diff --git a/.gitignore b/.gitignore index 94ca0e8..5389b59 100644 --- a/.gitignore +++ b/.gitignore @@ -84,3 +84,5 @@ report/mlp-cw2-template.pdf report/mlp-cw2-template.synctex.gz report/mlp-cw2-template.bbl report/mlp-cw2-template.blg + +venv diff --git a/data/problem_model_accuracy_performance.pdf b/data/problem_model_accuracy_performance.pdf new file mode 100644 index 0000000..dbb992c Binary files /dev/null and b/data/problem_model_accuracy_performance.pdf differ diff --git a/data/problem_model_loss_performance.pdf b/data/problem_model_loss_performance.pdf new file mode 100644 index 0000000..286bc5b Binary files /dev/null and b/data/problem_model_loss_performance.pdf differ diff --git a/notebooks/Plot_Results.ipynb b/notebooks/Plot_Results.ipynb index cbba96e..a0e0fb3 100644 --- a/notebooks/Plot_Results.ipynb +++ b/notebooks/Plot_Results.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -13,12 +13,12 @@ "import numpy as np\n", "%matplotlib inline\n", "plt.style.use('ggplot')\n", - "experiment_dir = 'path/to/mlpractical_directory' #Replace this with your path to the mlpractical directory" + "experiment_dir = '/home/anton/uni/MLP/mlpractical' #Replace this with your path to the mlpractical directory" ] }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -56,7 +56,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -76,7 +76,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -112,42 +112,30 @@ " ax_2.set_xlabel('Epoch number')\n", " \n", " fig_1.savefig('../data/{}_loss_performance.pdf'.format(plot_name), dpi=None, facecolor='w', edgecolor='w',\n", - " orientation='portrait', papertype=None, format='pdf',\n", + " orientation='portrait', format='pdf',\n", " transparent=False, bbox_inches=None, pad_inches=0.1,\n", - " frameon=None, metadata=None)\n", + " metadata=None)\n", " \n", " fig_2.savefig('../data/{}_accuracy_performance.pdf'.format(plot_name), dpi=None, facecolor='w', edgecolor='w',\n", - " orientation='portrait', papertype=None, format='pdf',\n", + " orientation='portrait', format='pdf',\n", " transparent=False, bbox_inches=None, pad_inches=0.1,\n", - " frameon=None, metadata=None)\n", + " metadata=None)\n", " \n", " " ] }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 14, "metadata": { "scrolled": true }, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - ":32: MatplotlibDeprecationWarning: \n", - "The frameon kwarg was deprecated in Matplotlib 3.1 and will be removed in 3.3. Use facecolor instead.\n", - " fig_1.savefig('../data/{}_loss_performance.pdf'.format(plot_name), dpi=None, facecolor='w', edgecolor='w',\n", - ":37: MatplotlibDeprecationWarning: \n", - "The frameon kwarg was deprecated in Matplotlib 3.1 and will be removed in 3.3. Use facecolor instead.\n", - " fig_2.savefig('../data/{}_accuracy_performance.pdf'.format(plot_name), dpi=None, facecolor='w', edgecolor='w',\n" - ] - }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAEMCAYAAAAyF0T+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzde1yUdd74/9c1Z84MDIiCqCgggqKm5Sm1QqO00n62teXut3urvdsO2pZ9tcPW9ru9ze2c1W7tlrVb7b3m2sluTWHX0jI1BRXxACgKqKCcTzMDM3N9/0AmUVBwYDj4fj4ePIS5Tp95O/C+Pp/rc1BUVVURQgghRK+m6e4CCCGEEMJzktCFEEKIPkASuhBCCNEHSEIXQggh+gBJ6EIIIUQfIAldCCGE6AN03rrQgw8+iMlkQqPRoNVqWb58eYvtqqry/vvvk5mZidFo5IEHHiAmJsZbxRNCCCF6Na8ldIBnn32WwMDAVrdlZmZSXFzMihUryM3N5d1332XZsmXeLJ4QQgjRa/WYJvedO3cydepUFEUhLi6Ouro6KioqurtYQgghRK/g1Rr6f//3fwMwY8YMUlJSWmwrLy/HYrG4fw4NDaW8vByz2XzBc544caLTymexWCgtLe20812uJI6ekxh6TmLoOYmh57oihgMGDGj1da8l9P/6r/8iJCSEqqoqli5dyoABAxgxYoR7e2sz0CqKct5r6enppKenA7B8+fIWNwGe0ul0nXq+y5XE0XMSQ89JDD0nMfScN2PotYQeEhICQFBQEOPHjycvL69FQg8NDW1xF1NWVtZq7TwlJaVF7b4z73zkbrRzSBw9JzH0nMTQcxJDz3mzhu6VZ+g2mw2r1er+fu/evURHR7fYZ9y4cWzevBlVVcnJycHX1/eize1CCCGEaOKVGnpVVRUvvfQSAE6nkylTpjB69Gg2btwIwMyZMxkzZgwZGRksWLAAg8HAAw884I2iCSGEEH2C0tuXT5VOcT2PxNFzEkPPSQw9JzH0XJ9rchdCCCFE15KELoQQQvQBktDPUE+dpOavb6HWVnd3UYQQQogOk4TerKaK+s8/Rj2wp7tLIoQQQnSYJPQzHFHDKO8/Bse+vd1dFCGEEKLDJKGfUVGhsi3xt1QdK2t11johhBCiJ5OEfoZ/gBaAWvyh6Gj3FkYIIYToIEnoZ/j4Kmi1UOfbH3VfRncXRwghhOgQSehnKIpCYLCB2tAY1GxJ6EIIIXoXSehnCQo2UOcfCXn7UW313V0cIYQQot0koZ8lyKzHih8uF3Awq7uLI4QQQrSbJPSzBAUbUFGoD4qWZnchhBC9iiT0swQG6wGojb0SNWuXDF8TQgjRa0hCP0uQ2QBAfWQSlJ2Cks5byU0IIYToSpLQz2IwaDCaFGr9IwGk2V0IIUSvIQn9HP6BWuoajdAvUsajCyGE6DUkoZ9Ra3eyKbcUxQi1NS6UpLFwKAu1wd7dRRNCCCEuStfdBegpDpVa+f+/KSJJ8WWCNpAl+ilEDPXF8Po/0Gi1KHodilaHXqtg0IBOo2DQKhi1CgatBqNOg0GvRaPVgKIBjRY0Gvd+Bq2CQaPg0Gixa3RY0WNTtCiKpuk8Og0GnQYUBbtLwa6C3aWgKAo+egUfnQZfnQYfvQY/gwYfgxatVtt0LQVAAUVp+lejAY0GVdHgUhRUQFVBRUVVwaUqOFFxoUFFRavVotNo0GpAqyhNpzmLQtPEO0IIIXouRe3lXblPnOicjmsNThfV+JKxuxh7HhwIqiOnsgKHy4VLBVVVcaoKDhQaFS0upfsbN0xOOwZnI05Fg1OjxalompK0onRZ+RTV1ZTgVZWmWwXO/Ht+wm/erlVdaFRX07+oaM4cq6CitH4oGlUFVDSACrgU5cwNCKit3Fw0l6n5uqrivsKZPZq+U1A5v7jKmT3Of+Xs8zZf9+x37T6/8tP3rf1CnX1tzVln0LRanuYjfjqTeu71ztu79V/j1vZXWmzvOMX9b9tHX6ycP/2vtFWyto9tN0VpupNtQ2ufI2+7lBh6V8vP4aWe4XLz5/8z3v29xWKhtLS0U88/YMCAVl+XGvoZBq2G4RZ/fOID+HdeDXfEWYiOiWxzf6dLpdGl0uBwYXeq2B0urPZGcLrA5QSXE9Xlwul0YXe4aHQ4aXC40KpOTLjwwYEJBzhd2J0uGpwqdkfTn22j4sKIC4Oi4nKpWF1gdTZ91Tuh3qlQ74I6p0KjClqcaGlAqzQlSw0uFLXpe1QVjfJTQlHOJFQtTYlFQcWpgkMFFwqOc393VfWsGj7QXNPnp5p/i194VUWn0+FwOFDPHNuUjBWcZ77OPtbFub/wqvsPmYumP2qK2pT4NKhnbiTOKWJzCZTm75Uz7+2nP5hN11Tdr7T1h7Tl/mf+qCo/vcefrt2c7M98r3Le9hbfKk3xbXpfPyX+5msoasvjtBotTpfznLL9dFNwsT+zbdwntbG9rVuQtl4/P0+qCme9h+Y9W77gvuE5twXo3M9Qq+XtaFpQ0Wg0uFyuC+7VkbNeLKbn7a9e/P/gYs793egIFaXjN0HnXl+jQb1ADNvzORPeIwn9jNraWvLz8+kX3g+Npuk5+oVoNQpajYJJd3ZN2Ni1hewluuKO9HIjMfScxNBzEsPepfvbjXuIyspK1q5dS2lZKb7+GmprnBc/SAghhOghvFpDd7lcLFmyhJCQEJYsWdJiW3Z2Ni+88ALh4eEAXHXVVcybN89rZTObzQBUVFTgHxBKbbUkdCGEEL2HVxP6unXriIyMxGq1tro9ISHhvETvLb6+vphMJsrLy4kI1VByohGXS0WjuRy7dAghhOhtvNbkXlZWRkZGBtddd523LtkhiqJgsVjO1NC1qCrU1134OboQQgjRU3ithv7BBx8wf/78NmvnADk5OTz++OOYzWZ+8YtfMHDgwPP2SU9PJz09HYDly5djsVg6rYzh4eHk5uYSOTCE3Tvq0eCPxeLXaee/XOh0uk79f7kcSQw9JzH0