A7LsxjsQuk2CQ0sgdr3ZaRye\np5sLT/SLYOepFH7eZf7Z7P6k/dyz6B7m7JvD8BbDmTdkHi1qtTA7lkPSRUMr1pg2Y/By9dJTp9vq\n+kehRh09dbqNhnWoT0SoL2/FHCAnz5zJH/Py8/jf7v9x7+J7uZh9kY/6fsRznZ/D09V5Bx/amy4a\nWrECPAN4sNWDLD+xnB2JO8yO4/jcvaHHZDi5AQ78YnYah+diEZ4ZEMmxc2l8u7nyp04/k3qGUTGj\neGfLO/Rq0Iv5t8yna72ulZ7D2eiioZVoRMsR1PKsxdQtUx3m2rNDa/83qNXUaNvIr9pTgVeEvi1C\niGoYwNRlB8nIrpz3SynFoqOLuH3h7exL2sd/uv2Ht3u8TU3PmpVyfGeni4ZWIm83bx5p+wib4zez\n7vQ6s+M4PhdXY+r0xH2wY57ZaRyeiDD5pkgSLmXxyfpjdj9eSlYKz655lufXPk+zgGZ8d/N3DG06\nVHelvQa6aGiluqPZHdT3rc+0rdPIV3rhoVK1HAp12xvjNnIyzU7j8DqFB9I7MoQZq45wIT3bbsfZ\ncHYDty+8nWWxy5jQfgKfDPiE+jXq2+14VZUuGlqp3FzceLz94xxIPsDPx342O47juzyZ4cVTsEkP\nkLTFswObk5qVy4xVFd9TLysvizc3vcmomFF4uXrx5eAvGd1mtO5KW0a6aGg2uanRTUQGRvL+tvfJ\nycsxO47ja9wTGveCtW9BpmNPl+EIImv7cVu7eny6/jhnUypussyDyQe5d/G9fL73c+5pfg/f3PwN\nrWq1qrDXr4500dBsYhELEztM5HTqab49+K3ZcZxD35cgI9mYBVcr1RP9IlAKpi0r/9Tp+Sqfz/Z8\nxj2L7iEpI4npfabzQpcX8HL1qoCk1ZsuGprNutXtRqfanfho50ek56SbHcfx1W1nLA37+3S4FG92\nGofXINCb4V3C+GbzSQ4npJb5deLS4hgTM4a3Nr9FdL1o5g+dT/f63SswafWmi4ZmMxFhUodJJGUm\n8dnez8yO4xx6/x3ysmHNG2YncQqP92qKt7srby0p29Tpvxz7hWELh7Hz3E5e7voyU3tNJdAzsIJT\nVm+6aGjXpE1wG/qG9eXT3Z+SlJlkdhzHV6sJdHgAtnwK5/V0LKWp5evB6OjG/Lonjm0nbF/z7WL2\nRZ5b+xzPrnmWRv6N+P7m7xnWbJjuSmsHNq0R7kz0GuH2dzTlKLf9eBv9wvoRWSuSqNAo2oW0MzuW\n47oUB++2hwadoVF3CI827mtFSsvKpfsbK6nt78Gg1nXo0jiIjg0Dit1/U9wm/m/d/5GYnsijbR9l\nVOtRuFpcKzFx1WDrGuH6ndWuWWP/xkTXi2ZJ7BJiYmNws7jxTq936Fa3m+7GWJQatY2xGzu+gqOr\nwdUd7voCmvQGFzez0zkcHw9Xbm1Xl49/O87eM5dwdz3M9Ps60D0iGHfXvy6OZOdl8/729/l096eE\n+YXxxU1f0Dq4tYnJqwddNLQyaVKzCatPrUahyM7PZtzycQiCn4cfAR4B1PSoSU3PmkXeD/D867aG\new0sUg2uktZsYL2jIDcL5t5lPPT0B+9ahbbAKx97FXjsVROqQWH293YHQAFZufmM+ty4elDDw5UA\nH3d8apzjvNcnZMhJmnj0paffw+w+5sfp+DgCfdwJ9HEjwNsdfy83XF2qwe9XJdJFQyuTXg16MWff\nHHLycnCxuHBv5L34uvmSnJXMhcwLJGclE5cWx77z+0jOTCY7v+iRvhaxGEXFuhUsKFfcegRQ09PY\nx9fN1/muVTftB7+9azSKW1yNRZs8/CAjCdLPG9ulsxC/x7hfbO80Aa+AkotM4ec9/Y0Bh06kW9Mg\nPlh5mOy8fFwswkPdGlHDw5XzaZnsvLiYw7lfI8oT7wujOZQUwfbsopfaFTEWfQr0cSfA+/Ktu3Hr\n406gt/XWWmQCfdzx83TDYnGu96symdKmISKBwNdAOHAcuEsplVxon17AOwWeigTuUUr9UNJr6zaN\nyrM9YTub4zeX2qahlCIjN4MLWReuKCpX3WZdIDnTuL2QeYFclVvk67mK658FpHBRKfLWoyZerl7m\nF5qTG+H4WtvaNLLTrywo6QXvny/6+bxipuAQl0KFpJQi410L3H1NLzRbYpP54+h5ujSuRceGAcSn\nxfOP3/7B72d/p0f9HrzU9SWCvIIAyMzJ40J6Dklp2SSnZ195m5ZNUnqOcWt9/nxaNtm5RU+JYxEI\n8C5YVAoVmwJFJ8DbjQAfd2p4uJr/+1VOtrZpmFU03gCSlFJTROQ5IEApNbmE/QOBw0B9pVSJAwR0\n0agalFKk5aQVW1QK317eipsby8PF46oi4+/hX/yZjWcAHi4elfxTl4NSkJ1aRDEpXGwKPVbFzCzr\n4l76mUzhMx53b7v9eDHHY3j595fJyc/hmU7PcEezO8r1Ia2UIiMnz1pUckhKN4pLcvrlImN9vlAR\nyskr+vPS1SI2FZmCX/dyc6mwQjN27FhmzpxJXl4eLi4ujBkzhg8+uLZVNx29aBwAeiqlzopIHWCV\nUqp5CfuPAXoopYaX9tq6aFRf+SqfS9mXri4sRZzVpGSl/HlbHC9Xr2LPXAoWF38P/z+fdyuhYdvW\nM7NKo5QxxYmtZzLp540R7hTzmeHqVUKRKeY51+IL8/bdc/ntyM/stuSzLmkXrYNa8+qNrxLuH26X\nt6M0SilSs3KvKDJFn9lcWYTyi3m7PFwtRRQVN2oWU2QCvN3xdLu6PWvs2LHMmDHjqucfe+yxayoc\njl40LiilalrvC5B8+XEx+68A/quUWlTaa+uioV2L3PxcLmZfLPFSWeHb1JziRyv7uvkWeeaSmZvJ\n/MPzycvPw9XiysPXPUyYX1gl/qQVROUbl86yL0F2GmSlGmc42anF3y9p9gAXT/DwNS6Hufv+ef9E\ndjKzM45z+QLlrT6N+Wezu3ET5+oEkK8UmTn5pGXlkpqVS1pWLmnZ1tusPOvzeaRbn0vNziU9q/h1\nRdxdLfh4uOLr4Yq3hwu+7q48MPZ58ouoTC4uLuTmFn2JtyimFw0RWQbULuJLLwCfFSwSIpKslCqy\nI7b1TGQnUFcpVeRMedYzkTEAYWFhHWNji24U07SKkJOXU3z7zOVLZYWez8ituEn4qhuLUoxPTmFU\nykWzozgkebn49+VaPt9NH6ehlOpb3NdEJF5E6hS4PJVQwkvdBSwormBYjzUTmAnGmUZZM2uaLdxc\n3Aj2DibYO9jm79l4diNjl48lJy8HVxdXXuv2Gi1qtbBjSue2b/98nt8zizwBNwVRXZ+GZjebHcsh\nufwngry8q89OXFzsc1ZmVpfbhcADwBTr7Y8l7Hsv8HxlhNI0e+lcpzOz+892rDYNB9ag80RCvIPZ\nfHQJUY0H0O66+8yO5LDGjBlTZJvGmDFj7HI8s9o0agHfAGFALEaX2yQRiQIeVUqNsu4XDvwGNFDK\ntiXjdJuGpmnVTZXvPWVPumhomqZdO1uLhh5fr2maptlMFw1N0zTNZrpoaJqmaTarcm0aIpKI0bhe\nVkHAuQqKU5F0rmujc10bnevaVMVcDZVSpfYjr3JFo7xEZLMtjUGVTee6NjrXtdG5rk11zqUvT2ma\npvCIzzMAAAdISURBVGk200VD0zRNs5kuGlebaXaAYuhc10bnujY617Wptrl0m4amaZpmM32moWma\nptmsWhYNERkoIgdE5LB15cDCX/cQka+tX99gnQPLEXI9KCKJIrLduo2qpFz/E5EEEdldzNdFRN61\n5t4pIh0cJFdPEUkp8H79s5JyNRCRlSKyV0T2iMjEIvap9PfMxlyV/p6JiKeIbBSRHdZcLxexT6X/\nn7Qxlyn/J63HdhGRbSJy1TpDdn2/lFLVagNcgCNAY8Ad2AG0LLTPWOBD6/17gK8dJNeDwPsmvGfd\ngQ7A7mK+Pgj4BRCgC7DBQXL1BBaZ8H7VATpY79cADhbxb1np75mNuSr9PbO+B77W+27ABqBLoX3M\n+D9pSy5T/k9aj/0kMLeofy97vl/V8UyjM3BYKXVUKZUNzAOGFtpnKPCZ9f53QB+pqMV8y5fLFEqp\nNUBSCbsMBT5Xhj+AmtZ1UszOZQql1Fml1Fbr/UvAPqBeod0q/T2zMVels74Hl5dDdLNuhRtbK/3/\npI25TCEi9YHBwOxidrHb+1Udi0Y94GSBx6e4+j/On/sopXKBFKCWA+QCuN16OeM7EWlg50y2sjW7\nGW6wXl74RURaVfbBrZcF2mP8lVqQqe9ZCbnAhPfMeqllO8aCbEuVUsW+X5X4f9KWXGDO/8mpwLNA\ncUtG2O39qo5Fw5n9BIQrpdoAS/nrLwmtaFsxpkZoC7wH/FCZBxcRX+B7YJJSymHWKi0llynvmVIq\nTynVDqjP/7d3byFWVXEcx78/bIRMskjNQsii6E7lNSyDJCEhzEDQwsQeigIRqXyoHgZ97MGgoIQ0\nJi8IlSNIikUZzVTSRQXHS5CZRCGaUkamovbvYa2D4/HobG3m7GnO7wMDyz1r7/13MXuvs9bZ+79g\nrKQ76nHerhSIq+7XpKRHgAMRsbmnz1VLI3YavwKdPw0Mz9tq1pF0CTAIOFR2XBFxKCKO538uAUb1\ncExFFWnTuouIPyvTCxGxHmiSNLge55bURLoxr4yI1hpVSmmzruIqs83yOf8APgMervpVGddkl3GV\ndE3eB0yRtJc0jT1R0oqqOj3WXo3YaXwL3CTpekn9SV8Sra2qU1mOFmAasDHyN0plxlU15z2FNCfd\nG6wFZuUngu4FDkfEvrKDkjSsMo8raSzp773HbzT5nEuBXRGx6BzV6t5mReIqo80kDZF0RS5fCkwC\nvq+qVvdrskhcZVyTEfFSRAyPiBGk+8TGiJhZVa3H2qusNcJLExEnJc0BPiI9sfROROyQtBD4LiLW\nki6s5ZJ2k75ondFL4poraQpwMsc1u6fjApC0ivRUzWBJvwDNpC8FiYjFwHrS00C7gb+Bp3pJXNOA\n5ySdBI4CM+rQ+UP6JPgk0JHnwwFeJi1vXGabFYmrjDa7BnhXUj9SJ/VeRHxY9jVZMK5Srsla6tVe\nfiPczMwKa8TpKTMzu0juNMzMrDB3GmZmVpg7DTMzK8ydhpmZFeZOw/o0Sady9tEdOTXGC5L+89+9\npGslfdAdMXY65kJJD13gPnvr+fKdmR+5tT5N0l8RMTCXh5Kygn4ZEc3lRtY98lvBoyPiYNmxWGPw\nSMMaRkQcAJ4B5uQ3sUdIape0Jf+MB5C0TNLUyn6SVko6I+Nw3nd7Ls+W1Cppg6QfJL1afW5JYyS1\n5vKjko5K6q+0ZsOevL1F0rRc3itpQY6rQ9IteftVkj7OI6clpPTdlXM8L2l7/pmXt82XNDeXX5O0\nMZcnSlrZbY1rDcOdhjWUiNhDeuN+KClz6aSIGAlMB17P1ZaS3+yVNAgYD6zr4tB352PcCUzX2dlO\nt+Y6ABOA7cAYYBy1M80CHMyxvQW8mLc1A19ExO3AGvLb3JJGkd4qH0dan+NpSfcA7fl8AKOBgUr5\npyYAbV38n8zO4k7DGlkT8LakDuB94DaAiPiclAdsCPA4sDqnlz6fTyPicEQcA3YC13X+Zd7/R0m3\nktZOWURaRGoC6cZeSyWh4GZgRC4/AKzIx1wH/J633w+siYgjOeFgaz72ZmCUpMuB48AmUudxvvOa\nnVPD5Z6yxibpBuAUaZTRDOwH7iJ9gDrWqeoyYCYpZ0+RvFDHO5VPUfvaagMmAyeAT4AW0qhnfhfH\nPNfxuhQRJyT9RBo5fQVsAx4EbqT3JLy0/xGPNKxh5JHDYtLynEFKF70vIv4hJfLr16l6CzAPICJ2\ndlMI7fmYmyLiN9KiODeTpqqKagOeAJA0Gbiy07GnShog6TLgMU6PJNpJ01ttufwssLVOyRutj/FI\nw/q6S3NG1yZSJtLlpKkhgDeB1ZJmARuAI5WdImK/pF107yJEXwNXc/q7hG3AsAu8eS8AVknaQRo5\n/Jzj3SKpBfgm11sSEVtzuR14hdRZHZF0DE9N2UXyI7dmNUgaAHQAIyPicNnxmPUWnp4yq5JfsNsF\nvOEOw+xMHmmYmVlhHmmYmVlh7jTMzKwwdxpmZlaYOw0zMyvMnYaZmRXmTsPMzAr7F05hKLtHQPiz\nAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAADgCAYAAAD/ujrhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd8leX1wL/nZieEETLJBBK2jJCEoUwRHCjDgdY6qpW2\nP1erv9ZBq61WbX91YFu3XbZURQVBQAETprLChiSQAFlABkmAhOx7n98f7w0EcpPcJPfmMp6vn/dz\n7/u+zzjB5D3vc85zzhGlFBqNRqPR2IPJ1QJoNBqN5tJBKw2NRqPR2I1WGhqNRqOxG600NBqNRmM3\nWmloNBqNxm600tBoNBqN3WilobkiEJEKEenTzr5rReTHjpbJzrnbLbdG4wy00tBccojIMyLy9QXX\nMpu5dieAUqqLUupwZ8rpCJwht4i8LyIHRMQiIvfbuP8LESkQkdMi8ncR8XLk/JpLG600NJci64Gx\nIuIGICJhgAcw4oJrsda2mvPZDfwPsOPCGyIyDXgauBaIBvoAv+tU6TQXNVppaC5FtmEoieHW83HA\nGuDABdcOKaWOAYiIEpFY6/d/ishbIrJcRMpFZIuI9G0YXESuE5EMETklIn8FpNE9k4j8WkRyRKRI\nRD4SkW7We/8SkSet38Otcz5sPe8rIqUi0uRvTkRiRWSddb4TIvJpo3vKer+X1VTVcFSKiGrU7gER\nSReRMhFZKSLRzf3jKaXeUkolA9U2bt8H/E0ptV8pVQa8CNzf3FiaKw+tNDSXHEqpWmALMN56aTyw\nAdh4wbWWVhl3YrxB9wCygJcARCQQWAT8GggEDgFXN+p3v/WYhPEW3gX4q/XeOmCi9fsE4HAjeSYA\nG5RSFhuyvAisssoSAfzFxs98zGqq6qKU6gIsBj6xyjwDeBaYDQRZ/y0+buFnb4nBGCuRBnYDISLS\ns53jaS4ztNLQXKqs49wDeRzGg3LDBdfWtdB/sVJqq1KqHljAuRXKjcB+pdTnSqk6YD5Q0Kjf3cDr\nSqnDSqkK4BngThFxt853jXU1MR74P84pnAktyFOHYQrqpZSqVkptbOkHF5GngAHAA9ZLPwVeUUql\nW3+el4HhLa02WqALcKrRecN3/3aMpbkM0UpDc6myHuMBHQAEKaUyge8xfB0BwBBaXmk0VgSVGA9L\ngF5AXsMNZWT0zGvUtheQ0+g8B3AHQpRSh4AzGApoHLAMOCYi/WlZafwKwwS2VUT2i8gDzbRDRG4A\nHgdmKqWqrJejgTdF5KSInARKreOFNzdOC1QAXRudN3wvb8dYmssQrTQ0lyqbgG7AQ8B3AEqp08Ax\n67VjSqkj7Rj3OBDZcCIi0vjcOn7jN/gooB4otJ6vA24DPJVSR63n92GYnnbZmlApVaCUekgp1Qv4\nCfB2g/+lMVbl8y/gDqVUY0WWB/xEKdW90eGjlPq+LT+4lf3AsEbnw4BCpVRJO8bSXIZopaG5JLG+\nZacCT2CYpRrYaL3W3l1Ty4HBIjLbanJ6DAhtdP9j4Bci0ltEumCYgj61moXAUBKPNJp/rfV8o1LK\nbGtCEbldRCKsp2WAAiwXtOkKLAHm2TBfvQs8IyKDrW27icjtzf2AIuIpIt4YqxEPEfFu5KD/CHhQ\nRAaJSHcM384/mxtLc+WhlYbmUmYdEIyhKBrYYL3WLqWhlDoB3A78ASgB4rCuZKz8Hfi3dfwjGDuQ\nHr1AJv9G828EfFuRJxHYIiIVwFLgcRuxGfFAf+CNxruorDIvBv4IfCIip4F9wA0tzLcKqALGAu9b\nv4+3jvUNhi9mDZCLYX57voWxNFcYooswaTQajcZe9EpDo9FoNHajlYZGo9Fo7EYrDY1Go9HYjVYa\nGo1Go7EbrTQ0Go1GYzfurhbA0QQGBqqYmBhXi6HRaDSXFNu3bz+hlApqrd1lpzRiYmJITU11tRga\njUZzSSEiOa230uYpjUaj0bQBrTQ0Go1GYzdaaWg0Gs0lzoIFC4iJicFkMhETE8OCBQucNtdl59PQ\naDSazmRX0S5SC1NJCElgePDw1js4mAULFjB37lwqKysByMnJYe7cuQDcfffdDp/vsss9lZCQoLQj\nXKPRdAa7inbx4MoHqbPU4eXmxQdTP+h0xRETE0NOTlMfdnR0NNnZ2XaPIyLblVIJrbVzqXlKRK4X\nkQMikiUiTzfT5g4RSbMWp/lvZ8uo0Wg0zbHx6EZqLbUoFLWWWlILO/+FNTc3t03XO4rLlIaIuAFv\nYaRwHgTcJSKDLmgTh1FO82ql1GDg550uqEaj0TTD7uJz5dTdxI2EkFZf1B1OVGSk7etRUU6Zz5Ur\njSQgy1pruRb4BJhxQZuHgLeUUmUASqmiTpZRo9FobPL1ka/ZfHwzs2Jn4WHyYFz4OJf4NF76QQK+\nHudf8/X15aWXXnLKfK5UGuGcX3s5n6Y1jfsB/UTkOxHZLCLXd5p0Go1G0wyFZwp5cfOLDA0aynNj\nnmNsr7EcOnWo8wXJ2cTd3im8/+h1REdHIyJER0fz/vvvO8UJDhf/7il3jMppE4EIYL2IXKWUOtm4\nkYjMBeaC85ZkGo1GA2BRFn7z3W+ot9TzyjWv4G5yJzE0kXX56yg4U0CoX2jrgziCmnJY/BPoFsnd\nT3/B3a/5d8q0rlxpHAUaG+MirNcakw8sVUrVKaWOAAcxlMh5KKXeV0olKKUSgoJaTZ2i0Wg07ebj\njI/ZdHwT/5vwv0R1NV5SR4WNAmBbwbbOE2Tls3AqD2a/D16dozDAtUpjGxAnIr1FxBO4E6M+cmO+\nxFhlICKBGOaqC2snazQaTadw+NRh3tj+BuPCx3F7v9vPXu/Xox/dvLqx5fiWzhEkYwXs+Aiu/jlE\nje6cOa24TGkopeqBR4CVQDqwUCm1X0ReEJFbrM1WAiUikoZR6P6XSqkS10is0WiuZOosdTyz4Rl8\n3H144eoXEJGz90xiIjEkka0FW3F67FtFMSx9FEKvgonPOHcuG7jUp6GUWgGsuODac42+K+AJ66HR\naDQu473d75FWksYbE98g0Cewyf3E0ES+zf2W/Ip8Iv1tb4PtMErBV48b/oxZX4G7p3PmaQGde0qj\n0WhaYXfxbj7c+yG39L2FKdFTbLbpFL/Gzv/AgeVw7XMQMqj19k5AKw2NRqNpgcq6Sp7d8CzBvsE8\nnWQzcQUAfbr1oad3T+f5Ncqy4ZunIWYcjP4f58xhBxf7lluNRqNxKa+lvkZeeR5/m/Y3/D2b36Uk\nIiSFJrGtYBtKqfN8Hh3GYobFPwUxwcx3wOS693290tBoNJpm2JC/gYUHF3Lf4PtIDE1stX1SWBLF\nVcUcOX3EsYJ8/2fI3QQ3/gm6O8lfYidaaWg0Go0NyqrLeO7754jtHssjIx6xq09SaBIAW49vdZwg\nBXsh5SUYNAOGznHcuO1EKw2NRqO5AKUUL25+kZM1J/nDuD/g5eZlV79I/0hC/ULZWuAgpVFXDYvm\ngm9PmD4fHGnyaidaaWg0Gs0FLDu8jNU5q3lk+CP0D+hvd7/Gfg2LsnRckJQXoSgNZvwVfAM6Pp4D\n0EpDo9FoGnG84jgvb3mZ+OB47h98f5v7J4UmcbLmJJllmR0T5MgG2PQWJDwIcdd1bCwHopWGRqPR\nWLEoC/O+m4dFWXjpmpdwM7m1eYyzfo2OmKiqT8GXP4OAPjD1xfaP4wS00tBoNBor/077N9sKtvF0\n0tNE+Ee0a4ywLmFE+kd2zBn+9VNw+piRjNDTr/3jOAGtNDQajQbILMvkzR1vMilyEjNjZ3ZorKTQ\nJFILU6m31Le9c9oS2P0xjP9fiOj8SoCtoZWGRnMJsatoFx/u/ZBdRbtcK0jeVtjwmvHpIrbnlPHW\nmiy255R1eKxacy3PbHgGf09/nh/zfIcD85JCk6ioqyCjNKNtHcsL4KufQ68RMP6XHZLBWeiIcI3m\nEmFX0S4eXPUg9eZ6PN08+WDqBy4pL0reVvjXdDDXg5sn3LcUIpM6VYTtOWXc/eFmausteLqbWPDj\n0YyM7tHu8d7e9TYHyg7wl8l/oadPzw7LlxR2zq8xJHCIfZ2UMrLX1lXCrPfBzaP1Pi5ArzQ0mkuE\njUc3UmuuxYKFOksdqYWprhFkz6dQXwPKDOZayN7Q6SJsPlxCTZ0Fi4LaegubD7e/YsKOwh38fd/f\nuTXuViZGTnSIfIE+gfTt1rdtfo3t/4DMVXDdCxDUzyFyOAOXKg0RuV5EDohIlog0mwlMRG4VESUi\nF5+BT6PpJBqbTNxN7iSEuOjPofr0ue9unkYCvU5mdJ+eZ+PcRITRfdq3OjhTd4ZnNz5LeJdwfpno\nWHNQYmgiO4p2UGeua71xySFYOQ/6TILEhxwqh6NxmdIQETfgLeAGYBBwl4g0yfUrIv7A40AnlcTS\naC5ODp08hJsYW0AfHPKga0xTSsHR7WCVg1v+3OmmKYC4kC6IgEnA083EwLD2lTv9v23/x/Ezx3l5\n3Mv4eTh2l9KosFFU1Vexr2Rfyw3N9UatbzdPmPm2S5MR2oMrpUsCspRSh5VStcAnwAwb7V4E/ghU\nd6ZwGs3FRI25ho1HNzIrbhbhXcLZXrTdNYKcOAilh2DCU2DygGOuccivPVCM2QK/nDaAqjozK/YW\ntHmMlNwUFmUu4oEhDzAieITDZUwISUCQ1lOlb3wD8rfBTa9B114Ol8PRuFJphAN5jc7zrdfOIiLx\nQKRSanlLA4nIXBFJFZHU4uJix0uq0biYzcc2U1VfxZSoKcyMncmW41vIL8/vfEHSvzI+4++BATfC\nnk+gvrbTxVi5v4DALl7MHd+HPoF+LNyW13qnRpRUlfC7Tb9jQMAA/meYc2pTdPfuTv+A/i0XZTq2\nE9b9AYbcBlfd5hQ5HE2rSkNEnrBxPCgiTl0bi4gJeB14srW2Sqn3lVIJSqmEoKAgZ4ql0biElLwU\nunh0ISk0iZmxMxGEL7O+7HxBMpZD+EjjjXjEvVBZAgdWtN7PgdTUm1mbUcR1g4JxMwm3J0SyNbuU\nw8UVdvVXSvHbTb+loraCV655BQ8n7lJKCk1iV9Euasw1TW/WVRnJCP2C4aZXnSaDo7FnpZEA/BRj\nFRAO/AS4HvhARH7VgbmPAo0Tw0dYrzXgDwwB1opINjAaWKqd4ZorDbPFzNq8tYyLGIeHmwehfqGM\nDR/Ll1lfYraYO0+QU0fh2A4YMN047zsJukbAzn93ngzA91klnKk1M3VwKAC3jgzHzSQsTLVv5bU4\nazFr89byePzjxPaIdaaoJIUmUWupZXfR7qY3v/2tYe6b+Tb4tH+7cGdjj9KIAOKVUk8qpZ4ERgLB\nwHjg/g7MvQ2IE5HeIuIJ3AksbbiplDqllApUSsUopWKAzcAtSikX7TPUaFzDruJdlFaXMjlq8tlr\ns2NnU1hZyKbjmzpPkIYVRYPSMLnB8B9AVjKc6jxT2aq0Arp4uTO2r7FjKtjfm0n9g/liRz515pYz\ny+aV5/HHrX8kKTSJHw76odNlHRkyEjdxY0vBBX6NQ2tgy7sw6qeG8r2EsEdpBAON11Z1QIhSquqC\n621CKVUPPAKsBNKBhUqp/SLygojc0t5xNZrLjeTcZDxMHowLP7e1dVLkJHp49WBR5qLOEyT9Kwjs\nd34MwYi7AQW7/tspIpgtitVphUzsH4SX+7lkgnMSIykur2FNRlELfc3M2zgPk5j4/dW/xyTOd+l2\n8ezCoJ6Dzo/XqCqDL//H+Lec8luny+Bo7PlXWwBsEZHnReR54DvgvyLiB6R1ZHKl1AqlVD+lVF+l\n1EvWa88ppZbaaDtRrzI0VxpKKVJyUxgdNvq8LaEebh5M7zudNXlrKK0udb4gVWWQvREG3HT+9R4x\n0HuCYaKyOKB+RCvszC3jREXtWdNUA5P6BxHk78XC1OYd4v/c/092Fu3k2VHPEtYlzNminiUpNIl9\nJ/ZRWVdpXFj+v3CmCGa9Bx4+nSaHo2hVaSilXsTwY5y0Hj9VSr2glDqjlLrb2QJqNFcyB8sOcrTi\nKNdGXdvk3uzY2dRb6vnq0FedIMgqIwJ8wM1N78XfCydz4cg6p4uxKq0QDzdhUv/zN7y4u5m4bWQE\naw4UU3S66e78jNIM/rrrr1wXfR3T+0x3upyNSQpLol7Vs6NoB+z9HPZ9DhOehvD4TpXDUdi7PtsB\nfAYsBopEJMp5Imk0mgZSclMQhAmRE5rci+0Ry9CgoSzOXIxSyrmCZHwF/mFGIr0LGTAdvLs73SGu\nlGLl/gLG9g3E37vpjqc7EiIxWxSf7zjfv1JjruGZDc/Qw6sHz41+rsPJCNvKiOARuJvc2ZqTAsuf\ngIhEuOYXnSqDI7Fny+2jQCGwGlgGLLd+ajQaJ5OSl8Lw4OEE+gTavD87djaHTh1iz4k9zhOirspw\ndve/0Xa0soc3DJ0D6cug0nmmsoOFFeSUVDJ1cIjN+70D/UjqHcBnqfnnKdG/7PgLWSezeOHqF+ju\n3d1p8jWHj7sPQwOHsjVzKZjrDLOU26WbK9aelcbjQH+l1GCl1FCl1FVKqaHOFkyjudLJL88nozTD\npmmqget7X4+Puw+LMxc7T5BDa4zMqwNbMOvE3wPmGtj7mdPEWLm/ABG4bpBtpQEwJyGSIyfOsPWI\noby2Ht/KR2kfMaf/HK4Jv8ZpsrVGktmNdFXN6Sm/gZ59XSaHI7BHaeQBp5wtiEajOZ81eWsAmBw5\nudk2fh5+TIuZxtdHvj7naHU0GcvBqxtEt/DQDb0KwobDjn8b+amcwKq0AkZEdifY37vZNjdeFYa/\nlzufpuZRXlvOvO/mEdU1iidGPuEUmeyi+CBJ6auwiLA9bIDr5HAQ9iiNwxgBds80jgp3tmAazZVO\ncm4ycT3iiOwa2WK72XGzqayvZGX2SscLYa434jP6TQN3z5bbxt8DhXvhuOPzUeWXVbLv6GmmXbBr\n6kJ8PN24eXgvVuw9zgubXqa4spiXr3kZXw9fh8tkF+Y6WDyXYRYPvEyebG0ppcglgj1KIxfDn+GJ\nEaXdcGg0GidRWl3KzqKdLa4yGhgeNJyYrjHOidnI2wxVpU232tpiyG3g7g07PnK4GKvTCgGabLW1\nxZyESOq9d/NN9jIeGvoQQ4NcaE1f/yc4thPPm+czPGQEWwtcV+nQUbTqjVFK/a4zBNFoNOdYl7cO\ni7K06M9oQES4Ne5WXtv+GodPHqZP9z6OEyRjObh5QeyU1tv6dIdBM4xtpVNfAk/Hvd2v2l9Iv5Au\n9A5sPX15WEAtvr2+xMMczdyhcx0mQ5vJT4X1r8Kwu2DQDEbVF/HnnX+mtLqUAO8A18nVQZpdaYjI\nfOvnVyKy9MKj80TUaK48UnJTCPMLY0CAfTbwm/vejLu4szjLgQ5xpYwdUX0ngVcX+/rE3ws1pyHd\ncY+IsjO1bM0uZeqg1lcZSime3/Q8Jrc6yrJvJauwymFytInaM0Yywq694IY/AkZRJoDUgks7Rrkl\n81TDputXgddsHBqNxglU1lXy/bHvmRw12e6Ygp4+PZkQOYGlh5ZSZ7GjUpw9FOyFU7nnck3ZQ/TV\nENDHcIg7iOSMIswW1exW28Z8dvAzNh7dyCPDfo67OZRP25gy3WGs+g2UHoaZ74B3NwAGBw7G1933\nkjdRNas0lFLbrZ/rbB2dJ6JGc2Xx3bHvqLXU2mWaaszsuNmUVpeyPm+9YwTJWAZigv432N9HBEb8\nEHI2GiVMHcDK/QWEdfPmqvBuLbbLOZ3Dq6mvMrbXWB4YejdTB4fw5a6j1NR3YiZggMzVkPo3GPMw\n9D6XL8zD5EF8SHzrRZkucloyT+0VkT3NHZ0ppEZzJZGSm0J3r+5triY3ttdYgn2CWZTlIId4xnKI\nHA1+tgMLm2XYDwxls/M/HRahqtbMhsxipg4KaXHVVW+p59kNz+Jh8uCFsS9gEhNzEiM5WVnHqv2F\nHZbDbipLYcnDEDwIJv+mye1RoaPIPp1NUWXziRUvdloyT00Hbga+sR53W4+vgc6tuqLRXCHUWepY\nl7+OCRETcDe1LWrY3eTOjNgZbDy6kcIzHXxQlh6Bwn0tB/Q1R9cwiJtqZL4113dIjHUHi6mus7S6\n1fbDvR+y58QefjP6N4T4GWasq/sGEt7dp/NMVErBV48bimP2+0ak/AUkhRn11C9lE1VL5qkcpVQO\ncJ1S6ldKqb3W4ylgqiMmF5HrReSAiGSJyNM27j8hImnW1U2yiEQ7Yl6N5mIltSCV8try82pntIVZ\nsbOwKAtLDi3pmCAZ1grL9my1tcWIe6CiALK+7ZAYq9IK6ObjQWLv5ncb7T+xn/d2v8eNvW/k+t7X\nn71uMgm3J0SwMesEeaVOCnxszJ5PjQ0Ak+cZwY426N+jP/6e/i2XgL3IsSdOQ0Tk6kYnY+3s19qg\nbsBbwA3AIOAuERl0QbOdQII1bcnnwP91dF6N5mImJTcFH3cfxvYa267+kV0jSQpNYnHmYiyqA6nK\nM5ZDyFVG6vP20G+aUca0AzEb9WYLyelFXDswGA8324+cqvoqntn4DAE+ATw76tkm929PiEQEPtvu\n5CJRJ/NgxS8hagyMfazZZm4mNxJDEh3u11iwYAExMTGYTCZiYmJYsGCBQ8dvjD0P/weBt0UkW0Ry\ngLeBBxwwdxKQpZQ6rJSqBT4BZjRuoJRao5RqeEXYjFFFUKO5LLEoCyl5KYztNRZv9+ZTZbTGrLhZ\n5Ffkt39rZ0Ux5G5q/yoDwM0Dht0JB7+B8vaZyrYeKeVUVV2zW213Fe3ioVUPceTUEX5/9e/p5tXU\nUR7e3YdxcUF8npqH2eKkTMA5m+Gf043o75nvGBUNWyApLImjFUc5WnG0xXb2smDBAubOnUtOTg5K\nKXJycpg7d67TFIc99TS2K6WGAcOAoUqp4UqpHQ6YOxwjr1UD+dZrzfEghj+lCSIyV0RSRSS1uLjY\nAaJpNJ1PWkkaRZVF7TZNNTAlagr+Hv7td4gf/BpQ7fNnNCb+XqMGx+6P29V9VVohXu4mxvdr6ojf\nVbSLB1Y+wO7i3biJGz7uzRczmpMQybFT1WzMOtEuOVokbyv8azqczAZLPZxp/fmTFGr1axx3jF9j\n3rx5VFaeb36rrKxk3rx5Dhn/QuwyM4nITRiFmB4XkedE5DmnSNP8/D8EEoA/2bqvlHpfKZWglEoI\nCgqy1USjuehJzk3GTdyYENG0dkZb8Hb35sY+N/Jtzrecrj3d9gHSl0H3KAgZ0iE5CIwzzDU7257E\nUCnFqv0FjO8XhK9n0w0B2wq2nRePklrY/KpqyqBgevh6sNAZDvHMVdAgh7JA9oZWu8R2jyXAO8Bh\nzvDc3Nw2Xe8o9tTTeBeYAzwKCHA74AiH9FGgcSa2COu1C+efAswDblFKtbsmuUZzsZOSm0JCSIJN\nM0tbmR03mxpzDSsOt3GjY005HF5rBPQ5oljRiHugJAtyN7ep276jpzl2qpqpzaRBrzEbjwJB8DB5\nkBCS0OxYXu5uzBoRwaq0AkrP1LZJjlYpPWx8igncPCFmXMvtMdK+JIYmsrVgq0OKZ0VG2k5oGRXl\nnFp59qw0xiql7gXKrHmoxgD9WuljD9uAOBHpLSKewJ3AebkHRGQE8B6Gwrh0NzZrNK1w5NQRDp86\n3GHTVAODeg5iQMCAticxzPrWqIvRlijwlhg8Ezz921zVb+X+AkwCUwY2VRpV9VV8mfUlfbr24dER\nj/LB1A8YHjy8xfHmJEZSZ1Ys2uFAh3jpEUj/ynD6T/413LcUIpPs6poUmkRRZRE5p3M6LMYPH30a\ncfc675qvry8vvfRSh8e2hT1KoyF5S6WI9ALqgA5XZVdK1QOPACuBdGChUmq/iLwgIrdYm/0J6AJ8\nJiK7dM4rzeVKSm4KgMOUBhjbb9NL00kvSbe/U8Zy8O0JUaMdI4SnHwyZDfsXQ7X9prJVaQUk9Q6g\nh1/TdOz/SfsPhZWFPDf2OR4a+lCrCgOgf6g/wyK7szA1z3GlcZNfAJM7TH8Txj1pt8KARn6NDpqo\n6s0WtpoG0f+2J4mKikJEiI6O5v333+fuu+/u0NjNYY/SWCYi3TEe4DuAbKB9nq0LUEqtUEr1U0r1\nVUq9ZL32nFJqqfX7FKVUiNX5PlwpdUvLI2o0lyYpeSkM7jmYUL/Wk/LZy019bsLT5Gn/aqO+Fg6u\nMtKGtLIDqE3E32tU/tv3hV3Nj5w4w8HCCpsBfSeqTvDh3g+5NupaRoaMbJMYdyZGcrCwgl15J9vU\nzyZ522D/ImN7bde2v0NHd40m2De4w0pjYWo+mUUVvDHvEXJycrBYLGRnZztNYYB9u6deVEqdVEp9\ngeHLGKCUahofr9Fo2kVRZRF7ivc4dJUB0M2rG1Oip7D8yHKq66tb75C9AWpOOc401UD4SAgaaLeJ\natX+AsB2Wdd3d79LrbmWn8f/vM1iTB8aho+HGwtTO+gQVwpWzYMuITD20XYNISIkhSaxrWBbu1c+\nFTX1vL76IAnRPVqNmHck9jjCfUXkNyLygdURHSwiDv6t0miuXNbmrQVaLuvaXmbHzaa8tpzk3OTW\nG2csBw8/6DPRsUKIGFX9jm6HwrRWm69KK2Rwr65E9Di/Hsfhk4f5/ODn3NH/DmK6xbRZDH9vD24a\nGsZXu49TWduB9CbpSyFvC0yaZ3/KeBskhSZRWl1K1smsdvV/f90hTlTUMO+mgXZnQ3YE9pin/gHU\nYDjAwdjh9HunSaTRXGEk5yYT3TWavt37OnzsxNBEwruEszizlTobFouhNGKvBY/mYx7azdA7weTR\n6mqjqLyaHbllNt+cX9/+Oj7uPvx02E/bLcacxEgqaupZvud4+waor4XVzxsJCUf8sN1yAIwKGwW0\nz69RcKqa9zccZvrQMEZE9eiQHG3FHqXRVyn1fxgOcKwR2p2n1jSay5jTtafZenwrkyPtr53RFkxi\nYlbsLLYUbCHvdAtmmWM7jFxRA292uAwA+PU0Isx3fwL1ze+c/zatCKVoUjtjy/EtrMtfx0NDH6KH\nd/sfkgnRPegT5Nf+JIapf4OyI3Ddix32+/Tq0ovwLuHtCvJ7bdUBLBZ46nr7inQ5EnuURq2I+AAK\nQET6Yqw8NBpNB9mQv4F6Ve9wf0ZjZsTOwCSmlqv6pX9l7ASKu85pchB/j1Fv/EDzsSMr9xcQ3dOX\n/iH+Z6+KPlytAAAgAElEQVRZlIXXUl8jzC+Muwd2zMErItyREElqThlZRRVt61xVBuv+CH0mGSsy\nBzAqbBTbCrdhtthf8yPt2Gk+35HP/VfHEBnguJK69mKP0ngeIzV6pIgsAJKBXzlVKo3mCiElN4VA\nn0CGBg112hyhfqGM7TWWJYeWNP9wylgOMdeAjxNNHX0mQdeIZqv6lVfX8f2hE01qZyw/vJz00nQe\nj38cLzcvm33bwuz4cNxMwmdtdYhveA2qTsLUFx0T+IhhPiyvLedA2QG72iuleHlFOt18PHh4YqxD\nZGgrLSoNMf7PZQCzgfsxttomKKXWOl0yjeYyp8Zcw8ajG5kUOQmTdDhxdIvcGncrRZVFfHfsu6Y3\niw9CSabjd01diMkNRtwNh1LgZNMUF2sPFFNnVuf5M6rrq3lzx5sM7jmYG3q3oYJgCwT7e3PtgGC+\n2JFPndnOTMBl2bDlPRh+d7Npz9tDW/NQrTtYzMasEzw2OY5uvh4Ok6MttPibqoy9YCuUUiVKqeVK\nqWVKKSdk/dJorjy2HN9CZX2lU01TDUyImECAd4Bth3jGV8ZnR7La2stwq3lp13+b3Fq5v4DALp7n\nOXb/k24E8j2Z8KRDFeucxEhOVNSSkmFnoonkF0DcjFoZDiTYN5iYrjFsKWg9VXq92cLLK9KJ7unL\nD0e7rrSQPf8XdohIotMl0WiuMFJyU/Dz8Dv7tulMPNw8uLnPzazNW0tJVcn5NzOWG7EUXXs5XQ56\nREOfCbBzgbFjy0pNvZm1B4qZMjAEN5Nh+impKuHDvR8yKXISiaGOfQRN6BdEsL+XfUkM81ONwMSx\njzrl32hU2Ch2FO44LwGjLT7fns/Bwgqevn4Anu7OXZm2hD0zjwI2icghawW9vbpGuEbTMcwWM2vy\n1jA+fDyebk1TZTiD2XGzqVf1LDu87NzF08eM+InOWGU0EH8vnMqFI2vPXvr+UAkVNfXnmabe2f0O\n1fXV/GLkLxwugrubidtGRrDmQBEFp1oIfFQKVs4zCkpd/bjD5QDDRFVZX8n+E/ubbXOmpp7XVh9k\nZHQPrh/SeYF8trBHaUwD+gKTMWqGN9QO12g07WR38W5Kq0s7xTTVQJ/ufRgWNIwvMr84F4V8tqxr\nJ/5JD5huONwbOcRX7S/Ez9ONMX17AnD4lBHId3u/2+ndrbdTxLgjIRKLgi9aSmKY/hXkbTbMUh0I\n5GuJhlVUSyVg31t/mOLyzg/ks4U9aURybB2dIZxGc7mSnJuMh8mDa8Kv6dR5Z8fN5sipI+wu3m1c\nyFgGPeMgyBGJq+3E3QuGzjHmrizFbFGsTitk4oBgvD2M2Ic3Ut/Ax92Hnw3/mdPEiAn0Y1TvABam\n5mGxVdWvvha+fd5IgTK8Y4F8LdHDuwf9evRr1q9RcKqa99cf4qahYcR3ciCfLVxnGNNorlCUUqTk\npjAqbBRdPJ3z9toc02Km4ePuYyQxrCqD7I2da5pqYMQ9YK6FPQvZlVfGiYqas7Uzth7fytr8tfz4\nqh8T4B3gVDHmJEaSU1LJliOlTW+m/t2olzH1RXBrWgjKkSSFJrGraBe15qb1Pl5ffQCzRfHUtM4P\n5LOFS5WGiFwvIgdEJEtEnrZx30tEPrXe3yIiMZ0vpUbjWDJPZpJfkc+1UY4JEGsLfh5+3ND7Br7J\n/oYzGcuMEqXOigJvidAh0GsE7PiIVfsK8HATJg0IxqIsvJr6qkMC+ezhhiFh+Hu7N01iWHUS1v3B\nyMMVO8XpciSFJlFjrjm3ArSSfvw0n23P574xMUT17PxAPlu4TGmIiBvwFnADMAi4S0QGXdDsQYzi\nT7HAG8AfO1dKjcbxJOcmIwgTIye6ZP5ZsbOoqq9iZdrH0CUUesW7RA5G3ANF+8neu5ExfQPp6u1x\nNpDvsfjH8Hb3droIPp5uzBjeixV7j3OqqtHupYZAvuscF8jXEiNDR2ISU5M8VC+vSKertwePTo5z\nugz20qzSEJFyETnd3OGAuZOALKXUYaVULfAJMOOCNjOAf1m/fw5cK672Amk0HWRN7hqGBQ0j0CfQ\nJfMPCxpGn669WXTmsGGaMrno3fGq27C4ezO+4humDgqhur6aP+/8M4N6DuLG3jd2mhhzEqKoqbew\ndPcx40JZDmx5F4b/AMKcF6nfmK6eXRkYMPC8IL91B4vZkHmCx651XSCfLZr9bVFK+SulugJvAk8D\n4Rh1vJ8C5jtg7nCg8Zow33rNZhtrpb9TQM8LBxKRuSKSKiKpxcXFDhBNo3EORyuOkl6a7hLTVAMi\nwuzug9jt5cGhqLYVMnIo3t04GDCZm92+Z2qcP/9J/w8FZwr434T/dXqEfGOGhHdlYFjXczEbDYF8\nkxwbyNcaSWFJ7Dmxh6r6KswWxcvLjUC+e1wYyGcLe/7P3KKUelspVa6UOq2UeoemKwKXopR6XymV\noJRKCAoKcrU4Gk2zrMldAzi2rGt7mH6yBHelWFTVwYJEHeSf1RPoKlW4H1nEh3s/ZGLkRIcH8rWG\niDAnIYK9R09xeNc62Pc5jH0Eul34DutckkKTqLfUs7NoJ59vz+NAYTlPuTiQzxb2SHNGRO4WETcR\nMYnI3cAZB8x9FIhsdB5hvWazjYi4A92AC8JZNZpLh+TcZGK7xxLVNcp1Qpjr6ZmZzET3AL46soI6\nc8uRyM7i6MkqPimK4KRPFO/s+5vTAvnsYeaIcDzdBbfVv3ZqIF9LxAfH4y7ufJe/mddWHSQ+qjs3\nuDiQzxb2KI0fAHcAhdbjduu1jrINiBOR3iLiCdwJLL2gzVLgPuv324AU5bCq8BpN51JWXcaOoh0u\nX2WQtwUqS5jVezplNWWszV/rEjFW7y8AhCODb+Yzyrktaip9uvVxiSzdfT35ZVQW0Wf2UDf+afDy\nb72Tg/H18GVI4BC+ztpIUXkN824a5PJAPlvYE9yXrZSaoZQKVEoFKaVmKqWyOzqx1UfxCLASSAcW\nKqX2i8gLInKLtdnfgJ4ikgU8geFb0WguSdbmrcWiLC71ZwBGUJ2bF1fHzyXYN9iI2XABK/cXEhfc\nhX94luCtFD+rcaEZpr6WH5Z/yEFLOF97OH+LbXMMCYinqDaLaUO6MTLa9YF8trCnRng/EUkWkX3W\n86Ei8mtHTK6UWqGU6qeU6quUesl67Tml1FLr92ql1O1KqVilVJJS6rAj5tVoXEFKXgqhfqEMDBjo\nOiGUMpRGn4m4+XRnZuxMvj/2PQVnCjpVjLIztWzNLmVo3AnWHP+eH7uH0nPvIjB3oHZ3R9j+D3zK\nc/jA50d8uqOdpWAdQGZOKCKKKfGO8AA4B3tU+wfAM5wr97oHw5Sk0WjspLKukk3HNjmtrKvdFO4z\nalkMNGpnzIydiUVZWJK1pFPFSMkowmwxk1n3MSG+Ifxw5KNQUQiZqzpVDsCIx1j7B+g9gcjEGXyX\nVUJeaWWni5F+/DTJu30w4UH2mYs3J6w9SsNXKXVhhRAXvQ5oNJcm3x/7nhpzjetNU+nLQEzQzyho\nFOkfyajQUSzOWoxF2VmQyAGs3F9AYEgaR8oP8Hj843j3v8lwQO+0XdXPqWx83UipMvX33JYQiQht\nr+rnAF75OgN/Tx+GBw1rEuR3MWGP0jhhrQveUCP8NsB16zeN5hIkJTeFbl7diA9xUfR1AxnLIXI0\ndDm3NX1W3CyOVhzttAdVVa2Z9VnHMPX8hoEBA7mpz03g5gHD74KDK6G8E01lZTmw+V0YdheEDaVX\ndx/GxwXx2fZ8zLaSGDqJdQeLWX+wmMeujWNM+CgOlB7gZPXJTpu/LdijNB4G3gMGiMhR4OeA81JP\najSXGXWWOtbmr2VCxATcTc5NfNciZdlQuLdJgsJro67F39O/0xzi6zOLsfhvoEqdOD+Qb8S9oMyw\n++NOkQOAFGuakMnn3LRzEiM5fqqa9ZmdEyhstiheWZFOVIAv94yJZlTYKBSK1MLUTpm/rdize+qw\nUmoKEAQMUEpd44jdUxrNlcL2wu2U15a7fqvt2doZ5ysNb3dvbup9E8k5yZyqOeV0MZbty8QrcC3j\nwyeQFNaoamFgLESNhZ3/MRz2zubodtj7GYw5P5BvysAQAvw87avq5wC+2J5PRoERyOfl7saQnkPw\ncfdhy/HWS8C6Ant2Tz0uIl2BSuANEdkhIlOdL5pGc3mQnJOMt5s3Y3uNda0g6csgZAgENC1qdGu/\nW6m11LL88HKnilBvtrCuaAFiquXJhCeaNoi/B0qyIHeTU+UwKvL9GvyC4Jqfn3fL093E7BHhfJte\nSElFjVPFqKyt59VVBxgR1Z0brzIC+TzcPIgPjm+xKJMrscc89YBS6jQwFSPv0z3AH5wqlUZzmaCU\nIiUvhbG9xuLj7uM6QSqKjQp0zdTOGBAwgIEBA1mctdipYixN24XFfxOjg26kT3cbgXyDZoCn/3lV\n/ZxCxnLI/R4mPmMzkG9OYiR1ZsXinRcmqXAsH6w/QlF5Db++oCJfUlgSh04d4kTVCafO3x7sURoN\nP8mNwEdKqf2Nrmk0mhZIK0mjqLLI9aapg9+AshilVpthdtxsMkozSCtJc5oY7+39K1g8eO6aZtKF\nePrBVbfC/sVQ7SRTmbkOVj8Hgf0h/j6bTeJC/BkR1Z1Pt+XhrCQURaereW/9IW68KpSR0ecXm0oK\nNcx2F+Nqwx6lsV1EVmEojZUi4g903t48jeYSJjk3GTdxY0LEBNcKkrEMukVB6FXNNrmxz414uXk5\nzSG+rWAbx+q2Eek2nYiuwc03HHEv1FfBvi+cIgep/4DSQ61W5JuTEElmUQU785yzi+mNbw9SZ7bw\nKxsV+QYEDMDfw/+i9GvYozQexEjfkaiUqgQ8gR85VSqN5jIhJTeFkSEj6e7d3XVC1FTAoTVGQF8L\ngYVdPbsyJXoKKw6voLq+2qEiWJSFlzb9CUtdN37YWkW+8HgIHuQcE1X1KVj7CvQeD3Etu2anD+uF\nr6cbn251vEP8QEE5n27L457RMcQE+jW5725yZ2TIyIsyXqOlIkwN6m+49bOPiMQD0YAL9w1qNJcG\n2aeyOXTqkOtNU1nfgrnGrlrgs2NnU15Xzuqc1Q4V4esjX3PodDp1xVO5YXAr9SFEIP5eOLYDCvc7\nVA42nAvka60iXxcvd266Koxle45xpsax8cwvr0ini5c7j06ObbZNUlgSeeV5HK+4uMLiWlppPGn9\nfM3G8aqT5dJoLnlS8lIAmBx5EWy19e1pBPW1QkJoAhFdIhzqEK8x1/Dmjjdxr49geMC1BPh5tt5p\n6Bxw83TsauNkLmx+B4bdCWHD7OoyJzGSM7Vmlu9x3IN7/cFi1h0s5tHJcfRo4d+iwa9xsa02Wqrc\n95D1c5KNw8V/BRrNxU9ybjKDeg4irEuY64SorzWirPvd0KL9vgGTmJgdN5ttBdvIO+0Ys8yC9AUc\nP3Oc00ev5/rBvezr5BtgrIz2fAL1Dtr2mtw0kK81Rkb3oG+QH586KK2I2aJ4eUU6ET18uHdsyyuu\nuB5xdPfqfukoDRGZ3dLRkUlFJEBEVotIpvWzSQ5gERkuIptEZL+I7BGROR2ZU6PpTIori9lTvMf1\nq4ycjVBz6myCQnu4pe8tmMTkkNVGWXUZH+z5gBifBMyVsVw3KMT+ziPuMUxJGQ6IHTm6A/YuhDEP\nQ7cIu7uJCHMSI9meU0ZWUXmHxfhix/mBfC1hEhOJoYlsLdjqtB1c7aEl89TNLRz2/wba5mkgWSkV\nByRju05GJXCvUmowcD0wX0Rc6E3UaOxnTd7FUdaVjOXg4Qt9JtrdJcQvhGvCr2FJ1hLqLR2z5b+7\n+12q6qugdDqDwroSGeBrf+c+k6BbJOz4qEMyoBSs+jX4BsLVP2+9/QXMjo/A3SQsTM3vkBiVtfW8\ntuoAwyO7M32ofavPpNAkCs4UkF/esbkdSUvmqR+1cDzQwXlnAP+yfv8XMNPG/AeVUpnW78eAIoxU\nJhrNRU9KbgpR/lHEdm/e0el0LBZDacReCx5tCyycHTuboqoivjv6Xbunzz6VzcIDC7kxZib7cryZ\nNriNpUtNJhh+Nxxea/gj2suBFZDzHUx6Bry7trl7YBcvrh0YzBfb86mtb3+0wYcbjlB4umkgX0s0\npFnZUnDxbL21q1SWiNwkIr8Skecajg7OG6KUavAsFQAtrllFJAljq++hDs6r0Tid8tpythRsYXKU\ni2tnHNsJ5cdhwM1t7jo+cjwB3gEditmYv2M+nm6e9HafhVIwdXAbTFMNjLBuz925oH1CnA3k6wfx\n97dvDAyHeMmZWlIyCtvVv6i8mnfXHeKGIaEkxAS03sFK7669CfIJYuvxi8evYU/uqXeBOcCjGJHg\nt2Nsu22t37ciss/GMaNxO2vN72YNdiISBvwb+JFSthP+i8hcEUkVkdTi4s7JTKnRNMeG/A3UW+pd\nXzsj4yswuUO/tqeK8zB5cEvfW1ifv75dqSy2F24nOTeZB696kO8O1BAV4MuA0HbU3e4eZZjWdi0A\ni7nt/bf/08hldV3LgXytMT4uiJCuXnzaziSGb6zOpLbewlPXNw3kawkRuej8GvasNMYqpe4FypRS\nvwPGAP1a66SUmqKUGmLjWAIUWpVBg1IosjWGNVHicmCeUmpzC3O9r5RKUEolBAVpC5bGtaTkpdDT\nuydDg4a6VpCM5RBzDfi0r9b0rLhZ1Kt6vjr0VZv6WZSFV7e9SrBvMLP63Mn3WSVMHRTS/lVX/L1w\nKs8wU7WFhkC+mHHQb1r75rbi7mbitpERrDtYTMGptgU+Hiws59NtudwzJtpmIF9rjAobRUl1CYdP\nXRzVru1RGlXWz0oR6YVR9rWjewiXAg1JX+4DmtSaFBFPYDFGvqvPOzifRtMp1Jhr2JC/gUlRk87V\niXAFxQfhxMEWc021Rp9ufRgRPIJFmYva9Ja7Mnsl+0r28diIx9h8qIJas4VpQ9roz2jMgJvAJ6Dt\nVf02vgGVJXYF8tnDHQmRWBR8vr1tq41XVqTj5+XOY5Pj2jVvYmgicPHEa9jzW73MumvpT8AOIBvo\naJWUPwDXiUgmMMV6jogkiMiH1jZ3AOOB+0Vkl/UYbns4x7A0aynv7X6PXUW7nDlNy+RugZTfQ55r\nf0G2Hinh9VUH2J5T5lI5LjW2HN9CZX2l67faZiwzPvvf2KFhZsXOIvt0NruK7fubqDHXMH/7fAYE\nDGB6n+msSiukp58n8VHtW+0A4O5lBPtlLIczJfb1OZkHm96GoXdCL8c8NqJ7+jGmT08WpuZjsbOq\n38bME6w5UMyjk2NbDORriYguEfTy63XR+DXsKcL0olLqpFLqCwxfxgCl1G86MqlSqkQpda1SKs5q\nxiq1Xk9VSv3Y+v0/SikPpdTwRofTnuZfH/maed/N461db/HQqoc6T3GY6w2H5aa34B83wt+nwvo/\nwT9v6lTFUV1nZvPhEv6SnMmMv27kjvc28+eULH7wwWatONpASm4Kfh5+jAob5VpBMpZDr/jzigu1\nh2kx0/B197XbIf7f9P9y7Mwxnkx4knoLrMkoYsrAENxMHXzTj78HzLWw51P72tuoyOcI5iRGklta\nyeYjrSsvs0Xx++VpRiDfmJh2z9ng19hWuK1T67g3R6ueIRFxA24CYhraiwhKqdedK1rncrTCyJuv\nUNSaa0ktTGV4sBMWNnXVRsWw3O8hZxPkbYHaCuNe46R25lo48DVEJtkep4Ocrq5je04Z246UsvVI\nKXvyT1FrtiACgY3eiGrqLXyXdYKR0R14U7xCMFvMrMlbw7jwcXi6te+t0iGcPgZHU2Fyh97tAPD1\n8OWG3jew4sgKnkp8ii6eXZpt2xDINy58HKPDRrP2QBEVNfVMG9KOXVMXEjLYUII7/w2jf9ayuenY\nTkO5XPMEdI/s+NyNuH5IKP5L3Pl0Wx5j+wa22HaRNZDvz3eNwNuj5UC+1hgVNoolh5ZwsOwgAwLa\n5kx3NPZsJ/gKqAb2chmnRE8IScDLzYsacw0KxVU9m08h3SaqTxsrhtzvIed7Q2GYa417wYOMPDhR\nYyB6LJzKh3/dYtxXZsj+zghMcoA99kRFjaEgsg0lkX78NBYF7iZhSHg3fnR1DIkxASTE9OBQ8Rnu\n/nAztfUWLAqyT5zp8PxXAntO7KG0utT1AX0HVhifA9u+1dYWs+Jm8UXmF3yT/Q239but2Xbv7XmP\nM/VneGKkUZFvVVohfp5urT5c7Sb+Hlj2CyO6O2Kk7TYNFfl8A6G5mh0dwNvDjZnDw/k0NY8XKuvo\n5uths11VrZlXVx1gWGR3brYzkK8lGvwaW45vuSSURoRSysXbQJzP8ODhfDj1QxZnLmZR1iJW565m\nVK92mBjOnDCUQ+4mI6CoYK9R/EbcDNtq0lyIvhqiRhv5dRrTtRfctxSyNxi2281vGVsGE9qeiT6/\nrJKtR0rZll3KliOlHC42HvzeHiZGRPbg0clxJPUOYERUd3w9z/81GBntyYIfj2bz4RJ25JTx5a6j\n3DUqisQ27C+/EknOScbd5M648HGuFSR9GfSMNWITHMDQwKH07daXxZmLm1UaOadz+DTjU2bHzSa2\nRywWi2J1WiET+wd3+C37LENuhW+ehZ0fNa80DnxtpE658dV2BfLZw5zESP69OYclu482a3b6cMNh\nCk/X8Je74h0SqxPqF0p012i2FWzjvsG2C0d1FvYoja9FZKpSapXTpXExw4OHMzx4OF08u/BR2kdM\njJzINeHXtNzpZJ5VSVhXEicOGtfdvSEiEcb/0lhJRCSCV/NL+7NEJhmHxQJF+2Hls0bu/559m+2i\nlCKrqOLsKmLbkVKOWbcF+nu7kxgTwB0JkSTGBHBVeDc83Vvf/zAyugcjo3tQUVPPDW+u54mFu/j6\n8fF08dJZ8W3RUNZ1VNioFk04TqfqpPHSMeYRh6xQwTBHz4qbxaupr5JVlkVsj6ZR7vO3G4F8Dw9/\nGICdeScpLq9pX0Bfc3h3g8EzYe8XMO1lo8pfYxoC+XrGwcj7HTfvBQwJ78agsK58ui3PptIoKq/m\nnXWHmDY4hKTejnvRSgpNYsWRFdRb6nE3ue7v0J6ZNwOLRcSEsd1WMGLynKPGLwIei3+M7499z3Pf\nPceiWxadK6CjFJzINFYQuZsMJXHKuv3OqxtEjYLhP4Coscaqwt2r/UKYTDDjbXhnDCz+Kfzo67PB\nSfVmC2nHT7PV6o9IzSmj9Ixh8gry9yIpJoCf9A4gMSaA/qH+HXJCdvFy5/U7hnPHe5v4/bI0/nDr\nZb/obBeZJzPJK8/j/sH3u1iQVWCp79BWW1vc3Pdm5u+Yz6KsRfwq8Vfn3dtRuINvc7/lkeGPEOhj\nmKJW7S/A3SRM7N9Chb72EH8v7P4Y0pYYf2uN2f5PKMmEOz8GN9tmI0dxZ1Ikzy3Zz76jpxgS3u28\ne/O/bV8gX2skhSbx2cHPSC9J56ogB5nP24E9SuN1jIC+vepiCUl0Ml5uXrwy7hXuWn4XL659kle7\nxiN5mwzHdaU1OtYvGKLHwNhHjZVEyGAwOWgZ3kC3cLjpdfjiQfK+epklXe9iy5FSduSUcabWiI6N\nCvBl8oBgkmICSOwdQExPX4enrkiMCeCnE/ryztpDXDswpG2ZSq8QUnJTEMT1/oyMZdAlFMKbMd+0\nkwDvACZFTmLZoWX8Iv4XeFgfykopXk19lWCfYO4dfO/Zayv3FzCmb0+6+Tj44R01xjC97fj3+Uqj\nIZAv+hrof4Nj57TBjGHh/H55OgtT885TGpmF5XyyNZd7x8TQJ8ixK86E0ATAyEN1sSuNPGDfFaEw\njmyAfZ8DwoCTuTxcdpo3LVtZvncF0z2CIO46w2EdNdYwFzkhr9D2nDLWHyzC39uDsspath7pxX2W\nsUzbOZ9vantQFzyM2fERJPYOICkmgNBu3g6XwRa/mNKPtQeKefqLPYyIGk9glw6soi5DUnJTGBo0\n9Oybtkuoq4bMb2HYHGOl6mBmx81mdc5q1uStYWqMkZpkZfZK9p7Yy4tXv4iPu5EUMauoguySSh4c\n18fhMiACI34I3/4WTmRBoNVUtnG+Ecg3zTGBfK3RzdeDG4aE8uXOozx748CzfptXvs4wAvmubV8g\nX0sE+gQS2z2Wrce38uOrfuzw8e3FHqVxGFgrIl8DZ6uhXG5bbklbCgvvOXfePZof9b2Z9TUHebmX\nHwkzvyTUrwNRra2glOI/m3N4ful+GuKGTAJXRXTnYMLzTEm/lyWBH+H20/VtzljqCDzdTcyfM5yb\n/7KRZxbt5f17Rro2Gd9FxLGKY6SXpp/dNeQyDq+FujMON001MCZsDKF+oSzKXMTUmKnUmmuZv2M+\n/Xv05+Y+53ZqrdxfAMBUZ61Ih/3AKKi08yO47gXDr7j5bSMAsNcI58xpgzkJkSzZdYxv9hUwc0Q4\n32WdICWjiGduGGBfdcJ2kBSaxKLMRdSZ686u9jobe15HjmDUvPAE/BsdlxcnMjHcNRg7nUbeh9vN\n83lp2nuYUfx646+dElhzpqaeBVtyuH7+Bn6z5HyF8djkOJY8fDVP3DIa79vexa3kIHz7O4fLYC/9\nQ/351fX9WZ1WyGcdrC1wOXHx1M5YBl5djVxLTsDN5MaMvjP4/tj3HK84zscZH3O04ihPJjyJWyPT\n7Kq0QoZHdiekq5NWwf4hRi6pXR8bzu+U3xv+RgfEpbSF0X16Ehngw6fb8rBYFC8tTye8uw/3jY1x\n2pxJYUlUm6vZc2KP0+ZojRaVhjWwz18p9bsLj06Sr/PoPc7Y8SRuRm1i6x9epH8kTyU9xZaCLSxI\nb2d6ZhscLq7gd1/tZ/TLycxbvA83k/DwxL54u5twE+PNfly/RskX+06GpJ/Alnfg0BqHydFWHri6\nN6P7BPC7r/aTV1rpMjkuJpJzk4ntHkt011aTPzsPi9nYbho3FdydF1g4M3YmCsW/0v7Fe3ve45rw\naxjTa8zZ+8dOVrEn/1Tba2e0lRH3wJkiI3vCnk9gzP84PJCvNUwm4Y6RkWw6XML85EzSjp/mV9f3\nd61jkvsAACAASURBVNwWYxskhCQgiEvzULWoNJRSZuDqTpLFtUQmGTESk+cZn40isWfFzmJixETm\nb59PVllWu6cwWxTfphVyz9+2MPm1dfxncw6TBwbzxc/GsPyxa/jl9QNY8NBonpjanwU/Ht00CnvK\nb42990seNspgugCTSXj19mGYRHhi4S7MdubguVw5WX2S7YXbmRQ5ybWC5G0xNmm0oaxre4jwj2BU\n2CgWpC+goraCm3rfdN791WlGvQmHbrW1RdxUI3vvuj8aqysnBPLZw20JEQjw5+RMYoP8uHmonTXQ\n20k3r24MCBjg0jxU9pindonIUhG5x1E1wi9aIpNg3JNNUneICM+PfZ4unl14duOz1Jnr2jRs2Zla\n3l13iAl/WsOPP0ols7CCJ67rx3dPT+bNO0cwMjrgrH9gZHQPHp4Uaztth6cvzHoPKgphxS/b/WN2\nlIgevvz2lsFsyy7j/fUXR7pmV7E2fy0WZXF97Yz0ZeDmBbFTnD5VQoixi0eh+N2m352Xp23l/gL6\nBvnR18E7h5pwbAfUWGt211VB8QHnztecGCerz/rdc0ur2Jl30ulzJoUmsbt4N9X1bUvR7ijsURre\nQAkwGcfVCL/kCPQJ5Pkxz5Nems47u9+xq8/e/FP88rPdjH4lmT98nUFEDx/evjueDU9N4rFr4wj2\nb4fNNzweJjwFez+DfV+0vb+DmB0fzg1DQnl99QHSjp12mRyuJiU3hRDfEAb1HOQ6IZQy/Bl9JoKX\n892NYv0PoM5SR2phKgAnK2vZcqTU+aYpMAIYG3yMymKcu4DNh88lLjRbLOedO4uksCTqLHV2Zx52\nNK3unlJKtT2HRSuISADwKUYSxGzgDqWUTXuLtRBTGvClUuoRR8vSFiZHTWZW7Cz+tu9vjI8YbzOh\nYc3/t3fn8VFW1+PHPyeZhIRAwhoWCQmbYZE1YZGt7KIWlFblq1K1raK2VAGxuP2ktqKUWsUNraBS\nCy5UQBApIgEEZDFhhwRkMQGEBAiQkD0zc35/PIMkGMhgMvMEuO/Xa155MszMcxyTnLn3ufccp4v/\n7Ujn3+tT2XLwNNWDA7ktrgn3XB9D7M/pXFaW3uPhuy9h8Xhr3Xq4b4fEZRERJo9oT1LaKcZ9spWF\nY3r5dC63Ksp35rP+yHpGtBph70qyjF1wOs0aJftB90bdmbljJsXuYoICgn4ceazYfQyXWxnij6QR\n08caWbmKSl2D9LcezesS7Aig2OkmyBFAj+Z1fX7OuAZxBEog3x79lh6Nevj8fOfzpt1rExFZICLH\nPLd5ItKkgud9AkhQ1VZYK7OeuMhj/wasruD5Ks3EbhNpFNaIJ9c8SV7xuQvBR07n89KXe+j54grG\nfrKVrLxiJg1ry4anBjJ5RPvKSxhg7Qwf8S/rF2bhH61PmjaoExbM1Ns6sCfjDC9/9Z0tMdhp3Q/r\nKHAV2D81tXsxIBXuneGtTpGdmDFkBmM6j2HGkBk/fnj6clc6DcND6HDeDmmfuMg1SH+Ki67NnPsv\nch3SB8KCwmhXr51tF8O92afxPvAhVm9wgFGe+wZX4Ly3AP08x/8GVgETz3+QiMQBDYClQHwFzldp\nwoLCmNx7Mr9d+lumJk5lSIMxfLAuja9SMlBVBrRuwL09o+nVoh4BFe0hcDH1Wlodyb4YD4kzodsD\nvjvXRfSPjeTu7k2ZseYA/WMjub6F7z9pVRUrDq0gPDicLg262BvI7sVWAcwa/mt1fLZO21n5RS6+\n/u44t8dF+fbnvqSzddpsdrZOmz91b9id93a+R25xLmFBl95CtiK8uaZRX1XfV1Wn5zYLqOhPZwNV\nPeo5TsdKDKV4al39E5hQwXNVuthaHelW+1fM2zuP33w0i43fZ/JAn+Z8/Xh/Zt4bT59W9f3zixP/\nO2g5GJb9P6u9p02evrkN0XWqM+G/28guuLRFAperYncxqw6tol9UP4IC7NlkBcCpVKuScuuby32o\nL63Ze5yCYrd/rmcYdG3YFZe62Jyx2e/n9iZpZIrIKBEJ9NxGYV0YvygRWS4iO8u43VLycZ7yJGXN\nr/wBWKKq5e4iE5HRIpIkIknHjx/34j/p59l3LIdJC3fS44UElq/vTLCrCfVjFrJkXGeeuLE1UXWq\n++zcZRKBW96AoBBYMNra6GSD6sEOXh7ZiaNZ+Ty3KNmWGPxtc8Zmsouyq0BbV0/vDJuTxrLkDGqG\nOOje3JTP94dOkZ0ICgiyZYrKm6TxO6x+3enAUeA2oNyL4542rteVcVsIZIhIIwDP12NlvMT1wBgR\nSQVeAu4RkSkXONc7qhqvqvH161fuEN3pcvPlrnTunrmBQS9/zUffHmJI2wZ89odf8PGI1yjSXKYk\nPo9tpblqNoRfTrO6la1+yZ4YgC5NazOmf0vmbT7M/3YcLf8Jl7mEgwlUC6xWamObLXYvhsh2UMcH\ndZ685HS5SUjJYGDrSIICK7/mlfFToY5QOtbvyMajG/1+bm9WT6UBwyv5vIuAe4Epnq8Lyzjv3WeP\nReQ+IF5VL3bBvFJl5hTyceIh5mxI40hWAY0jQnj8hlhGdo0qUayvFo92eZSXkl5i4f6F3NryVn+F\nV1q7W2HP/1m7Y1sNhib2XP7508BWrNxznKcW7CAuujaRviojYTNVZcXBFfRs3JPqQX4eXZaUe8Iq\n0d/Xvj07AImppziVV2ympvysW8NuvLXtLbIKs4io5ofFBx4XTBoi8uxFnqeq+rcKnHcKMFdEfg+k\nYY1kEJF44CFVtaWE46a0UyzY8gOHTuayfv9JilxuerWsy6Th7RjYOhJHGZ+iftP2N6w6tIop304h\nvkE8TWpWdGHZz3TTVKvPx/zR8NCanzao8YOgwABeGdmRm19by8R523nvvq5XZFHD5JPJZORlMKaz\nrSvA4bul1h4F26em0gl2BND3Wv9diDes/RrTt00nKSPJryv4LjaWzC3jBvB7yljpdClUNVNVB6pq\nK8801knP/UllJQxVneXrPRpLdx7ltrfXMXtDGl9/d4KBbSJZPr4vc+7vwQ3tGpaZMAACJIDJvScD\n8PTap3G5Xb4M88JCIuDW6XByv9W9zCYtI2vy5I2tWbnnOB9+e9C2OHwpIS2BAAmgX5N+9gaSshgi\nmkJD+xpjqSrLdmXQt1U9wkxXR79qX689IYEhJKYn+vW8F0waqvrPszfgHSAU61rGx4B9E6g+8l1G\nzo/bHQLFaunYMtK7vRWNazTmqe5PsfnYZj5I/sCHUZajWV+rzWfiTKuvgk3uuT6G3i3r8fziFFJP\n5Jb/hMvMykMriWsQd66jox0Kc2D/CmuUYeNobteRbH44nc+QtmZqyt+CA4PpHNnZ79c1yqtyW0dE\nnge2Y01ldVHViapa1oXry1qvlvUICbIqzP6cnZ3Dmg9jUNNBvL7ldfactKcODmCVh67fxtr0l3fS\nlhACAoR/3N6BoEBh3NytOF2VX1LeLmnZaew7vc/+DX37E8BV6PMCheVZtiudAIGBbSq5ravhlW6N\nurHv9D4y831fvuSsCyYNEfkHkAicAdqr6l8uVOrjSlDRnZ0iwrPXP0t4cDhPrn2SIleRjyItR1AI\n/OpfVhezxWNt2y3eKCKU50e0Z8vB07y1ar8tMfjCioMrAOyvarv7CwitA1H+LyNR0rLkDOJj6lDX\ndHK0RbeG1ubGxAz/TVFdbKTxGNAYeAY4IiLZntsZEbkiK9RdtMKsF2qH1Oavvf7K3lN7eWPLG5Uc\n3SVo1BH6PwXJC2H7XNvCGN6xMcM6NubVhL3sOJxlWxyVKeFgAm3qtKFxDf/X+/qRq9i6CB57o1VS\nxiZpmbnsTj/juw59Rrna1m1LWFCYX0ulX+yaRoCqhqpqTVUNL3GrqarhfovwMtO3SV9uv/Z2Zu2a\n5fcLVKX0etT6FLrkcasdpk3+dks76tWoxthPtlBQbNMigUpyPO84249vt79DX+paKMjyWVtXby3b\nZfXOMEtt7eMIcBDXIM6vf2vMThwfmBA/gaiaUTyz9hlyinLsCSIgEEa8DeqCzx4Gtz3XFWpVD+Yf\nt3dg//Fc/r50ty0xVJZVh1ehqP1JY/cXEFQdWtg7RbYsOZ02jcL9XwnBKKVbw26kZqeSkZvhl/OZ\npOED1YOq80KfF0jPS2fKt2VuYvePOs1g6ItWr4GN3vUA8YU+repzX88Y3v8mlbV7T9gWR0UlHEwg\nqmYUrWq1si8It9tKGi0HQlCobWEcP1NIUtopbvB1hz6jXGeva/irpIhJGj7SsX5H7m9/Pwv3LyQh\nLcG+QDr/Bq69EZY/B8dSbAtj4tDWtKgfxoT/biMr7/IraphTlMPGoxsZEDXA3g2LR7fAmSO2T00l\npGSgillqWwXE1oklPDjcJI0rwUMdH6Jt3bY8t/45TuTb9AlbBIa/ZnV0m/8AOO1Z1RUaHMgrIztx\nIqeQZxfttCWGipidMhun20nT8Kb2BrLxHUAgrJ6tYcxNOkREqIP8IqetcRjWBuNuDbv57WK4SRo+\nFBQQxIu9XyTPmcekdZPsK2pYI9JKHOk7YNWL9sQAdGhSi0cGtmLh1iMs2nbEtjgu1foj63lrqzW9\nNzVxaqme2H61+wvY/gmg8PEoOGRPE575mw+z+eBpsvOd3P3uRjalXbEr8S8bRUlFrHxoJQEBAcTE\nxDBnzhyfncskDR9rXqs54+LGsfrwaubtta+nN61vhs6j4JtpcHCDbWH8oV8LOkXV4pkFO0jPKrAt\nDm8Uu4qZkzKHR1Y8ghtrIYHT7fyxJ7bf5J+G5X+BuffwYxcBV5Hf+2L/cDqfx+ZuY/zcbeCJpNjp\nn77YxoXNmTOH9ya9R3FmMapKWloao0eP9lniMEnDD+5sfSfdG3VnauJUDmbbWI9p6BSIiIIFD0Lh\nGVtCcAQG8MrIThS7lMc/3YbbbdPo6yLc6mbJgSUM+2wYU76dQrOIZgQHBBMogaV6YvucsxDWvQGv\ndYK1r0BMX3BUAwn0a1/s03lFvLAkhf4vreLz7Ue4pVNjqjl+fvUEo3I9/fTTFOSX/gCWl5fH008/\n7ZPziW1TJj4SHx+vSUl+/iTohfTcdH616Fc0j2jOrKGzcATYtCkrbR28fxN0uceasrLJ7A1pPPPZ\nTp4b3o57e8bYFsf51h9ZzyubXiHlZAqxtWMZFzeOno17su34NpIykohvEF+qzalPuF2w47+wYjJk\nHYQWA2DQX6xNm4e+tUYYMX183uq0oNjFrHWpTF+5jzOFTn7dpQnjBl/LNbVC2ZR2ig0HMunRvK7f\nW50apQUEBJQ59S0iuC9hqb2IbFLVcj8RmaThR0sOLGHimok80vkRHuhgT09vAL6aZE1T3fmxtavY\nBqrKb2clsuFAJov/1IeWkTVsieOs5Mxkpm2axvqj62kc1pgxncdwc/ObCRA/DsZVYV8CLJ8EGTut\nJDHoOb/vx3C5lXmbDvPyV9+Rnl3AgNaR/HloLK0bmj29VVFMTAxpaWk/uT86OprU1FSvX8fbpGHL\n9JSnEOJXIrLX87XMjyoi0lRElolIiogki0iMfyOtXDc1v4mhMUOZvnU6yZk2tkXt/xQ0uA4W/clq\n5GMDEWHqrzsQGhTI+LlbKbapqOHhM4eZuHoiIxePJPlkMo/HP87nIz5nWIth/k0YP2yCfw+DOb+G\nohz49bvwwCq/JgxVZXlyBkOnrebP87bTICKEj0f34L37upqEUYVNnjyZ6tVLb7CsXr06kydP9s0J\nVdXvN2Aq8ITn+Ang7xd43CpgsOe4BlC9vNeOi4vTqux0wWkd8MkAHb5guOYX59sXSPpO1b/WU/3o\nLlW327Ywlmw/otETF+s/l+3x63kz8zN1ysYp2umDThr/n3idtmmaZhdm+zUGVVU9sU917r2qk8JV\n/95MdcPbqsWFfg8jKfWk3v7WOo2euFj7/WOlLtl+RN02/lwYl2b27NkaHR2tIqLR0dE6e/bsS34N\nIEm9+Ptty/SUiOwB+qnqUU+P8FWqGnveY9oC76hq70t57ao8PXXWuiPrePCrBxnVZhQTu1Won1UF\nA3kdlj0Dt7xprayyyfhPtrJw2xE+feh6Ojf17fx4XnEe/0n+D+/vep98Zz4jWo7g4Y4P0yDMzzub\nc47B13+HTbMgsBr0HGP1Qgnx7yf6/cdzmLp0N1/uyrBqhA1qxciuUabX91WoSl/TEJHTqlrLcyzA\nqbPfl3jMrcD9QBHQDFiONTr5SdU7ERkNjAZo2rRpXFnze1XNCxtf4KPdHzFjyAx6NLKpvLXbbU2J\nHN0KD38DtWNsCSO7oJgbp60h2BHAF4/0pnpw5S8ScLqdzN87n7e2vcWJ/BMMiBrAo10epXktP/cT\nKzxjrYha9zo4CyDuPvjFRKjp36SVkV3AtOV7mZt0iBBHAA/+ogW/793MdN+7itmeNERkOVBWjYGn\ngX+XTBIickpVS33EFJHbgHeBzsBB4BNgiaq+e7HzXg4jDYB8Zz53fH4H+c585t8yn/Bgm+aMTx+E\n6T2hYXu4b7FV6NAG6/dnctfMDYzqHs3fbr2u0l5XVUk4mMCrm18lNTuVzpGdGR833vcroM7nLILN\n/7ZGF7nHoe0tMOBZqNfSr2FkFxTzztcHmLn2AC63cnf3aMYMaEk90w/jqudt0vDZxwpVHXShfxOR\nDBFpVGJ6qqxOgIeBrap6wPOcz4AeWInkshfqCOXFPi8yaskoXtj4AlP62FTYsFZTuGmqVQl33evQ\ne6wtYVzfoi6/79WMmWu/Z0CbSPrHVrwT3KaMTby86WW2H99O84jmvNb/NfpF9fNv7Si3G5IXQMLf\n4NT3EN3bWrXWxE97PTwKnS5mbzjIGyv2ciqvmOEdG/PYkGuJrhvm1ziMy59dY9FFwL3AFM/XhWU8\nJhGoJSL1VfU4MACo+kOIS3Bdvet4sOODTN86nX5R/RgaM9SeQDreCXuWwIrnreqpDdvbEsaEG2JZ\nvfc4f/50O8vG9qV2WPDPep29p/by6uZX+frw10SGRvJcz+cY3mK4//fGHPjaWj57ZAtEtoO7/gut\nBvu1p7fbrSzadoSXlu3h8Kl8erWsyxND29C+SYTfYjCuLHZd06gLzAWaAmnAHap6UkTigYdU9X7P\n4wYD/wQE2ASMVtWLVty7XKanznK6ndzzv3tIy05j/vD5/r8ge1ZuJkzvAWH14YEVVttYG+w6ksWt\nb37D4LYNePOuLpc0KkjPTefNrW+yaP8iwhxh/K7977i7zd2EOvxcQjx9h7UXZn8ChDeBAc9Ahzv8\nOvWnqqzZe4Ip/9tN8tFs2jUO54kbW9OnVX2/xWBcXmy/pmGXyy1pAKRmpXL757fTpUEX3h70tn2l\nt7/7Ej68A3r+CYY8b08MwPRV+5i6dA+vjOzIiM5Nyn18VmEW7+54lzkpc1CUu1rfxf3t76dWSK1y\nn1upTqXByslWi92QCOg7Abo+4PcEvONwFlOWpvDNvkya1A7l8RtiGdahMQEBNpZ0N6o8269pGN6L\niYhhQvwEnt/4PB/v+Zg7W99pTyDX3gBxv7VW91w7FGIuabVzpXmwbwtWpBzj2c920a1ZXa6pVfZI\nodBVyIcpHzJjxwxyinIY1mIYf+z0R//3787NhDX/hMQZIAFWq93e4yDUv0krLTOXl5Z9x+fbjlC7\nehDP/rItd/doSjWHPYsbjCuTGWlUEarKwwkPk3g0kZGtRzIkeoj/V/gAFObA272hKBfi74OWg31e\n46gsBzPzuPHV1TSrF8bQ6xpyfYt6P9Y4crldfH7gc97c+ibpuen0vqY3Y7uMJbZObDmvWsmK8qyO\niGunWbu4O90F/Z6CiGv8GsaJnELeWLGPORvTcAQEcH+fZjzQtznhIUF+jcO4vJnpqcvQykMreWTF\nI4DVi2Ncl3F0iOxAzeCa1AyqSY3gGoQEhvh++ippFix+1DoODIbBf7USR7UIa9olJNyqtupjU5em\nMH3VAQRwBApP3diawJp7mLv/X6Sd2U+7uu0YHzeebo38nNRcTtg6G1ZNgTNHIfYmGPgsRLbxaxi5\nhU5mrvmed1bvp8DpZmTXKMYObEVkuD3Xo4zLm5meugztP70fQVCUYncxU5Om/uQxjgAHNYNqUjPY\nSiIlj2sE1SA8ONy6v0SiKXlcI7gGQQHlfALNz2RrtWokhVQjvqCATkuf+OljHCFQLdxKICERZRzX\nsr6vFn4u0Zx/XM6F4bBqDtqErqVe2HZ+cEYxdfvbOMK+x11Ul8Jjd7EhpT33bjxJeOhyaoYEUTPE\nQfjZr6Hnvg8PcZz799DSjwsLdng11787cTmndq0gqm4YTdI+gxPfQZNucNt7EN2z3OdXlk1pp1i3\n/wTZBU4WbP6BEzmFDG3XkAk3xNpe9NG4OpikUYXEN4inWmA1itxFOMTBE92eoEFYA3KKcjhTdIYz\nxWfKPM7MzrTuKzpDnjOv3POEOkJLJZHzE0xOwfcsaBSJC3AQwe/r96BpRAwU54Mz35qWOXtcfPZ2\nDPIOeo7zwO1FW9nAUAgKheBQcHiOf7xVJzcrg/ToNA4DyEEicHBHjV/QIyAWZy0oKN5HfrGL/CIX\n+cUuCordFOSdPXZxssjFsXL6dYhASFAgIUGBhAYFeL4GEhoceO44J41eRz8gCBeSClnBDUnu+hpH\nGw6ATIHMw17836241BO5TF+1H6fnv6lNw5q8c08cXXxcesUwSjLTU1XM1mNbK9S3wel2klucy5mi\nM+QU5/yYTEoe/+TfinLIKc4huyibnKIcirz5g+9nospDp7P4w+lsW+NwqfCy8zbedI2wNY4AgceG\nXMsf+7eyNQ7jymGmpy5TnSI7VegCuCPAQUS1CCKq/fzNW4npiTy8/GGKXcU4Ah282OtF2tT173w9\nKCkp83kyeSZOgWCFntdPgFbD/BuFwu6ta2m2ejwOXBTjoOegEdzRoZ9f4wDY+UMW4+duw+lyezrm\n1fN7DIZhRhpGmSo64qm0OHZ+SNKBL4lvfgOdrrvLtjh2Jy7nVPIKarcdQOuuF6yQ43OmY57hK2b1\nlGEYhuG1Kt25zzAMw7g8maRhGIZheM0kDcMwDMNrJmkYhmEYXrviLoSLyHGscus/Vz3gRCWFc7kz\n70Vp5v0ozbwf51wJ70W0qpZbO/+KSxoVJSJJ3qwguBqY96I0836UZt6Pc66m98JMTxmGYRheM0nD\nMAzD8JpJGj/1jt0BVCHmvSjNvB+lmffjnKvmvTDXNAzDMAyvmZGGYRiG4TWTNDxEZKiI7BGRfSJS\nRtehq4eIRInIShFJFpFdIvKo3THZTUQCRWSLiCy2Oxa7iUgtEflURHaLSIqIXG93THYSkXGe35Od\nIvKRiFzRrRNN0sD6gwC8CdwItAXuFJG29kZlKyfwmKq2BXoAf7zK3w+AR4EUu4OoIl4Flqpqa6Aj\nV/H7IiLXAI8A8ap6HRAI/J+9UfmWSRqWbsA+VT2gqkXAx8AtNsdkG1U9qqqbPcdnsP4oXGNvVPYR\nkSbAzcBMu2Oxm4hEAH2BdwFUtUhVT9sble0cQKiIOIDqwBGb4/EpkzQs1wCHSnx/mKv4j2RJIhID\ndAY22huJraYBfwbcdgdSBTQDjgPve6brZopImN1B2UVVfwBeAg4CR4EsVV1mb1S+ZZKGcUEiUgOY\nB4xVVXv7rNpERH4JHFPVTXbHUkU4gC7AW6raGcgFrtprgCJSG2tWohnQGAgTkVH2RuVbJmlYfgCi\nSnzfxHPfVUtEgrASxhxVnW93PDbqBQwXkVSsacsBIjLb3pBsdRg4rKpnR56fYiWRq9Ug4HtVPa6q\nxcB8oKfNMfmUSRqWRKCViDQTkWCsC1mLbI7JNiIiWHPWKar6st3x2ElVn1TVJqoag/VzsUJVr+hP\nkhejqunAIRGJ9dw1EEi2MSS7HQR6iEh1z+/NQK7whQEOuwOoClTVKSJjgC+xVj+8p6q7bA7LTr2A\n3wA7RGSr576nVHWJjTEZVcefgDmeD1gHgN/aHI9tVHWjiHwKbMZadbiFK3x3uNkRbhiGYXjNTE8Z\nhmEYXjNJwzAMw/CaSRqGYRiG10zSMAzDMLxmkoZhGIbhNZM0jCuaiLhEZKunCuk2EXlMRCr8cy8i\njT1LLSuNiPxVRAZd4nNSRaReZcZhGBdjltwaVzQRyVHVGp7jSOBD4BtVnWRvZJXDs1M9XlVP2B2L\ncXUwIw3jqqGqx4DRwBixxIjIGhHZ7Ln1BBCRD0Tk1rPPE5E5IlKq6rHnuTs9x/eJyHwRWSoie0Vk\n6vnnFpGuIjLfc3yLiOSLSLCIhIjIAc/9s0TkNs9xqog854lrh4i09txfV0SWeUZOMwEpcY7xnp4O\nO0VkrOe+x0XkEc/xKyKywnM8QETmVNqba1w1TNIwriqqegBr138kcAwYrKpdgJHAa56HvQvcBz+W\nAu8JfFHOS3fyvEZ7YKSIRJ3371s8jwHoA+wEugLduXAF4ROe2N4CJnjumwSsVdV2wAKgqSfOOKyd\n2d2xeqA8ICKdgTWe8wHEAzU8dcX6AKvL+W8yjJ8wScO4mgUBM0RkB/BfrAZcqOrXWLXI6gN3AvNU\n1VnOayWoapaqFmDVYoou+Y+e5+8XkTZY/VtexupL0QfrD3tZzhaK3ATEeI77ArM9r/kFcMpzf29g\ngarmqmqO57l9PM+NE5FwoBBYj5U8LnZew7ggU3vKuKqISHPAhTXKmARkYHWfCwAKSjz0A2AUVpFC\nb2orFZY4dlH279ZqrO6QxcByYBbWqOfxcl7zQq9XLlUtFpHvsUZO64DtQH+gJVd4YT3DN8xIw7hq\neEYObwNvqLUCJAI4qqpurAKNgSUePgsYC6CqlVXFdY3nNder6nGgLhCLNVXlrdXAXQAiciNQu8Rr\n3+qpthoGjODcSGIN1vTWas/xQ8AWNatgjJ/BjDSMK12op1JvEFYV0v9gTQ0BTAfmicg9wFKshkIA\nqGqGiKQAn1ViLBuBBpy7lrAdaHiJf7yfAz4SkV1YI4eDnng3i8gs4FvP42aq6hbP8RrgaaxkL8lt\niwAAAGhJREFUlSsiBZipKeNnMktuDaMMIlId2AF0UdUsu+MxjKrCTE8Zxnk8G+xSgNdNwjCM0sxI\nwzAMw/CaGWkYhmEYXjNJwzAMw/CaSRqGYRiG10zSMAzDMLxmkoZhGIbhNZM0DMMwDK/9fwMm7o4i\nCzqXAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "batch_size = 3\n", "for window_size in [2, 5, 10]:\n", @@ -469,23 +647,23 @@ "metadata": { "anaconda-cloud": {}, "kernelspec": { - "display_name": "Python [default]", + "display_name": "Python 3", "language": "python", - "name": "python2" + "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", - "version": 2.0 + "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.12" + "pygments_lexer": "ipython3", + "version": "3.6.2" } }, "nbformat": 4, - "nbformat_minor": 0 -} \ No newline at end of file + "nbformat_minor": 1 +} diff --git a/notebooks/02_Single_layer_models.ipynb b/notebooks/02_Single_layer_models.ipynb index 74ee73a..53d6f88 100644 --- a/notebooks/02_Single_layer_models.ipynb +++ b/notebooks/02_Single_layer_models.ipynb @@ -17,10 +17,8 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 1, + "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", @@ -76,10 +74,8 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 2, + "metadata": {}, "outputs": [], "source": [ "size = 1000\n", @@ -96,11 +92,17 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2.05 ms ± 148 µs per loop (mean ± std. dev. of 3 runs, 100 loops each)\n" + ] + } + ], "source": [ "%%timeit -n 100 -r 3\n", "c = np.empty(size)\n", @@ -117,11 +119,17 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "3.01 µs ± 1.53 µs per loop (mean ± std. dev. of 3 runs, 100 loops each)\n" + ] + } + ], "source": [ "%%timeit -n 100 -r 3\n", "c = a + b" @@ -160,10 +168,8 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 5, + "metadata": {}, "outputs": [], "source": [ "def fprop(inputs, weights, biases):\n", @@ -181,7 +187,7 @@ " Returns:\n", " outputs: Array of layer outputs of shape (batch_size, output_dim).\n", " \"\"\"\n", - " raise NotImplementedError('Delete this and write your code here instead.')" + " return inputs.dot(weights.T) + biases" ] }, { @@ -193,11 +199,17 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "All outputs correct!\n" + ] + } + ], "source": [ "inputs = np.array([[0., -1., 2.], [-6., 3., 1.]])\n", "weights = np.array([[2., -3., -1.], [-5., 7., 2.]])\n", @@ -220,16 +232,30 @@ "\n", "#### `numpy.dot` function\n", "\n", - "Matrix-matrix, matrix-vector and vector-vector (dot) products can all be computed in NumPy using the [`dot`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.dot.html) function. For example if `A` and `B` are both two dimensional arrays, then `C = np.dot(A, B)` or equivalently `C = A.dot(B)` will both compute the matrix product of `A` and `B` assuming `A` and `B` have compatible dimensions. Similarly if `a` and `b` are one dimensional arrays then `c = np.dot(a, b)` / `c = a.dot(b)` will compute the [scalar / dot product](https://en.wikipedia.org/wiki/Dot_product) of the two arrays. If `A` is a two-dimensional array and `b` a one-dimensional array `np.dot(A, b)` / `A.dot(b)` will compute the matrix-vector product of `A` and `b`. Examples of all three of these product types are shown in the cell below:" + "Matrix-matrix, matrix-vector and vector-vector (dot) products can all be computed in NumPy using the [`dot`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.dot.html) function. For example if `A` and `B` are both two dimensional arrays, then `C = np.dot(A, B)` or equivalently `C = A.dot(B)` will both compute the matrix product of `A` and `B` assuming `A` and `B` have compatible dimensions. Similarly if `a` and `b` are one dimensional arrays then `c = np.dot(a, b)` (which is equivalent to `c = a.dot(b)`) will compute the [scalar / dot product](https://en.wikipedia.org/wiki/Dot_product) of the two arrays. If `A` is a two-dimensional array and `b` a one-dimensional array `np.dot(A, b)` (which is equivalent to `A.dot(b)`) will compute the matrix-vector product of `A` and `b`. Examples of all three of these product types are shown in the cell below:" ] }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[ 6. 6. 6.]\n", + " [ 24. 24. 24.]\n", + " [ 42. 42. 42.]]\n", + "[[ 18. 24. 30.]\n", + " [ 18. 24. 30.]\n", + " [ 18. 24. 30.]]\n", + "[ 0.8 2.6 4.4]\n", + "[ 2.4 3. 3.6]\n", + "0.2\n" + ] + } + ], "source": [ "# Initiliase arrays with arbitrary values\n", "A = np.arange(9).reshape((3, 3))\n", @@ -254,11 +280,25 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[ 0.1 1.2]\n", + " [ 2.1 3.2]\n", + " [ 4.1 5.2]]\n", + "[[-1. 0.]\n", + " [ 2. 3.]\n", + " [ 5. 6.]]\n", + "[[ 0. 0.2]\n", + " [ 0.2 0.6]\n", + " [ 0.4 1. ]]\n" + ] + } + ], "source": [ "# Initiliase arrays with arbitrary values\n", "A = np.arange(6).reshape((3, 2))\n", @@ -291,10 +331,8 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 9, + "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", @@ -331,11 +369,799 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support.' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('
');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " this.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '
');\n", + " var titletext = $(\n", + " '
');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('
');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('
')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('
');\n", + " var button = $('');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " // select the cell after this one\n", + " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", + " IPython.notebook.select(index + 1);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "from mlp.layers import AffineLayer\n", "from mlp.errors import SumOfSquaredDiffsError\n", @@ -630,7 +2290,7 @@ "\n", "# Run the optimiser for 5 epochs (full passes through the training set)\n", "# printing statistics every epoch.\n", - "stats, keys = optimiser.train(num_epochs=10, stats_interval=1)\n", + "stats, keys, _ = optimiser.train(num_epochs=10, stats_interval=1)\n", "\n", "# Plot the change in the error over training.\n", "fig = plt.figure(figsize=(8, 4))\n", @@ -649,11 +2309,799 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support.' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('
');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " this.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '
');\n", + " var titletext = $(\n", + " '
');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('
');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('
')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('