nMTQc96MoVcS+q5duwgKCiImJobs7OxW9xkyZAh//OMfMZlMZGRk8OKLL7JixYrz9ktJSSElJcX9c2f2wAwJCaGmpoZ6W9M5Tx6vwDeg7RsQ0TrpGes5iaHnJIaekxh6zpvj0L3S5H7o0CF27tzJgw8+yGuvvca+ffvOS9bNz7ABxo4di9PppLq62hvFcwsLCwOgrq4Kg1G56NA1IYQQoqfwSg39zjvv5M477wSaerOvXbuWBQsWtNinsrKSoKAgFEUhLy8Pl8tFQECAN4rn1twsUl5ejn9AlAxdE0II0Wt068QyGzduBGDmzJls27aNjRs3otVqMRgMPPLII16fP9xsNqMoCpWVlfgHDKL4RKNXry+EEEJcKq8n9MTERBITE4GmRN4sNTWV1NRUbxenBZ1OR1BQEOXl5YQN1dCQr9LY4EJvkPl3hBBC9GySqc5hNpvdQ9cAaqvlOboQQoieTxL6OUJCQqisrMTXv+nnGpkxTgghRC8gCf0cZrMZl8uF01mLRgs1VVJDF0II0fNJQj9H85zulVWVBARqpYYuhBCiV5CEfo6zF2kJCNJQUyUJXQghRM8nCf0cJpMJHx8fysvLCQjSYrOqNDRIs7sQQoieTRJ6K5p7ugcENvV0l+foQgghejpJ6K0ICQk50+TenNCl2V0IIUTPJgm9FWazGZvNBooNnU4SuhBCiJ5PEnor3D3dKysJCNJKQhdCCNHjSUJvRcue7lqqq1yoqtrNpRJCCCHaJgm9FQEBAWi1WndCb2xQsdskoQshhOi5JKG3QqPREBwcTHl5OYFBTSGSZnchhBA9mST0NriHrklPdyGEEL2AJPQ2hISEUF1djVbnwmBUqJFV14QQQvRgktDbYDabUVWVqqoq6ekuhBCix5OE3oaQkBAASktLCQjUUF3llJ7uQggheixJ6G0IDQ3FYDBw/PhxAoK0OB1grZeELoQQomeShN4GjUbDgAEDOH78OIHSMU4IIUQPJwn9AqKioqioqECjswKS0IUQQvRcktAvIDIyEoBTp09i8lGoloQuhBCih9J582Iul4slS5YQEhLCkiVLWmxTVZX333+fzMxMjEYjDzzwADExMd4s3nnCwsIwGAwUFRUREDRAllEVQgjRY3m1hr5u3Tp3rfdcmZmZFBcXs2LFCn7961/z7rvverNorTr7OXpAkJbaaicul3SME0II0fN4LaGXlZWRkZHBdddd1+r2nTt3MnXqVBRFIS4ujrq6OioqKrxVvDZFRkZSUVGBwWjF5YL6WqmlCyGE6Hm8ltA/+OAD5s+fj6IorW4vLy/HYrG4fw4NDaW8vNxbxWtTVFQUALXWEgCqK+U5uhBCiJ7HK8/Qd+3aRVBQEDExMWRnZ7e6T2uTtrSW/NPT00lPTwdg+fLlLW4CPKXT6c47n9lsxmg0YrVWYDBGUlWhZdTYzrtmX9RaHEXHSAw9JzH0nMTQc96MoVcS+qFDh9i5cyeZmZk0NDRgtVpZsWIFCxYscO8TGhpKaWmp++eysjL3uuRnS0lJISUlxf3z2cd4ymKxtHq+/v37c/jIYRJjkzl2pJb4kRo0mtZbGkTbcRTtJzH0nMTQcxJDz3VFDAcMGNDq615J6HfeeSd33nknANnZ2axdu7ZFMgcYN24cX3/9NZMnTyY3NxdfX99WE3p3iIyM5OjRowSHNnL8GJSXOrCE67u7WEIIIYSbV4etnWvjxo0AzJw5kzFjxpCRkcGCBQswGAw88MAD3Vm0Fpqfo9sdJWg0/SguapSELoQQokfxekJPTEwkMTERaErkzRRF4d577/V2cdolLCwMvV5PcfEJwiIiKT7eSOIYtc0OfkIIIYS3yUxx7aDRaIiMjKSoqIiISD3WelV6uwshhOhRJKG3U/N49IDgBlDgZFFjdxdJCCGEcJOE3k7Nz9FLTh0nxKKl+LgkdCGEED2HJPR2CgsLw8/Pj8OHD9M/Uk9NlYu6Wml2F0II0TNIQm8njUbDsGHDOHr0KCHhTZPgFEuzuxBCiB5CEnoHxMbG4nQ6KTlVQGCwNLsLIYToOSShd0D//v3x8/MjNzeXiEg95aVO7DZZrEUIIUT3k4TeAYqiEBsb29TsHnam2V1q6UIIIXqAbp0prjeKjY1l9+7dlJYfxT8wkqJjDQwaauzuYgkh+iBVVbHZbLhcrm6ZyKqkpAS73e716/YllxpDVVXRaDSYTKZ2/99LQu+giIgI/P39ycvLY/jQIRzMslFX68TPX9vdRRNC9DE2mw29Xo9O1z1/qnU6HVqt/G3zhCcxdDgc2Gw2fHx82rW/NLl3UHOz+7Fjx7BENDW7Hz8mze5CiM7ncrm6LZmL7qfT6XC52t9PSxL6JYiNjcXlclFcchRLuI7Cow2trucuhBCekPUiREc+A5LQL0G/fv0ICAggNzeXqMEG6mtdVJTJJDNCCCG6jyT0S9Dc7F5QUIA5zIlWC0VHG7q7WEII0anmzp3LN9980+K1v/zlLzzxxBMcOXKEX/7yl0yaNInU1FTmzZvHtm3b3Ptt2rSJWbNmMXXqVGbMmMH999/P8ePH27zWCy+8QEpKCjNmzODnP/85xcXFADQ2NrJw4UKuu+46pk2bxhtvvHHBMq9YseKS3uuiRYvIycnp8HEvv/wyb7/99iVds7NJQr9Ezc3ux44dISJKz4mCRpxOaXYXQvQdc+fO5Ysvvmjx2hdffMGcOXP45S9/yfz589m6dStff/01S5cu5dixYwAcPHiQp59+mtdee43NmzeTlpbGrbfeSmFhYZvX+s1vfkN6ejppaWmkpKTw6quvAvDVV1/R0NDAv/71L77++ms++uijC56nrYSvquoFn0e/9NJLxMXFtbm9N5DeFpcoPDycoKAgDh06xNWT4jh+rJGSE40MGGjo7qIJIfog1z/+glqY36nnVAYOQXPHfW1unz17Ns8//zx2ux2j0UhhYSElJSUcOXKEK664gpkzZ7r3HT58OMOHDwfgrbfeYsGCBcTGxrq3n71vawICAtzf19fXu58dK4pCfX09DocDq9WKXq/H39+/1XMsW7YMm83GjBkziI+PZ/HixcyfP59Jkyaxa9cuVq5cyZtvvsmePXuw2WzMmjWLRYsWATBv3jx+97vfkZycTGxsLPfccw/p6emYTCbef/99wsLCLhJN2LdvH0uWLMFmszFo0CBefvllLBYL7733Hh9++CE6nY7Y2Fj+9Kc/8cMPP/DMM8+43+Onn37a5vtqL6mhXyJFURg+fDhFRUWYfG2YfBRpdhdC9CkhISGMHj3a3ez+xRdfcPPNN3Po0CFGjhzZ5nE5OTkkJSV1+HrLly9n3LhxfPbZZzz++OMAzJo1C19fX8aMGcOVV17J/fffj9lsbvX4J598EpPJRFpaGm+++SYAhw8fZt68eWzcuJGoqCgWL17M+vXrSU9PZ9u2bezfv/+889TX1zN27FjS09OZMGECH3/8cbvK/8gjj/DUU0+Rnp7O8OHDeeWVV4CmG5wNGzaQnp7O8uXLAXj77bdZtmwZaWlpfPbZZ5hMpg7H61xSQ/dAfHw827dvJyc3h8hBIzhyyI7d5sJokvskIUTnulBNuivNmTOHL774guuvv54vvviCV155hTVr1rTY55577iE/P5+YmBjefffdFtvKy8u5/fbbsVqtzJ8/n/vvv7/Nay1ZsoQlS5bwxhtv8P7777No0SJ2796NVqslIyODqqoq5s6dy9VXX82gQYPaVf6oqCiuuOIK989r167l448/blqXo6SE3NxcRowY0eIYg8HAjBkzABg5ciRbtmy56HWqq6upqqpi4sSJANx2223853/+JwAJCQk89NBDpKamkpqaCsD48eN57rnnmDt3LjfccAMDBgxo1/u5EMk8HggODiYiIoKDBw8SNciAqsLxAhmTLoToO1JTU/nuu+/IysrCZrMxcuRI4uPjycrKcu/z3nvv8eqrr1JZWQlAXFwc+/btA5pq+WlpacyfP5+6urp2XXPu3LmsW7cOgM8++4zp06ej1+uxWCyMHz+ePXv2tLv8vr6+7u8LCgp45513WLVqFenp6Vx33XXYbLbzjtHpdO4mf61Wi8PhaPf1WvO3v/2Nu+++m71795KamorD4eChhx7ixRdfxGazcdNNN5GXl+fRNUASusfi4+MpKyujwVFBYLBWmt2FEH2Kn58fEydO5NFHH2XOnDlAU619586dbNy40b2f1Wp1f//AAw+wYsUKcnNzW93emiNHjri/37hxI0OHDgUgMjKS77//HlVVqa+vJyMjg2HDhrV5Hr1eT2Nj6xWrmpoafHx8CAwM5PTp02zatOmCZeqIwMBAgoKC2L59OwBr1qxhwoQJuFwuTpw4weTJk3n66aeprq6mrq6Oo0ePkpCQwIMPPkhycnKnJHRpcvdQXFwcW7Zs4eDBgwwcPI7s3TZqqpwEBMl0iUKIvmHOnDnce++9/OlPfwLAx8eHv/71rzz33HM8++yzWCwW/P39WbBgAdDUxPzcc8+xcOFCamtrMZvNREZG8thjj7V5jeeff57Dhw+j0WiIjIx0P2u+++67+e1vf8u1116Lqqrcfvvt5zWRn+2uu+4iJSWFkSNHsnjx4hbbEhMTSUpK4pprriE6Oprx48d7GpoWXnvtNXenuOjoaF555RWcTicPP/wwNTU1qKrKfffdR1BQEC+++CJbt25Fo9EQFxfHNddc4/H1FdULU5w1NDTw7LPP4nA4cDqdTJgwgZ/97Gct9snOzuaFF14gPDwcgKuuuop58+Zd9NwnTpzotHJaLBZKS0s7fNzatWs5deoUd/78//Cvr2oZOtxIwqj2zb3bF11qHMVPJIae6wsxrK+vb9Fk7G06nc7j5ubLnacxbO0z0Nbzdq/U0PV6Pc8++ywmkwmHw8EzzzzD6NGjzxvzl5CQwJIlS7xRpE4VHx9Pfn4+pWUnCYswU3S0geFJJhSNTNsohBDCO7yS0BVFcXfJdzqdOJ3OPjVHcUxMDAaDgYMHDzIifhoZP9RTetpBWD99dxdNCCF6lCeffJIff/yxxWv33nsvt99+e4fOM3v27POWJV2xYgUJCQkel7E1r7/+Ol999dV5ZVi4cGGXXO9SeO0ZusvlYvHixRQXF3P99de3mHCgWU5ODo8//jhms5lf/OIXDBw40FvF84hOp2PYsGHk5uZy9ZRp6PRNU8FKQhdCiJaWLVvWKec5N7l2tYULF/ao5N0arzxDP1tdXR0vvfQS//Ef/0F0dLT79fr6evdi7hkZGXzwwQetzsmbnp5Oeno60DQJQUND5/Uq9+RZx5EjR/jggw+47bbbqC7tx5GcGu741RD0+stvIIE8d/OcxNBzfSGGJSUlGI3G7i6G6EZ2u51+/fq1eM1gaH1GUq/3cvfz82PEiBHs3r27RUI/+6H/2LFjee+996iuriYwMLDF8SkpKaSkpLh/7sxOL550ogkICCAgIIDt27dz9eTZ5OxXyd5TTNTgy28q2L7QGam7SQw91xdiaLfb0Wq7b8RMX7gp6m6extBut5/3OW6rU5xXqo/N4+6gqcd7VlYWkZGRLfaprKx0rymel5eHy+VqMbdvT6coCgkJCRQUFKAz1OHrp6FQxqQLIYTwEq/U0CsqKnjrrbdwuVyoqsrEiRO54oor3JMSzJw5k23btrFx40a0Wi0Gg4FHHnmk13WcGzFiBDt27ODgwYNEDhpF7gE71noXPr6XX7O7EEII7/L6M/TO1hPGoZ/ts88+o6qqiv/v1vl8s76W4aNMxCZ4Pul+b9IXmjq7m8TQc30hht09Dv22227jwQcfZPr06e7X/vKXv3DkyBHuu+8+fv/735OXl0dgYCD+/v4sWrSICRMmAE3rob/00kvU1NRgNBoZOnQov/vd785rnW32wgsvsHHjRhRFwWKx8OqrrxIREUFjYyOLFi1i3759OBwO5s2bx8MPP9xp7/Gqq65i/fr1hISEtLo9Nja2xYx3HeXNcehSdexkiYmJVFdXU1F5gtBwHUfz7LhcvfqeSQhxmeqN66Ffztrd5L5v3z7Cw8MJDw+noqKCjz/+GI1Gw5133klwcHBXlrFXiYmJwWg0sn//fkaPvI4fv6ujuKiRAdGXX+c4IUTneXdnCfkV5y8k4okhZhP3juvX5vbeth76X//6VwoLC3n66acBWLVqFVlZWSxdupRf/epXnDhxArvdzj333MP8+fMvEp2WVFVl6dKlbNq0CUVRWLBgAbfccgslJSX85je/oaamBqfTyfPPP8+4ceN47LHH2Lt3L4qicPvtt/PrX/+6Q9e7FO2uob/33ntoNE27/+1vf3NPDvPOO+90WeF6I51OR3x8PIcPHybI7MDXX8ORHPvFDxRCiB6mt62HPnv2bNavX+/+ee3atdx8880AvPzyy3z99desW7eOlStXUl5e3qGyrVu3juzsbNLS0vjHP/7B0qVLKSkp4bPPPmPatGmkpaWRlpZGYmIi2dnZFBcX8+9//5tvv/22w5PmXKp219DLy8uxWCw4nU727NnDH//4R3Q6nXu9V/GTxMRE9u7dS05uDjGxw9mXaaWizIE5VNbCEUJcmgvVpLtSb1oPPTQ0lOjoaHbt2sWQIUM4fPiwewGWlStXupP9iRMnyM/Pb/O5eWt27NjBnDlz0Gq1hIWFMWHCBPbs2cPo0aN57LHHcDgcXH/99SQlJREdHU1BQQFPP/00M2fOZMqUKe2+jifaXUP38fGhsrKS/fv3ExUV5Z7KVcYoni8sLIywsDCys7MZOMSATo/U0oUQvVJvWw/95ptvZu3ataxbt47U1FQURWHr1q1s2bKFtWvXkp6eTlJS0nnTxl5MW/3HJ0yYwJo1a4iIiGDhwoWsXr2a4OBg0tLSmDhxIitXrmTRokUdutalandCT01N5YknnmDFihVcf/31QFPHh7Z6LF7uEhMTKS0tpbziNNExRk4WNmKtd3V3sYQQokN623roN9xwAxs2bODzzz93N7fX1NQQFBSEj48PeXl5ZGRkdCACTSZMmMCXX36J0+mkrKyM7du3M3r0aIqKirBYLNx1113ccccdZGVlUV5ejsvlYtasWSxZsqTFzU9Xancb8Jw5c7jyyivRaDREREQATXdeF2o+uZzFxcXx3Xff8cMPP5By3WyO5NjJz7UzIvnyXVZVCNE79ab10IODg91DzcaMGQPA9OnT+fDDD0lJSSEmJoaxY8d2OAY33HADu3btYsaMGSiKwlNPPUV4eDiffPIJb7/9NjqdDj8/P15//XVOnjzJo48+isvlQlEUnnjiiQ5f71Jc8jj0ffv2odFoLhhYb+hp49DPlpWVxaZNm5gwYQIaRyKlxQ5Sbg5Ep+tdE+Z0VF8Y/9vdJIae6wsx7O5x6DL1q+d65Dj0Z599loMHDwLw+eef8/rrr/P666/z6aefXnJB+7qkpCTi4+PZtm0bPoGnaGxUKcyX6WCFEEJ0vnY3uRcWFhIXFwfAv/71L5599llMJhO/+93vuPXWW7usgL2Zoihce+21nD59mu+3pjFs4M3kHVCIjjGg1fbtWroQQrSmJ66H3twT/1yrVq3qUE/47tbuhN7cMl9cXAxAVFQUQLt7LV6u9Ho9s2bN4h//+AfF5d/ir03haJ6dofGX13SwQggBPXM99Oae+L1du5vc4+PjWblyJR9++KF7XF9xcXGvWhGtu5jNZlJSUigtK8Gm7iV3v53GRpkOVgghROdpd0J/8MEH8fX1ZdCgQfzsZz8Dmjqk3XjjjV1WuL4kNjaWxMRESkr3UVtXypFDMi5dCCFE52l3k3tAQAB33nlni9cupev/5WzKlCkcPXqUKus2Dh+8gcGxBoxGWR9HCCGE59qd0B0OB59++imbN2+moqICs9nM1KlTufXWW9HpZErT9jAajUybNo1169ZRrjtA3oGxJI6WcelCCCE81+7q4UcffURWVhb33XcfL774Ivfddx/79u3jo48+6sry9TlDhw4lJiaGyrrd5B4oldnjhBA91ty5c90LszT7y1/+whNPPMGRI0f45S9/yaRJk0hNTWXevHls27bNvd+mTZuYNWsWU6dOZcaMGdx///0cP368zWtVVFRwxx13MHnyZO644w73NLKNjY0sXLiQ6667jmnTpubkQQ0AACAASURBVPHGG29csMwrVqy4pPe6aNEicnJyOnzcyy+/zNtvv31J1+xs7U7o27Zt4//+3/9LcnIyAwYMIDk5mUWLFvHDDz90Zfn6HEVRmDZtGlqthtNV2zi078LTIQohRHfx5nrob731FlOmTOH7779nypQpvPXWW0DH10NvK+GrqorL1XYF6qWXXnIPze6tOjxsTXguICCASZMm8e2337J//36GDR+Lf6C2u4slhOjB9mXUU13p7NRzBgZrSRrb9kx03lwPfcOGDfzzn/8E4LbbbmPevHk89dRTHVoPfdmyZdhsNmbMmEF8fDyLFy9m/vz5TJo0iV27drFy5UrefPNN9uzZg81mY9asWe6FU+bNm8fvfvc7kpOTiY2N5Z577iE9PR2TycT7779PWFjYReO5b98+lixZgs1mY9CgQbz88stYLBbee+89PvzwQ3Q6HbGxsfzpT3/ihx9+4JlnngGaKnqffvppm++rvdpdQ584cSJ/+MMf2L17N0VFRezevZsXX3yRiRMnelSAy9WoUaMYMCCS0uptfLtpb3cXRwghzuPN9dBLS0vp169pidh+/fpRVlYGdGw99CeffBKTyURaWhpvvvkmAIcPH2bevHls3LiRqKgoFi9ezPr160lPT2fbtm3s37//vPPU19czduxY0tPTmTBhAh9//HG73sMjjzzCU089RXp6OsOHD+eVV14Bmm5wNmzYQHp6unuO+rfffptly5aRlpbGZ5995l7B1BPtrqHPnz+fNWvW8N5771FRUUFISAiTJk2SeX4vkaIo3HLLzaxetZbDx7bw3WYHU6aO7+5iCSF6qAvVpLuSN9dDb01H1kNvTVRUFFdccYX757Vr1/Lxxx/jdDopKSkhNzf3vDVJDAYDM2bMAGDkyJFs2bLloteprq6mqqrKXcm97bbb+M///E+gabGahx56iNTUVFJTUwEYP348zz33HHPnzuWGG25oc372jmh3DV2n03H77bfzxhtv8NFHH7FixQpuvfVW1q5d63EhLld6vZ5b591MgO9gMnb/wHfffSePNoQQPYq31kO3WCyUlJQAUFJSQmhoKNDx9dDPdfbCJgUFBbzzzjusWrWK9PR0rrvuOmw223nH6HQ6FKVpem6tVutxxfVvf/sbd999N3v37iU1NRWHw8FDDz3Eiy++iM1m46abbiIvL8+ja0AHEnprmt/wxTQ0NPDEE0/w+OOP8+ijj/LJJ5+ct4+qqqxcuZKHH36YRYsWtVgbty8zmXRMvXomAT7xZGRk8N1333V3kYQQws1b66HPnDmT1atXA7B69Wquv/56oOProev1ehobG1vdVlNTg4+PD4GBgZw+fZpNmzZd5N23X2BgIEFBQWzfvh2ANWvWMGHCBFwuFydOnGDy5Mk8/fTTVFdXU1dXx9GjR0lISODBBx8kOTm5UxK6VwaQ6/V692IuDoeDZ555htGjR7foUZiZmUlxcbH7Q/Duu+922py/Pd3gYUaOHLqKUxUqu3fvJiEhAYvF0t3FEkIIwDvroT/44IPcf//9/M///A+RkZG88847QMfXQ7/rrrtISUlh5MiRLF68uMW2xMREkpKSuOaaa4iOjnZPY95ZXnvtNXenuOjoaF555RWcTicPP/wwNTU1qKrKfffdR1BQEC+++CJbt25Fo9EQFxfHNddc4/H1L7oeenOzSWscDgfPP/88q1atavcF7XY7zzzzDPfee2+LHpB//vOfGTFiBFOmTAFg4cKF/P73v2+z80OznrweekcU5jewa1sFxZWfE94vjLlz57a7BaSn6QvrUHc3iaHn+kIMZT303s+b66FftIbefEfWlvbWJF0uF4sXL6a4uJjrr7++RTKHpo4TZ58rNDSU8vLyiyb0viJqkJ7Dh3xodI2hqGgbR44cYejQod1dLCGEEL3ERRN68+B+T2k0Gl588UXq6up46aWXKCgoIDo62r29tYaC1mqo6enppKenA7B8+fJObZrW6XTd2tQ9abofX3/uIDAgl61btzJ27Fj0en23ledSdXcc+wKJoef6QgxLSkq6fWrtzr7+kiVL2LFjR4vX7rvvPn7+85936Dypqak0NDS0eO3NN9+8YHO8J1599dXzOoHfdNNN/Pa3v73osZ7E0Gg0tvtzfNEm966wevVqjEYjN998s/u1y73JvdnO7+vIP3qMk2XpTJo0iXHjxnVreS5FT4hjbycx9FxfiKE0ufd+3mxy98pSX829+qCpx3tWVhaRkZEt9hk3bhybN29GVVVycnLw9fW9bJrbzzZitA++xgGEBEfz448/XnCYhxBCCNHMK205FRUVvPXWW7hcLlRVZeLEiVxxxRXuIQ8zZ85kzJgxZGRksGDBAgwGAw888IA3itbj+PppGDbcRPaesVQ6v+Srr75i+PDhDBo0iODg4O4unhBCiB6qW5rcO1Nfa3IHcDpUNq2vpro+l2rrPqqrq4GmcY5XXHHFBadc7Al6Shx7M4mh5/pCDKXJvffrUb3chfdpdQqJY3zY+f0wpk5KIiTcxrFjxzhw4ACbN28mNja2U+b9FUII0Xd45Rm66LiISD2WfjoO7LWhIYDk5GSuvfZanE5ni9mXhBCiq/TG9dA76qqrrqK8vLzN7ecOse7JJKH3UIqiMOYqX/R6hR+/r6OhwUVYWBihoaEcOHCgu4snhLgM9Mb10C9n0uTeg5l8NIyb7MfWTbVkbqvnyqv9SEhI4LvvvqOiouKyHAUgxOVq8+bNnD59ulPPGRYWxtSpU9vc3tvWQ//rX/9KYWEhTz/9NACrVq0iKyuLpUuX8qtf/YoTJ05gt9u55557mD9/fvuCdIaqqixdupRNmzahKAoLFizglltuoaSkhN/85jfU1NTgdDp5/vnnGTduHI899hh79+5FURRuv/12fv3rX3foepdCaug9XIhFR9IYH06ddJCTbSM+Ph5FUaSWLoTocr1tPfTZs2ezfv16989r1651z3fy8ssv8/XXX7Nu3TpWrlx5wWb21qxbt47s7GzS0tL4xz/+wdKlSykpKeGzzz5j2rRppKWlkZaWRmJiItnZ2RQXF/Pvf/+bb7/9lttvv71D17pUUkPvBQYNNVBZ5iQn206Q2Y9BgwZx4MABJkyYgEYj92RCXA4uVJPuSr1pPfTQ0FCio6PZtWsXQ4YM4fDhw+4FWFauXOlO9idOnCA/P5+QkJB2l2PHjh3MmTMHrVZLWFgYEyZMYM+ePYwePZrHHnsMh8PB9ddfT1JSEtHR0RQUFPD0008zc+ZM94RpXU2yQS+gKAojr/AhyKxl9/Z6YmLiqauro6ioqLuLJoTo43rbeug333wza9euZd26daSmpqIoClu3bmXLli2sXbuW9PR0kpKSsNvtHYpDWyO8J0yYwJo1a4iIiGDhwoWsXr2a4OBg0tLSmDhxIitXrmTRokUdutalkoTeS2h1CldM8kVFpex4OEajUZrdhRBdrreth37DDTewYcMGPv/8c3dze01NDUFBQfj4+JCXl0dGRkYHo9CUuL/88kucTidlZWVs376d0aNHU1RUhMVi4a677uKOO+4gKyuL8vJyXC4Xs2bNYsmSJS1ufrqSNLn3In7+WpLH+7Jraz2WkBgOH851d1YRQoiu0pvWQw8ODiY2Npbc3FzGjBkDwPTp0/nwww9JSUkhJiaGsWPHdjgGN9xwA7t27WLGjBkoisJTTz1FeHg4n3zyCW+//TY6nQ4/Pz9ef/11Tp48yaOPPorL5UJRFJ544okOX+9SyExxZ+ktM0tl7arn4IHjnCxfz7XXXtvhziddrbfEsSeTGHquL8RQZorr/frc4iyic40Y7UOYpR8GXRC7dmVw8uTJ7i6SEEKIbiZN7r2QVqswbrIfp0vHcqpqK6tXr2bgwIFceeWV561iJ4QQPcmTTz7Jjz/+2OK1e++9t8NDu2bPnn1ex7YVK1aQkJDQ4TI198Q/16pVqzrUE767SZP7WXpbE93JogZ2fFeFU5NHWdU+rFYrUVFRTJ8+vVs/hL0tjj2RxNBzfSGGdXV1+Pn5ddv1pcndc57GsLXPgDS590H9owxcMSEIvZrAiGG3MWXK1Zw+fZq///3v7NixA6fT6d7Xbrdz4MABduzYQX19/SVdr6qqio8//tg94YMQomtpNBpJqJcxh8PRoblGpMm9l4sabMDlUtnzo5V+uljuujOOLd9tZtu2be7ZmgoKCigoKMDlcgGQmZnJhAkTGDlyZIc+LJmZmZSVlXHo0CEmTZrUVW9JCHGGyWTCZrNht9tRFMXr1zcajR0ery1autQYqqqKRqPp0MqaktD7gOgYIy4XZO2yoih6Zs5MZfjw4XzzzTds3ryZgICm1dpiY2PR6/Vs3ryZb7/9ln379jF9+vR2PXdvruEDHD16VBK6EF6gKAo+Pj7ddv2+8Niiu3kzhpLQ+4jBw4yoLtiXaWXHljrGTx7M/PnzqampwWw2t7i7nzNnDocPH2bLli2sWbOGm266iSFDhlzw/NnZ2TQ2NhIfH8+hQ4eoqakhICCgq9+WEEKIdpJn6H3IkDgjo6/0peyUg62banE5tYSEhJzXVKcoCsOGDWP+/PmEhYWxYcOGCy5U4HK52LNnD5GRkYwbNw5oqqULIYToOSSh9zEDhxgYN9mPmmon3/+7lvo6V5v76vV6Zs+ejVar5X//93/bfM5z5MgRampqGD16NCEhIQQGBkpCF0KIHkYSeh8UEalnwjR/7DYX3/+rhvLStnvJBgQEcOONN1JVVcWGDRvcHefOtnv3bgIDAxkyZAiKojB48GAKCwul960QQvQgktD7qNAwHZOvDUCjUdi6qZb8XHubqwVFRkYydepUjh49yrZt21rsV1JSwokTJ0hOTnb3iB88eDAOh0NWexNCiB5EEnofFhisZepMf8IjdOzLsJK5rR6Ho/WkPnLkSBITE9m5cyd///vfyczMpL6+nt27d6PX61sshhAVFYVOpyM/P99bb0UIIcRFeKWXe2lpKW+99RaVlZUoikJKSgo33nhji32ys7N54YUXCA8PB+Cqq65i3rx53ihen6Y3aBg/xY+8A3YO7rNRVVlD8nhfQiwt/+sVRWH69On069eP7OxstmzZ4l6ycNSoUS1WdNPpdAwcOJCjR4+iqmq3jI8VQgjRklcSular5Re/+AUxMTFYrVaWLFnCqFGjiIqKarFfQkICS5Ys8UaRLiuKohA7wkRwiJbdO+r5/l+1RMcYSBhlwmD8qZFGq9WSlJREUlISZWVlHDhwgOPHj7uXIDzbkCFDyM/Pp7y8nNDQUG++HSGEEK3wSkI3m82YzWagaR3dyMhIysvLz0voomuFRei55oZADmXbyM+xU3y8kRHJPkQN1p9Xyw4NDWXKlCltnmvw4MEA5OfnS0IXQogewOvP0E+dOkV+fj7Dhg07b1tOTg6PP/44y5Yto7Cw0NtFuyzo9AqJo324ekYAfv4adu+o54dNtdRUOy9+8Fn8/f2xWCwyfE0IIXoIr662ZrPZePbZZ7n11lu56qqrWmyrr693z1ubkZHBBx98wIoVK847R3p6Ounp6QAsX76choaGTivf5baykKqq5OyvZucPZTgaXSSNNpM8zoxO3777vPT0dL777jsWLVqEv7+/+/XLLY5dQWLoOYmh5ySGnuuKGBoMhlZf91pCdzgc/OEPfyA5OZnZs2dfdP8HH3yQ559/nsDAwAvudzkvn9pZ7DYX+/dYKTraiK+fhuTxPlj66S96XHFxMZ988gkAgYGBmM1mQkJCSElJaXOSmqqqKkwmU4tOduJ8l+tnsTNJDD0nMfRcV8SwreVTvfIMXVVV3n77bSIjI9tM5pWVlQQFBaEoCnl5ebhcLpkr3EuMJg1jrvJj4BAHe3+s54dv6hgSa2D4KB90urZ7sPfr14/Zs2dz+vRpKioqKC8vp7CwkNLSUm655ZbzVnIrLi7mn//8J3q9nuTkZEaPHt2hlYSEEEK0zSsJ/dChQ2zevJno6Ggef/xxAH7+85+771pmzpzJtm3b2LhxI1qtFoPBwCOPPCLDobzMEq5j6vUBHNxrJT+3gVPFDsZc5Ys5tPWPiaIoxMTEEBMT437t0KFDbNiwge3btzNx4kT361arlfXr1+Pn50d4eDg7duwgMzOTUaNGMWbMGHx9fbv8/QkhRF/m1WfoXUGa3LtGaUkju3fUY7WqRA7UMyzBRGCwtl3HbtmyhczMTObOncvAgQNRVZUvv/ySwsJCbrvtNvr160dpaSk//vgjubm5aDQa4uPjSU5Ods9DcLmTz6LnJIaekxh6zptN7trf//73v+/UK3lZTU1Np53L19eX+vr6Tjtfb+brr2VgjBFVhaJjDeTnNlBd6cTPX4PJ58Kd5kaOHElWVhY5OTkMHz6czMxMsrOzmT59urs27+vrS2xsLHFxcU2d83Jy2Lt3L4WFhZjN5jYftzidTlRVPa85v6+Rz6LnJIaekxh6riti2NbfR0noZ5EPb0tarUJYhJ5BQw1otXCioJH83AYqyhz4+Grw8VVafSwSEBBAcHAwu3fv5tixY+Tm5hIfH8/EiRPP29/Hx4fBgwczatQofHx8OHbsGPv27aN///7ndYisqalh9erV7Nq1Cz8/P0JDQ/vsYxn5LHpOYug5iaHnvJnQ+3Y1R3QKg1FDfJIP190USMIoE1UVTrZuquX7f9dScqKx1UVfwsLCuPrqqyktLSUkJIRrr732gsnXaDQyduxY7rjjDgICAli7dm2Lxynl5eWsXr2auro6fHx82LBhA2vWrJHmQCGEOEOeoZ9Fnhe1j9OhUpDfQN5BG7Z6lcBgDcOGm+g/UI9Go7jjqKoqBw4cYODAgR0asVBXV8eaNWuoq6tjzpw5KIrCl19+iUaj4ZZbbiE0NJT9+/ezdetW7HY7/fv3x+l00tDQQENDA6Ghodx4441tjtXsDeSz6DmJoeckhp7z5jN0SehnkQ9vx7icKscLGsg7aKe22oWvn4ah8UaSr+hPVXW5R+eura1lzZo1WK1WVFXFx8eHOXPmEBwc7N7HZrOxY8cOSkpKMBgMGAwGtFothw4dIjIykptvvhmdzisDOTqdfBY9JzH0nMTQc5LQO0ASevdTVZWSEw5y99uoLHei0ysMiNIzcIgBs0V7yc+5a2pqWLNmDQaDgVtuuQU/P792HXfgwAHS0tIYOnQoN9xwQ6/sQCefRc9JDD0nMfRcn5tYRvRtiqIQEamn3wAdFaVOTp1QOJJXQ0F+A34BGmLijEQPMaDRdiyxBwQEMH/+fDQaTYeSckJCAjabjS1btrBp06aLPr8XQoi+QBK66DSKohASpiMuwcKwERpOFjVwNK+BrF1W8g7aiRthJGqwAY2m/cn1UpvMx4wZg9VqZefOnWi1WiZMmCCz0gkh+jRJ6KJL6PQKA4c0JfBTxQ4OZdnY86OVvAN2hg43EjnIcMFpZTvDxIkTaWhoYO/evezfv5+EhASSk5MJCQnp0usKIUR3kIQuupSiKPTrryc8QkfJCQeH9tnYu9PK/j1WBg4xMniYAf+A9s1AdynXnj59OomJiezZs4f9+/eTlZXFwIEDGTNmDIMGDZKmeCFEnyEJXXjFuc/Zj+bZOZpnJz/HjqWfjiGxRvr116F0oDm+vcLCwkhJSWHy5Mns27ePvXv38uWXXxIcHMzo0aMZMmQIJSUlHD9+nKKiIqxWK1dffTXx8fGXdL2amhr8/f3lZkEI4VXSy/0s0qOzc7Q3jjari4IjDRw7bMdmVfH10zB4mIGowQaMpq7rme50OsnLy2P37t2UlJS4X9fpdPTv35+GhgZKSkpISEhg2rRp7R7Prqoq27Zt48cffyQiIoJp06bRr1+/SyqjfBY9JzH0nMTQc9LLXVwWTD4a4hJNDEswUny8kfxcO/v32Ni/x4bZoiVigJ6ISD3+gZ3bJK/VaomPjycuLo7i4mKKi4uJiIggPDwcrVaLy+Vix44d7Nixg5MnT5KamnrRRWMcDgdpaWnk5uYyZMgQiouLWbVqFSNGjGDSpEn4+vqiqioNDQ1YrVasVis2mw2bzYbdbkev1+Pn5+f+an69mcFgkBq/EOKCpIZ+Frkb7RyexLG60snJokaKjzdSXekEICBQQ9RgA5GDDPj4em9MeVFRERs2bKCurg6dToevry++vr74+fnRr18/BgwYQHh4OA0NDXz11VcUFxczefJkxo4dS0NDAzt27GDPnj3uJYGtVisul+uSyhIUFMTo0aNJSEjo1TPgeZP8PntOYug5mVimAySh9zydFUdrvYvi440cP9ZARVlTcrf00xHeX4d/gBa/AA2+fpoODYPrcBmsVg4cOEBtbS1Wq5X6+nqqq6upqqoCQKPRoNfrcTqdzJw5k2HDhrU4vry8nIyMDKBpIZqzv0wmEyaTCaPRSGNjI3V1de4vk8lEXV0diqLgcrnIy8ujpKQEo9FIUlISycnJ+Pv7d9n77gvk99lzEkPPSULvAEnoPU9XxLGuxknRsQaKjjVSX/tTLVdRIDBYS2S0nshBhosu7dpZ6uvrOXnyJCdPnqSqqopx48Zd8vPy1pwbQ1VVKS4uJjMzk8OHD6PT6Zg4cSKjRo3qlTPheYP8PntOYug5SegdIAm95+nKOKqqSoNdpa7WRV2Ni9oaJ6eLHVRV/FSDHzBQj6WfDj//rhkO5w0XimFlZSXffPMNBQUFhIeHc+2117b5jL/5ub3dbsfhcOBwOHA6neh0OkJCQtBqe2+MLkZ+nz0nMfScdIoTog2KomA0KRhNGkIsTa8ljILaGifHz9Tg9+60AuDjpyEsXEdYfx3h/fVdPpGNtwQHB3PLLbeQm5vL5s2bWbVqFf37929RU29sbKS+vp76+nqcTmer59FqtVgsFsLDw4mMjGTYsGHdUtuvq6tj9+7dxMXFERYW5vXrC9FXSEIXfYJ/gJb4JB/iEk3U1rgoLXFQWuLgZFEjBfkNaHXQP6qpWd4SruvS5+7eoCgKcXFxDBo0iO3bt3Pq1KkWHe6MRiNms9ndkc9kMqHT6dBqteh0Oux2O6dOnaKkpISDBw+SlZVFcHAwV155JXFxcZ2e2BsaGtDr9S166rtcLvbu3csPP/xAY2Mj+/fvZ968eZjN5vOOLygoICgoiKCgoE4tlxB9iTS5n0WalzpHT4qj6lIpO+2g6FgjJ4sacDSC3qBgDtViDtVhDtUSHKJDb+hZCd6bMVRVlSNHjrB9+3ZKS0sxm82MGjUKRVFwOBw0NjbicDho/lOhqiparZbw8HD69+/f6ip4jY2NHD9+nIKCAgoKCigvL8fX15f+/fszYMAAAgMD2bFjB6dPnyY6OpoxY8awceNGdDodt912m7vDn9PpZPPmzWRlZaHT6Zg8ebK7bM3q6+vZu3cvAQEBjBgxwr2tJ30OeyuJoefkGXoHSELveXpqHJ1OlZITjZw66aCyzEFNdVONVlEgLELHgIEGIiL1PSK5d0cMVVUlLy+P7du3U17ecj17jUaDoijuL6fT6W4RCAwMxGKx0NjY6B4J0LyOvVarZcCAAfTv35+qqipOnjxJdXU1AH5+fkydOpVhw4ahKAqnTp1izZo1BAQEMG/ePBwOB+vWraO4uJjRo0dTUVHBsWPHiIqKIiUlBa1Wy65du9i3bx8OhwNoWmnvmmuuQafT9djPYW8iMfRcn0vopaWlvPXWW1RWVqIoCikpKdx4440t9lFVlffff5/MzEyMRiMPPPAAMTExFz23JPSep7fEsbFBpbLcwekSBycKGrDWq2g0TR3rzKE6gsxagkO0XTprXVu6M4aqqlJTU4NOp3N/ndsE73Q6OX36tLunf1lZGQaDocVY/QEDBjBgwIDzVsyrra2lrKyM/v37nzemvrCwkC+++ILQ0FDq6upobGwkJSWF2NhYVFVl//79bN68GWhqsne5XMTHxzNu3DhycnLYsWMHFouFWbNmMXTo0F7xOezJesvvck/W5xJ6RUUFFRUVxMTEYLVaWbJkCY8//jhRUVHufTIyMvj666954oknyM3N5YMPPmDZsmUXPbck9J6nN8ZRVVUqy52cKGik5GQjdTU/PY82+SgEmbVnvpoSvclH6dKZ23pjDDtLXl4e69evJygoiFmzZhEaGtpie3V1NVu3bsVgMDB27FiCg4Pd244ePcqGDRsAuO666/Dz8yM0NNR946CqKna7nerqahobGzEajRiNRncfg7b+T1VVpba2luLiYkpKSiguLqa+vp7Y2FhGjBjR4tl+fX09eXl5nD59mqSkpE4dzuhtl/PnsLP0uV7uZrPZ3dHFx8eHyMhIysvLWyT0nTt3MnXqVHdnn7q6OioqKlrtICNEZ1MU5cwzdR2JY3xobFSprnBSWdE0JK6qwknJSQeoTdOxGoxnJ3ktoWG6bqnJ90XDhg3jzjvvJCAgoNVZ8QIDA0lNTW312MGDB3PHHXewfv161q1b5349KCgIvV5PdXU1DQ0NrR6r1Wrx9/fHz8+PgIAAtFottbW11NTUUFNT427W12q1hIWFERAQwM6dO/nxxx8ZOHAgAwcOpKCggOPHj7sfN2RnZ5OQkMDEiRNbTARkt9spLS2ltrbWPRrBbrcTEhJCZGQkFoulxc2F3W6noqKCyspKKisrqaqqoqqqitDQUJKSkggPD2+xv81mo7CwkMDAwF59QyE6xuu93E+dOkV+fn6rM2pZLBb3z6GhoZSXl0tCF91Cr1cIDdcRGv7Tr4jDoVJd2ZTcm5K9k8OH7KhnKvMBgRos/ZqOCQrW4uOnkfnXL9G5tfKOCAoK4vbbb0ev15OTk0NpaSmlpaU4HA53h7zmBG+327Hb7dhsNqxWK3V1ddTW1nLy5EkcDgcBAQGEhIQwePBgAgMDiYiIwGKxuMfv19TUcODAAbKzsyksLMRsNjN+/HhiY2Px9/dn586dZGZmkpeXx6hRo7Db7e5HFGfTaDQYDAZsNhvQNEqheaGgiooKjYqZCQAAFwJJREFUrFZri/0DAwPx9/fn0KFDZGdnY7FYSExMxOl0kp+fz4kTJ9ydGGNiYpg0aRIhISGtxquxsZGCggKOHDlCfX09QUFBBAcHExQU5J6pUCYv6h28mtBtNhsvv/wyd999N76+vi22tdby39ofw/T0dNLT0wFYvnx5i5sATzV3pBGe6ctxjIho+bPTqVJeaqf4uJWTx60U5lvJz22qAWp1CkHBBoLNegKDDQQG6wkMavoymi48oUtfjqG36HS6Fs3xXcFisTBkyBBSU1Opra0lICCgxd+tyMhIrr76ajZs2MCuXbswmUxERUUxatQooqKiCA4Oxs/PDx8fHxRFobKykqNHj3L06FEKCwvx8fEhISGB0NBQLBYLFosFs9ns7pdgs9nIyspi586dfPvttwD069ePq6++mtjYWPLz8/n+++/5+OOPGTt2LAkJCe4bGJvNRlFREXl5eTQ2NmIymTCbzRw6dKjFwkDNn8Xw8HBCQkIwmUz4+PhgNBrx8/PDYrG0GOngcDgoLCwkNzeXwsJC901TQ0MDjY2N7n4Zer0evV7v7nPR/G9ERARRUVEtWjRUVaWqqopTp05x+vRp901aeXk5AQEB7o6XzTdsBoMBvV7f7huRhoYGd6tHc0dOo9HYYh+n00lpaal7aubmaZtNJtMFJ2jy5u+y13q5OxwO/vCHP5CcnMzs2bPP2/7nP/+ZESP+X3v3HtvUef4B/HsuvsV2El9IQgIs5bK1bG1XFAaDlXYL4rfRVquqLmt3UyYmrUDVdhRU9g9C27ReGKKjCgqqoGWVNg1pA4mqu4iWsUu6DUhpEW3WkLYhQMjFTmI78eX4nPf3x7FPEkhKQkLimO9HMknsY/vNI5znvb+L8ZWvfAUA8OSTT2L79u3XbKFzDD333MxxNHSB3h4d0T4dsYiBaERHLKIjPjD8Y+YqMLv4izPL54p8ChRlMBHczDGcLLkWw3g8DqfTecN6bUKhEGw2GwoLC4fdPzAwgJMnT+K999676nAgt9uN+fPnY8GCBaioqICiKBBCIB6Po6+vD5qmobW1FeFwGKFQCLFYbMT3drlc8Pv9sNlsuHjxIjRNgyzLKCkpgcvlgt1uh91uh6Io0HUduq5bSyKzJw/G4/FhFQmv14tgMIiBgQGEw2FommY9lq18FBcXIxaLobOzc9hzs2w2G+x2+7CzEwCzVyKVSiGVSqG/v9/qGRnK5/OhtLQUqqpalYjRNmmy2WxWgh86TCSEgM1mw9q1ayf1UKVpHUMXQqC+vh4VFRUjJnMAqKqqwp///GesXLkSzc3NKCgoYHc7zTiyIsEfVOEPDv9o6brAQL+5XW1/VEdvWEdPKI1LbeYfKVkGigOK9VyvZ+Q/HDRzuVyuG/r6ow1TFBQUYNWqVViyZAmi0Sjsdrs1GXCkiYCSJFmrFYLBIObNm2c9ZhiGtZVwNhn29PQgHA4jHA6jr68Pt956Kz7zmc9gzpw5405imqahq6vLmnzY3d0Nt9uNxYsXw+/3IxAIwOfzXRVLIQQikQi6uroQj8ethK1pGpLJpFVpyA51ZCsYLpcLs2fPhtfrtW6apqGjowMdHR04f/48dF1HMBjE7bffjlmzZsHj8ViVgVQqZR11nO35SKVSw2J65SqPG2lKWuhNTU3Ytm0b5s2bZ/2ijz76qFV7XrNmDYQQ2LdvH959913Y7XZs2LABCxYsuOZrs4WeexjHsUvEDfSE0gh36wh3mRPwsp9IT6FsbX5TWGSOyTucN3Z2fT7h/8OJYwwnLu+Wrd1ITOi5h3G8fum0QG8ojWTcgQvnI+gJ6dBSgx9RSQZcLhlurzw4y75YQYGHE/CuxP+HE8cYTlzeLVsjorFRVQnBUhuCQT8qKg0IMXiyXHwgc+s3x+ZbmtJWa16SAadTgrNAhsslo8Ajo7BYQWGxArfnxp4ZT0S5gQmdKIdJkgSPV4HHe/UsWl0XiPaZy+gGYgbicQOJuEBfj472C5qV7GUF8BYOtuYLfWYXvmpjkifKJ0zoRDOUokgo9qso9l/9MTZ0gWjEQKRXN299ZpI//9HgpipujwxvsZnkvUUyvEUK3G4ZElvzRDMSEzpRHpKVwZ3ssoQQVgveSvS9Oi5fGFwOJMvmZDy3R4GimpUGRZVgs0nwFMooLDLH69mFT5R7mNCJbhKSJMFVIMFVIKOswmbdn9aEtV4+GjEQ7dMRjejQ0wK6bnbt6+nB1zGTvgKP15yc5/aa33uLFKgqEz3RdGFCJ7rJqbbBfexHk04LM+H3GYj0mRvn9IZ1XLqgAdlJ+BLg8Ziz7wszM+9dBeaNy+2IbjwmdCK6JlXNjtcPvz+7YU4solv73Ie707h4Xht2nSSbLXsJAKRsb4EMb6FstvYLZXgLMzPyFSZ+ouvBhE5E101RJHgLFXgLFcwePDwRWkpYy+wG+g0k4gYMA4Awx/INAxjoN65K/pIEuL1mcs9O1Css5mQ9orFgQieiSWezS7DZzWR8Ldnu/MG9783Z+e1DJ+spsLruHQ4ZdofZwne5ZRRkbnaHxMl6dFNjQieiaTVad3420Ud6zbH7RNxAMmEm/WRCDNtBL0uWzVPuVBVwe+JwuAx4vGZXfnYCn43r7ylPMaETUU4aTPQj/5lKp4XVpR+PGUilBPS0QDpz09Mywl0pXGwdPp7vcEpwe81WvcMpw+GQYHfIsNklyLK55E/JVAwcTgl2Byf00czAhE5EM5KqDo7fjyS7h7aezmyfG9PRHzUQy5x4192ZRiphjud/GkkC7A4JDqcMp0uC02V2/bsKZHMXv0KzYkA03ZjQiSivKapk7Wt/JSHMNfbJpAEtZSZ3QxfQDUDXBJIJgWTSQDIukEgYSCYE+no0JBPDu/ttdglujwxVlSArgCybX1VVgqpKUFRzeaDdPtgb4HBIcLllKJzVT5OECZ2IblqSJEG1Aart2pP3hjIMgUTcGDaRb6DfgK4LaJp5brihI9P1L5BOj/5aLrdsbtLjMVv6NpuUmVQoQbWZ8wGUTMWA6/np0zChExGNkyxLKHArKHArKJltu+b12Z6AVEoglTTH+1OJ7El6OmJRA70hDZr26adZZw/aya7bV1QJhp7pWTBEJunLcLgkOJ0yJBnW47oOKArMOQNOmbv65SEmdCKiG2ywJ0BCgXv08XbDENA0cwa/lspO7jO3501rZgUgGtER7kpfNdlvvBQVsNvNffrVzFdFlSBJ5rwBCRI83i5IctJaIshd/3IbEzoRUY6QZXNs3eG49rVpTcAQwhyvl80krKdhjfUnEwaEwLCZ+7oOJBMGkkmRWfpnzh1Ia+aKAT0NiMzmPwLA5UtpaKnhswZlGXBmt/R1SJnrM8+5ooNBkoACt7lc0O2R4XTJmWEJgXSmwpKdW2AOM8hmxUflngLXgwmdiGgGMs+zl664D/DYFHi8k/MewWAQ7Ze6hu36l/0+3m+gr9eAJAGyBGsnv6GNd10X6O5MDzvcZ6yyewrYMr0H2XkFkoTMjoOZC7M9CpmbEIAwYA1DSDKgKpJZqVEAh3P4hkSKCqQ1WEsehTFkq2IpU1mSYVWcZMWc15CLvRRM6ERENKrx7Po3EiHM3oD+mLk5kKoOJuhsMk1legpSySHDDGlhDTWkMkMQ8QGzt0Cy/sm8hzHYS5BNwmYilqz5C7punh440oZE10O1ATabWVEQBmAIYZVjaK5XlChW/Z9nSjY0YkInIqIbRpIka/3+6K6vsnA99CEbEg30GzB0Ya4isJkrCSR5sIJgGOaEQpFp7QsDg0MGmvnV0M0WvCSZrfhsMs/2IDgcTkzV6AETOhER3TQUVcqc8Dc1lYjsBkdTYUoS+p49e9DY2IiioiLs3LnzqsfPnj2LF154ASUlJQCAZcuW4eGHH56KohEREeWFKUno9957L77+9a+jrq5u1Gtuu+02bN26dSqKQ0RElHemZAPixYsXw+PxTMVbERER3ZRyZgz9ww8/xJYtW+Dz+fD9738fc+fOne4iERERzRg5kdBvueUW7NmzB06nE42NjdixYwd279494rVHjx7F0aNHAQDPPfccgsHgpJVDVdVJfb2bFeM4cYzhxDGGE8cYTtxUxjAnEnpBQYH1/ZIlS7Bv3z5EIhEUFhZede3q1auxevVq6+fJnD04lbMR8xnjOHGM4cQxhhPHGE7cjYhheXn5iPfnxCG+vb29EJlFe+fOnYNhGPB6J2mrIyIiopvAlLTQX3zxRbz//vuIRqN47LHHUFNTg3TmPME1a9bg3//+N/76179CURTY7XY89dRTObmtHhERUa6ShLhyO30iIiKaaXKiyz1XcB385GAcJ44xnDjGcOIYw4mbyhgyoRMREeUBJnQiIqI8oGzfvn37dBcil8yfP3+6i5AXGMeJYwwnjjGcOMZw4qYqhpwUR0RElAfY5U5ERJQHcmKnuFxw+vRpvPLKKzAMA9XV1XjwwQenu0g5r7u7G3V1dejt7YUkSVi9ejXWrl2LWCyGXbt2oaurC7NmzcJPfvITHs5zDYZhYOvWrfD7/di6dStjOE79/f2or69HW1sbJEnC+vXrUV5ezhiOw+uvv4633noLkiRh7ty52LBhA1KpFGN4DSMdD/5pn99Dhw7hrbfegizL+OEPf4gvfvGLk1cYQULXdfH444+Ly5cvC03TxObNm0VbW9t0FyvnhcNh0dLSIoQQYmBgQDzxxBOira1NvPbaa+LQoUNCCCEOHTokXnvtteks5oxw5MgR8eKLL4pnn31WCCEYw3F66aWXxNGjR4UQQmiaJmKxGGM4DqFQSGzYsEEkk0khhBA7d+4Ux44dYwzH4OzZs6KlpUVs2rTJum+0uLW1tYnNmzeLVColOjo6xOOPPy50XZ+0srDLHeZ2s2VlZSgtLYWqqlixYgVOnDgx3cXKeT6fz5rs4XK5UFFRgXA4jBMnTuCee+4BANxzzz2M5TWEQiE0Njaiurrauo8xHLuBgQF88MEH+NrXvgbAPAzD7XYzhuNkGAZSqRR0XUcqlYLP52MMx2Ck48FHi9uJEyewYsUK2Gw2lJSUoKysDOfOnZu0srDLHUA4HEYgELB+DgQCaG5unsYSzTydnZ34+OOPsXDhQvT19cHn8wEwk34kEpnm0uW2V199Fd/73vcQj8et+xjDsevs7ERhYSH27NmD1tZWzJ8/H7W1tYzhOPj9fjzwwANYv3497HY77rzzTtx5552M4XUaLW7hcBiLFi2yrvP7/QiHw5P2vmyhA9bBMENxL/mxSyQS2LlzJ2pra4ednEfXdurUKRQVFXFp0ATouo6PP/4Ya9aswQsvvACHw4HDhw9Pd7FmlFgshhMnTqCurg579+5FIpHA3//+9+kuVt4ZKddMJrbQYbbIQ6GQ9XMoFLJqV/Tp0uk0du7cibvvvhvLli0DABQVFaGnpwc+nw89PT0jHoNLpv/97384efIk3nnnHaRSKcTjcezevZsxHIdAIIBAIGC1fJYvX47Dhw8zhuNw5swZlJSUWDFatmwZPvzwQ8bwOo0WtytzTTgcht/vn7T3ZQsdwIIFC9De3o7Ozk6k02k0NDSgqqpquouV84QQqK+vR0VFBe6//37r/qqqKhw/fhwAcPz4cSxdunS6ipjzvvOd76C+vh51dXV46qmn8IUvfAFPPPEEYzgOxcXFCAQCuHTpEgAzOc2ZM4cxHIdgMIjm5mYkk0kIIXDmzBlUVFQwhtdptLhVVVWhoaEBmqahs7MT7e3tWLhw4aS9LzeWyWhsbMSBAwdgGAa++tWv4qGHHpruIuW8pqYmbNu2DfPmzbOGKB599FEsWrQIu3btQnd3N4LBIDZt2sSlLmNw9uxZHDlyBFu3bkU0GmUMx+GTTz5BfX090uk0SkpKsGHDBgghGMNxOHjwIBoaGqAoCiorK/HYY48hkUgwhtcw9HjwoqIi1NTUYOnSpaPG7Y9//COOHTsGWZZRW1uLu+66a9LKwoRORESUB9jlTkRElAeY0ImIiPIAEzoREVEeYEInIiLKA0zoREREeYAJnegmV1NTg8uXL093Ma5y8OBB7N69e7qLQTRjcKc4ohyyceNG9Pb2QpYH69r33nsv1q1bN42lIqKZgAmdKMc888wzuOOOO6a7GHlF13UoijLdxSC6oZjQiWaIv/3tb3jzzTdxyy234Pjx4/D5fFi3bh1uv/12AOa+0C+//DKamprg8XjwzW9+E6tXrwZgHo15+PBhHDt2DH19fZg9eza2bNmCYDAIAHjvvffwy1/+EtFoFCtXrsS6detGPKDo4MGDuHDhAux2O/773/8iGAxi48aNWLBgAQCz+3737t0oKysDANTV1SEQCOCRRx7B2bNn8dJLL+Eb3/gGjhw5AlmW8aMf/QiqquLAgQOIRCJ44IEHhu3SqGkadu3ahXfeeQezZ8/G+vXrUVlZaf2++/fvxwcffACn04n77rsPa9eutcrZ1tYGm82GU6dO4Qc/+MGw42mJ8hHH0IlmkObmZpSUlGDfvn2oqanBr371K8RiMQDAr3/9awQCAezduxdPP/00fve73+HMmTMAgNdffx3/+te/8NOf/hQHDhzA+vXr4XA4rNdtbGzEs88+ix07duDtt9/Gu+++O2oZTp06hRUrVuDVV19FVVUV9u/fP+by9/b2QtM01NfXo6amBnv37sU//vEPPPfcc/jZz36GP/zhD+jo6LCuP3nyJL785S9j//79WLlyJXbs2IF0Og3DMPD888+jsrISe/fuxbZt2/DGG2/g9OnTw567fPlyvPLKK7j77rvHXEaimYoJnSjH7NixA7W1tdbt6NGj1mNFRUW47777oKoqVqxYgfLycjQ2NqK7uxtNTU347ne/C7vdjsrKSlRXV1tHYL755pt45JFHUF5eDkmSUFlZCa/Xa73ugw8+CLfbjWAwiM9//vP45JNPRi3frbfeiiVLlkCWZaxatepTr72Soih46KGHoKoqVq5ciWg0irVr18LlcmHu3LmYM2cOWltbrevnz5+P5cuXQ1VV3H///dA0Dc3NzWhpaUEkEsHDDz8MVVVRWlqK6upqNDQ0WM/97Gc/iy996UuQZRl2u33MZSSaqdjlTpRjtmzZMuoYut/vH9YVPmvWLITDYfT09MDj8cDlclmPBYNBtLS0ADCPBC4tLR31PYuLi63vHQ4HEonEqNcWFRVZ39vtdmiaNuYxaq/Xa034yybZK19v6HsHAgHre1mWEQgE0NPTAwDo6elBbW2t9bhhGLjttttGfC7RzYAJnWgGCYfDEEJYSb27uxtVVVXw+XyIxWKIx+NWUu/u7rbOWg4EAujo6MC8efNuaPkcDgeSyaT1c29v74QS69Czow3DQCgUgs/ng6IoKCkp4bI2oiHY5U40g/T19eFPf/oT0uk03n77bVy8eBF33XUXgsEgPve5z+G3v/0tUqkUWltbcezYMWvsuLq6Gr///e/R3t4OIQRaW1sRjUYnvXyVlZX45z//CcMwcPr0abz//vsTer2PPvoI//nPf6DrOt544w3YbDYsWrQICxcuhMvlwuHDh5FKpWAYBs6fP49z585N0m9CNPOwhU6UY55//vlh69DvuOMObNmyBQCwaNEitLe3Y926dSguLsamTZussfAnn3wSL7/8Mn784x/D4/HgW9/6ltV1nx1//sUvfoFoNIqKigps3rx50steW1uLuro6/OUvf8HSpUuxdOnSCb1eVVUVGhoaUFdXh7KyMjz99NNQVfPP1jPPPIPf/OY32LhxI9LpNMrLy/Htb397Mn4NohmJ56ETzRDZZWs///nPp7soRJSD2OVORESUB5jQiYiI8gC73ImIiPIAW+hERER5gAmdiIgoDzChExER5QEmdCIiojzAhE5ERJQHmNCJiIjywP8DmFio5PQqsnoAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArQAAAF3CAYAAABUqthdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACURUlEQVR4nOzdd3xUVf74/9edmmTSSSOFkIRQEqqCgEhHXFgF4YcIruvqsrZ1Xb/rrhVFxFXEup+1r3xAxUXBglIUUAFBaR+KIIQSSAIkISQhvU29vz+GDIQkMAlJJgPv54N5JHPvnXvPzMmEd868z/soqqqqCCGEEEII4aU0nm6AEEIIIYQQl0ICWiGEEEII4dUkoBVCCCGEEF5NAlohhBBCCOHVJKAVQgghhBBeTQJaIYQQQgjh1SSgFUIIIYQQXk0CWiGEEEII4dUkoBVCCCGEEF5NAlohhBBCCOHVdJ5uwNKlS/n888/rbAsKCuL9999v9DFpaWl8+OGHZGdnExISwoQJExg7dmxrN1UIIYQQQrRDHg9oAeLi4nj66add9zWaxgeO8/PzmTt3LqNHj+bBBx/k0KFDzJ8/n8DAQAYNGtQWzRVCCCGEEO1IuwhoNRoNwcHBbh27du1awsLCuPPOOwGIjY3l6NGjrFixQgJaIYQQQogrULsIaPPy8rj33nvR6XQkJyczffp0IiMjGzw2PT2d3r1719nWt29f1q9fj81mQ6er/5SsVitWq9V1X1EUfH19KS4uxmazteyTaYSiKISFhVFYWIiqqm1yTdFypP+8n/Sh95M+9G7Sf96vrftQp9MREhLi3rGt3JaLSk5O5oEHHiA6OpqSkhK+/PJLnnrqKV577TUCAgLqHV9SUkJQUFCdbUFBQdjtdsrLyxt84suWLauTp5uQkMC8efPcfpFaUlhYWJtfU7Qc6T/vJ33o/aQPvZv0n/drj33o8YC2X79+ru87depE165defDBB/nxxx+58cYbG3yMoih17tf+lXD+9lqTJk2qc67a4woKCtp0hDYqKoq8vDz5y9QLSf95P+lD7yd96N2k/7xfW/ehTqcjPDzcvWNbuS1N5uPjQ6dOnTh58mSD+4ODgykpKamzraysDK1Wi7+/f4OP0ev16PX6Bve19ZtKVVV5I3sx6T/vJ33o/aQPvZv0n/drj33Y7urQWq1WcnJyGk0HSE5OZu/evXW27dmzh8TExAbzZ4UQQgghxOXN4wHtRx99RFpaGvn5+aSnp/Pqq69SXV3N8OHDAVi8eDFvvvmm6/ixY8dSWFjoqkO7bt061q1bx0033eSppyCEEEIIITzI40OaRUVF/M///A9lZWUEBgaSnJzM888/78qZKC4uprCw0HV8REQETzzxBB9++CFr1qwhJCSEu+66S0p2CSGEEEJcoRS1vSVBtKGCgoI65bxak6IodOzYkZMnT7a7vBNxcdJ/3k/60PtJH3o36T/v19Z9qNfr3Z4U5vGUAyGEEEIIIS6FBLRCCCGEEMKrSUArhBBCCCG8mgS0bUCtKMPxf5swH97v6aYIIYQQQlx2JKBtA+qqpTjee4nK1V95uilCCCGEEJcdCWjbgJLiXN63ZtcWmdkphBBCCNHCJKBtA2pyKma/UCpLq+FUjqebI4QQQghxWZGAtg0cOqzyw7X/4mjnm1D37fJ0c4QQQgghLisS0LYBP5PzZa70i0JN2+3h1gghhBBCXF4koG0D/gFa4ExAe/BX1DZanUwIIYQQ4kogAW0b8A90vszVvmHYbQ44esDDLRJCCCGEuHxIQNsGDEYFnR5QNFT5RkjagRBCCCFEC5KAtg0oinJO2kFH1P0S0AohhBBCtBQJaNuI6Zw8Wo5noJaVeLZBQgghhBCXCQlo24h/wJlKBxHJAKhpv3iwNUIIIYQQlw8JaNuIK+UgqJNzg+TRCiGEEEK0CAlo20htpYNKbTDgHKGVZXCFEEIIIS6dBLRtxOTvHKG12LVY/EKgtBhysjzbKCGEEEKIy4AEtG1Ep1fwM+kAqOw+BECqHQghhBBCtAAJaNtQcKgBgKpOfQAJaIUQQgghWoIEtG0oKNgIQGVIgnNDehqq2ezBFgkhhBBCeD8JaNtQcIhzhLZS9YPQMLBZIX2fh1slhBBCCOHdJKBtQ0G1AW25AyX1KgDU/b94sEVCCCGEEN5PAto2cLrKyr5TlWh9nS93RYUDevQFQN2/y4MtE0IIIYTwfjpPN+BKsPVEBf/ZcQqF49yliwS7wsfWBGIjryKqshDday+h+Pqh8fFF4+uL4uuH1mjAoNejNxowGvToDXp0RiOK0QiGMzejj/OrXg8aLYpG/j4RQgghxJVHAto2EmHSk19ppUy1E6zo2JJlJrfHtPoH2oGKM7fzKKoDg8OM0V6O0WHBaLdidFjROWy1R4ACKAqgoMWBwWHDoNoxqjb0ONCiYtHqqdYaqdEaqNYYqNHoUVEw4MCAHSOOM987sCkaLIoWM1pqFB1mtDhQ8FXs+GDHDzt+ih0fxYHpzPd+GgcmjQM/jQM/jQoo2NFgB+yKBruq4FAUHIoGVdHgOHNTFcV5U0EFHGeelQMFhwp2NDjA+VhVAUVBq4BWAZ0GdApoFQWNcu6LVucVRKM4XyPnF6XOVxTQnHkNldrX0vVQDQGBmZSXV0Dt8RoFFA0anG3Qorrao1HOfPxxpj2KAkrtRWrPW3uf2mufuaec/ejEgeJ6LRxnXjfU85/XOc1U6j8nVOXsa3neWh7KmcfU+dE594VTnNc/dxEQ9bzHA2g0zovVtv/8JUOcfaqc8/3ZE9SeWq33KFDVs+2o/aIo579OZ/tcoyhnXxrlvBdJUaisslNYVHT2orXXUWrbpdZt3zkv9NluO+e85/eDWudLnYOUs9+e/erG2ipqQ8+l3tnPud/ooXV31H0JGvjBcL0/6j5SbeR7dygXeB7uPr7SpqPwdEmDPy/ncz7HS7tmU53/HC/cyobb5m6LL3ju1nraTejD+j+bCpUUU1hY0cjCQue/dk1ffEi51Cfetj8u7Z7JoCMswOjpZrhFUa/g5aoKCgqwWq1tci1FUQgIDeerpUeoLHRQ0sHKflsFheU1qA4HqqricKg4VHCoKnYUrGiwKto2aZ8QQgghxLlG2nP4f3eMdt1XFIWOHTty8uTJNlntVK/XEx4e7taxMkLbhvyNOqLC9BwtNNMv1MTvr7p4JzlUFZtDxWpXsdhVLHYHNTYVs81Bjc2B2WLFZraC6gCHA8XhANWB6rBjtzuw2BxY7A4sNufjbQ4HPjjwwY4PNnxUO75YUex2zHYViwPMDrA4wGIHneLAiAMjdoyqHSN2NA4HNWiodmioUjVUqwpVDi1VqoYqVUuVqqUS59cqtCicGb3EgVZV0XDOTXWgQUVRnTcNKsrZsTznCJyqoj1zvFZ1oFGd50JVsaHBrijYzowC28559PlUzo5oqCrO0eAz37tGIjk7klhv0Epx9sfZXWdGkxXn6LFd0ThHj9FgU848E9d5lTM3XM+tbtvOHKecbb9DUdCoqvOG4+zr08gvkbrXOnsujXr26op69tWpPebs9ZX6T7r2uZ/7qqrnHqk4RzfrPb+zj6t3HvWcK7p2nz1/3Wud+/zqPzf1zPVrr3Tua16nHRf4xasqimu/BtX1/Grbrp7bY+eMTtUdqVRcx5/7OtV98mfPU+cn9GL/KSjKhY9ppE11LnFO++o8tNHjz3ne572eF3otRfvRUH83pLHfl0IA+GptFz+onZCAto35BzhHXCvKHRc50kmjKBi0CgYtmFqzYeKC2vqvUtHy2qoP65y7Ra7ThHM05XKNtu0COS3nX6RFXkb3T6IoCh2jojiZl+deHzbl9W+1HwkP/L5o0s9dK7WvgdMqikJUVCR5eafa7veoV/6+bkdt1uo93QK3SUDbBjIyMjh06BA9e/bEFNARcJbuEkJcfurm2MroV0tSFAXFYETRG7w0ULmyKYqCxs8fxbdc+k+0OJkW3wZKSkpIT0/n6NGjrhHaqioHdru8oYUQQgghLpUEtG0gODgYcE5CM/oo6HSAClUVMkorhBBCCHGp2lXKwbJly/jkk08YP348d955Z4PH7N+/n2effbbe9tdff52YmJhWbmHzhISEAFBYWAiAKUBLabGdinI7AUFSxUAIIYQQ4lK0m4D2yJEjfP/998THx7t1/L/+9S/8/Pxc9wMDA1uraZcsMDAQjUaD1WqloqIC/wANpcV2yaMVQgghhGgB7SLloKamhjfeeIN7770Xk8m9ufxBQUEEBwe7bpp2vEqWVqslKCgIgOLiYkxNrHQghBBCCCEa1y5GaOfPn0+/fv3o3bs3X375pVuPefTRR7FarcTGxjJ58mR69uzZ6LFWq7XOAgqKouDr6+v6vi2EhIRQXFxMcXExHYKjAGelg7a6vrg0tf0k/eW9pA+9n/Shd5P+837tuQ89HtD+/PPPZGZmMnfuXLeODwkJ4Z577iExMRGbzcbGjRt57rnneOaZZ0hJSWnwMcuWLePzzz933U9ISGDevHlurz7REmJjY8nIyMBsNtM5IYJdWzKpqlTp2LFjm7VBXLqoqChPN0FcIulD7yd96N2k/7xfe+xDjwa0hYWFfPDBB8ycORODweDWY6Kjo4mOjnbd79q1K4WFhaxYsaLRgHbSpEnceOONrvu1f1kUFBRgs7XNKhhGo3Mt5JycHGrMxQDUVNs5diwHg6H9pksIJ2dB8Cjy3C3oLtod6UPvJ33o3aT/vF9b96FOp/OOpW8zMjIoLS3l8ccfd21zOBwcOHCA1atXs3jxYrdyY7t27cqmTZsa3a/X69HrG17toq3eVLWlu4qLi9HqwOijYK5RqSizE9Kh/Q3di4apqiq/iL2c9KH3kz70btJ/3q899qFHA9pevXrxyiuv1Nn2zjvvEB0dzcSJE92e6JWZmekKGNur2tJd5eXlWK1W/AO1mGtsVJQ7COng4cYJIYQQQngxjwa0vr6+dOrUqc42o9FIQECAa/vixYspKiriL3/5CwCrVq0iPDycuLg4bDYbmzZtYtu2bfz9739v8/Y3ha+vL35+flRVVVFSUoLJ38TpfKgst3u6aUIIIYQQXs3jk8Iupri42LUgAYDNZmPRokUUFRVhMBiIi4vj8ccf56qrrvJgK90TFhbG8ePHKS4uxj8gAEBq0QohhBBCXKJ2F9DOnj27zv0HHnigzv2JEycyceLENmxRywkPD+f48eOUlJQQH5sAQIWM0AohhBBCXBKZXt+GamfqORdXcL70leWOdpdYLYQQQgjhTSSgbUNhYWGAM6D1M2lQFLDboaZaAlohhBBCiOaSgLYNRUREAM6AVlHAz9/58leUSdqBEEIIIURzSUDbhkJDQ1EUBavVSmVlJf6Bzpe/vEwmhgkhhBBCNJcEtG1Ip9MRGBgIOEdpAwK1AJSXygitEEIIIURzSUDbxmoXWCgpKSEg6ExAKykHQgghhBDNJgFtG6sNaM8doa0olUoHQgghhBDNJQFtGzs3oPUP1IACVqsqlQ6EEEIIIZpJAto2dm5Aq9UqmPxrJ4ZJ2oEQQgghRHNIQNvGagPa8vJybDabTAwTQgghhLhEEtC2MT8/PwwGA6qqUlpaSkDQmVq0pVK6SwghhBCiOSSgbWOKotSdGCaVDoQQQgghLokEtB7QUKWD8jK7VDoQQgghhGgGCWg94NyA1hSgQVHAZkUqHQghhBBCNIMEtB4QHBwMNFDpQCaGCSGEEEI0mQS0HnDuamGqqp7No5WAVgghhBCiySSg9YDaEVqz2Ux1dbWr0kF5mVQ6EEIIIYRoKgloPUCn0xEYGAicNzFMRmiFEEIIIZpMAloPOTeP9tzSXVLpQAghhBCiaSSg9ZDQ0FDAmUdr8ndWOrDboLpKAlohhBBCiKaQgNZDzh2h1WgV/AOk0oEQQgghRHNIQOsh59aiBWTFMCGEEEKIZpKA1kNqA9rS0lLsdruU7hJCCCGEaCYJaD3EZDKh1+tRVZXS0lL8A2tTDqR0lxBCCCFEU0hA6yGKorgmhhUUFLhGaCuk0oEQQgghRJNIQOtB0dHRAOTk5GDy16DRgN0O1ZUySiuEEEII4S4JaD3o3IBWo1EwBciKYUIIIYQQTSUBrQfFxMQAzkoHVVVVMjFMCCGEEKIZJKD1IB8fHzp06AA4R2llCVwhhBBCiKaTgNbDakdpc3NzCQiSlAMhhBBCiKaSgNbDagPanJycOosrSKUDIYQQQgj3SEDrYbUBbWFhIVqtBY0GHHaokkoHQgghhBBuaVcB7bJly5g6dSoffPDBBY9LS0vjscce43e/+x1/+ctfWLt2bds0sBX4+fm5Vg07mXdSFlgQQgghhGiidhPQHjlyhO+//574+PgLHpefn8/cuXPp0aMH8+bNY9KkSSxcuJCtW7e2UUtbXp20A5kYJoQQQgjRJO0ioK2pqeGNN97g3nvvxWQyXfDYtWvXEhYWxp133klsbCyjR49m5MiRrFixoo1a2/Iay6MVQgghhBAXp/N0AwDmz59Pv3796N27N19++eUFj01PT6d37951tvXt25f169djs9nQ6eo/JavVitVqdd1XFAVfX1/X922h9joNXa82oC0oKMDHzxnIlpc62qxt4uIu1H/CO0gfej/pQ+8m/ef92nMfejyg/fnnn8nMzGTu3LluHV9SUkJQUFCdbUFBQdjtdsrLy135qOdatmwZn3/+uet+QkIC8+bNIzw8/NIa3wxRUVH1tnXs2JHQ0FCKioow+loAhfJSO8HB4fj6eryLxDka6j/hXaQPvZ/0oXeT/vN+7bEPPRotFRYW8sEHHzBz5kwMBoPbjzv/L4PaEleN/cUwadIkbrzxxnqPLygowGazNbXZzaIoClFRUeTl5TVYkisqKoqioiKOHD1AYHAvykrs7N2dTacEY5u0T1zYxfpPtH/Sh95P+tC7Sf95v7buQ51O5/bgo0cD2oyMDEpLS3n88cdd2xwOBwcOHGD16tUsXrwYjaZumm9wcDAlJSV1tpWVlaHVavH392/wOnq9Hr1e3+C+tn5Tqara4DVjYmJIS0sjOzubPin9KCuxk5dtJa6z+4G+aH2N9Z/wHtKH3k/60LtJ/3m/9tiHHg1oe/XqxSuvvFJn2zvvvEN0dDQTJ06sF8wCJCcns3Pnzjrb9uzZQ2JiYoP5s94iOjoacFZxCB0B7IeCPCt2m4pW1/5yVYQQQggh2guPVjnw9fWlU6dOdW5Go5GAgAA6deoEwOLFi3nzzTddjxk7diyFhYV8+OGHZGdns27dOtatW8dNN93kqafRIgIDA/H398fhcFBdU4CPn4LdDoX5bZMSIYQQQgjhrdpF2a4LKS4uprCw0HU/IiKCJ554grS0NB599FG++OIL7rrrLgYNGuTBVl46RVFc1Q5yc3OJinamSOTlWC/0MCGEEEKIK167+4x+9uzZde4/8MAD9Y5JSUlh3rx5bdSithMTE8OhQ4fIzs5m2HVXk3XEwqlcK6qqtssSGUIIIYQQ7UG7H6G9ktSO0J46dYrgENDpwVyjUnJaFlkQQgghhGiMBLTtSHBwMH5+ftjtdgoK84mIOpN2kCtpB0IIIYQQjZGAth05N482JyeHqBjJoxVCCCGEuBgJaNuZcwPaiI46FAUqyhxUlEvagRBCCCFEQySgbWfOrXSgYqNDhHPe3ikZpRVCCCGEaJAEtO1MaGgowcHB2O12MjMzz5bvkjxaIYQQQogGSUDbziiKQpcuXQA4cuQIkWfyaIsK7ZjNDk82TQghhBCiXZKAth1KTk4GICsrC53eRmCwFlTIz5VVw4QQQgghzicBbTsUFhZGUFAQdrudrKwsomKcebRS7UAIIYQQoj4JaNuhemkHZ/JoC/Ks2G2qJ5smhBBCCNHuSEDbTp2bduDn78DHT8Fuh8J8STsQQgghhDiXBLTtVHh4OIGBgdhsNo4fP+6qdpB7wuLhlgkhhBBCtC8S0LZT56cdxHQyAHAy24pN0g6EEEIIIVwkoG3HagPazMxMAoJVfE0a7DY4JTVphRBCCCFcdJ5ugGhcZGQkAQEBlJeXc/z4cWLjo0lPM5OdZXGN2AohhLiyVVZWYrPZUBTF0025qOrqaiwWSZ3zZi3Zh6qqotPpMJlMl3wuCWjbsdq0g927d3PkyBGuHdyZ9DQzBXk2zDUOjD4ywC6EEFcys9mMoigEBQV5uilu0ev1WK3yKaM3a+k+rKysxGw2YzQaL+k8EhG1c7VpBxkZGfj6qQSFaFFVyD0hvxCEEOJKZzab8fX19XQzhGg2Pz8/zGbzJZ9HAtp2LioqCpPJhNVqdaYddHamGmRnyUc2Qggh8IpUAyEa01I/vxLQtnOKorhq0jqrHehRFCgpslNRbvdw64QQQgghPE8CWi9wbtqBVucgLNKZ+pxzTEZphRBCCCEkoPUCHTt2xGQyYbFYOHHiBLHxZ9IOjllRValJK4QQQogrmwS0XkBRFJKSkgBIT08nKlaPVgdVFQ5KTkvagRBCCHElOXHiBDExMezbt69Fzvfqq69y/fXXt8i5PEUCWi/RrVs3AI4ePYqq2oiKcS6Fmy1pB0IIIbzE7bffzq233trgvh07dhATE8Ovv/4KwKpVq7jllltISUkhKSmJoUOH8vDDD9cL4iwWC++88w433HADXbp0oXv37owZM4Z58+aRl5fnVrs+/PBDxowZQ7du3ejWrRs33XQT69atq3NMZWUlM2fO5OqrryYpKYnhw4fz4Ycfuv3cY2JiWL16tdvHX0h0dDS7d++me/fuLXK+y4EEtF4iKiqKwMBArFYrmZmZrmoHOcetOOySdiCEEKL9u+222/j555/Jzs6ut2/JkiWkpqbSq1cvnn/+ee6//35SU1NZuHAh69ev56WXXiI+Pp4XX3zR9Riz2cz06dN54403mDp1Kl9++SXffvstTz31FMXFxSxcuNCtdnXs2JEnnniCb775hm+++YYhQ4bwxz/+kUOHDrmOmT17Nhs2bOCNN95gw4YN3H333Tz99NOsWbPm0l+YM9yt76rVaomIiECnk+UEaklA6yUURaFr164AHDp0iLAIHUYfBatFJT/P5uHWCSGE8DRVVVHNNZ65uTmfY+zYsYSFhbF06dI626urq1m+fDnTp09n586dvP322zzzzDPMnj2bgQMH0qlTJwYPHsxDDz3EokWLXI97//332b59O0uXLmXGjBn07t2bhIQERowYwYsvvsjjjz/udrtGjx5NUlISSUlJPP7445hMJnbt2uU6ZufOnUyZMoVrr72WuLg4br/9dlJSUtizZ89Fzz9w4EAAZsyYQUxMjOt+7Uf9n376KYMHDyYhIQFVVVm/fj0333wzPXr0IDU1lTvuuIOsrCzX+c5POdi8eTMxMTFs2rSJcePGkZSUxIQJEzhy5Ihbz/98DoeD119/nauvvpqEhASuv/561q9f79pvsViYOXMm/fr1IzExkYEDB/LGG2+49r/66qsMGDCAhIQErrrqKp5++ulmtaMpJLT3It26dWPHjh0cO3YMi8VMTCcDGYfN5ByzuFIQhBBCXKEsZhx/meqRS2veXApGn4sep9PpmDJlCkuXLuVvf/ubqwbpihUrsFqtTJo0iddeew2TycQf/vCHBs9xbt3Sr776imHDhtGzZ8+LHusuu93OypUrqaqq4uqrr3ZtHzBgAN999x3Tpk0jKiqKzZs3k5GRwZw5cy56zm+++YbevXvz2muvMXLkSLRarWtfVlYWK1as4P3330ejcY4zVlVVcc8999C9e3eqqqp45ZVX+NOf/sTatWtdxzRk3rx5zJo1iw4dOvD444/z97//na+//rrJr8H8+fN57733mDdvHqmpqSxZsoS77rqLdevW0a1bNxYsWMDatWt59913iYmJITc3l9zcXABWrlzJ+++/z9tvv023bt3Iz88nLS2tyW1oKglovUiHDh0ICwujsLCQI0eOEBvfnYzDZvJyrVgtKnqDFNcWQgjRvk2bNo133nmHzZs3M2TIEMCZbjBu3DiCg4PJyMigU6dOdT5Of++993jllVdc93fu3ElgYCCZmZlce+21dc4/Y8YMNm7cCECPHj1Yvny5W+06cOAAEyZMwGw2YzKZmD9/vuuTUYDnnnuORx55hP79+6PT6dBoNLz88stcc801Fz13hw4dAAgKCiIiIqLOPqvVyr///W/XMQC//e1v6xzz6quv0rt3bw4fPnzBvNnHHnuMwYMHA/DAAw9wxx13UFNTg4/Pxf/YONd7773Hn//8ZyZOnAjAzJkz2bx5M/Pnz+fll18mJyeHhIQErrnmGhRFITY21vXYnJwcwsPDGTp0KHq9npiYGPr169ek6zeHBLReplu3bhQWFnLw4EFSU1PxD9RQUebgZLaFTomXtg6yEEIIL2YwOkdKPXRtd3Xp0oX+/fvz6aefMmTIELKysti2bRuLFy92HXP+yOq0adMYO3Ysu3fv5sEHH7xgisMLL7xAVVUVCxYsYOvWrW63KykpibVr11JWVsY333zD//t//48vvvjCFdQuWLCAXbt2sXDhQmJjY9m2bRtPPvkkERERDBs2zO3rnC8mJqZOMAvOUduXX36ZXbt2UVRUhMPhAJzB4oUC2pSUFNf3kZGRAJw+fZqYmBi321NeXk5eXh4DBgyos71///6ukdapU6cybdo0hg4dysiRIxkzZgzDhw8H4MYbb2T+/PkMHjyYkSNHMmrUKK6//vpWz/eVHFovU/vGys3NpaKiwlWTNueYe4nkQgghLk+KoqAYfTxza+JH+9OnT+ebb76hvLycJUuWEBsby9ChQwFISEjg2LFjdSZIBQUFkZCQQFRUVJ3zJCQkcPTo0TrbIiMjSUhIIDg4uEltMhgMJCQk0KdPH5544glSUlKYP38+4MzxffHFF3nmmWcYO3YsKSkp3HXXXUyYMIH33nuvSdc5n5+fX71td955J8XFxbz00kusXLmSlStXAhefNNZQ0FgbDDfV+X2qqqprW69evdi6dSuPPPIINTU13Hfffdx9992AM0DfuHEjL7zwAj4+Pjz55JNMnjzZ7QlvzSUBrZcJCAggOjoagMOHDxMT78ydLcy3UV3VvB9aIYQQoi3ddNNNaLVali1bxmeffcatt97qCpYmTpxIZWWlWyWxJk6cyMaNG1usHuu5VFXFYnGWxrTZbFit1nr5qxqNxu2AUa/XY7dfvHZ8UVER6enpPPTQQwwdOpTk5GRKS0ub/gSaKSAggKioKLZv315n+86dO0lOTq5z3MSJE3n55Zd55513+OabbyguLgbA19eXsWPH8txzz/HZZ5+xc+dODh482KrtlpQDL9S9e3dyc3M5dOgQV199NaHhWooK7OQct9Cle9PyZIQQQoi2ZjKZmDBhAvPmzaOsrIypU89OZuvfvz/33nsvc+bMITs7m/HjxxMdHc2pU6f45JNPUBTFFVjefffd/PDDD0ydOpWHH36YgQMHEhQUREZGBuvXr68z+epC5s6dy6hRo4iOjqaiooKvv/6aLVu28N///hdwBm+DBw/mn//8Jz4+PsTGxrJlyxa++OILZs2a5dY1YmNj+emnnxgwYAAGg6HREeTg4GBCQkL4+OOPiYiIICcnh7lz57p1jZZy33338eqrrxIfH09qaipLly5l//79rkoG//nPf4iMjCQ1NRVFUVi5ciUREREEBQWxZMkSHA4H/fr1w9fXly+++AIfH58mpT00hwS0XqhLly5s2LCBwsJCTp8+TWy8P0UF1eRkSUArhBDCO0ybNo1PPvmE4cOH1wt2Zs2aRd++ffnoo49YsmQJ1dXVhIWFMWjQIJYvX05AQAAAPj4+LFmyhPnz57NkyRLmzp2LqqrExcUxcuRI18fgF1NYWMhf//pX8vPzCQgIoEePHvz3v/+tkxv79ttvM3fuXB588EFKSkqIiYnh0Ucf5Y477nDrGrNmzeLZZ59l8eLFREVFsW3btgaP02g0vP3228yaNYvRo0eTmJjIc889x5QpU9y6TkuYMWMGFRUVzJkzh9OnT5OcnMzChQtJTEwEnH+QvPXWW2RmZqLVaunTpw+LFi1Co9EQFBTEm2++ybPPPovdbqd79+588MEHhIaGtmqbFdXd4nGtZO3ataxdu5aCggLA+RfMlClTGp0Rt3//fp599tl6219//fUmR/8FBQWtntNRS1EUOnbsyMmTJ92u13chK1asIDMzk/79+9O//yC++7oMhwOG3xBAYLB7f5EK97V0/4m2J33o/aQP6ysrKyMwMNDTzXCbXq9vs/93RetojT5s7OdYr9cTHh7u1jk8PkIbGhrKbbfd5kr0/vHHH3nppZd46aWXiIuLa/Rx//rXv+okUnvTG7oldOvWjczMTA4fPszgwYOJ6KgnL8dK9jELKcG+nm6eEEIIIUSb8XhA279//zr3p0+fztq1a0lPT79gQBsUFITJZGrt5rVbCQkJ6PV6ysrKyMvLI7ZzB/JyrOQcs9Cjd9NnnAohhBCXo5ycHEaMGNHo/g0bNlxyfueXX37JY4891uC+2NjYOqtsecLIkSMbXG4YnIsxTJ48uY1b1PI8HtCey+FwsGXLFsxmc51ixg159NFHsVqtxMbGMnny5EZXCQFnmYtzh8cVRcHX19f1fVuovU5LXc9gMJCUlMTBgwc5dOgQw4aNQK+vpqZapajATlikrBzWklq6/0Tbkz70ftKHojkiIyNZu3btBfdfqrFjxzaaKqnXe/7/40WLFjWaJuDuR/qt7VLf1x7PoQU4fvw4M2fOxGq14uPjw1//+leuuuqqBo/Nzc0lLS2NxMREbDYbGzdu5LvvvuOZZ56pU1D4XEuXLuXzzz933U9ISGDevHmt8lza0uHDh1mwYAEmk4knn3ySn9ad4uC+ErqlBjNibLSnmyeEEKKVZWRkuCZICeGtysvLXRPOmqtdBLQ2m43CwkIqKyvZtm0bP/zwA88++2ydpdQu5MUXX0RRlEaH+xsboS0oKMBms7XIc7gYRVGIiooiLy+vxSYzOBwO5s+fT3V1NTfddBNB/nH8vK4CnR5umBiMViejGC2lNfpPtC3pQ+8nfVhfaWmpV80hkUlh3q+1JoUFBQXV267T6bxnUhg4G1w7KSwpKYmjR4/yzTffcM8997j1+K5du7Jp06ZG9+v1+kaH/Nv6l6Kqqi12TUVR6N69O7t37yYtLY3x4zvj66dQXaWSl2shOs7QItcRZ7Vk/wnPkD70ftKHQlx+LvU93S5XClNVtUnRf2ZmZpOXuLtc1KZZZGZmUl1dTcyZpXCzsyyebJYQQgghRJvxeEC7ePFiDhw4QH5+PsePH+eTTz5h//79rjWdFy9ezJtvvuk6ftWqVWzfvp2TJ09y4sQJFi9ezLZt2/jNb37jqafgUR06dCAiIgKHw8Hhw4eJPRPQ5p+0YTbLUrhCCCGEuPx5POWgtLSUN998k+LiYvz8/IiPj2fmzJn07t0bgOLiYgoLC13H22w2Fi1aRFFREQaDgbi4OB5//PFGJ5FdCXr06EF+fj5paWn07duXwGAtZSV2Tp6w0rmL0dPNE0IIIYRoVR4PaO+///4L7n/ggQfq3J84cSITJ05szSZ5nW7durFp0yYKCwvJz88ntnMgab/YOZFpkYBWCCGEuAycOHGCQYMGsWbNmguWKgXYvHkzt9xyC2lpaQ1OtroceTzlQFw6Hx8fkpKSADhw4ACx8QY0GigpslN8um2qOAghhBAXc/vtt3Prrbc2uG/Hjh3ExMTw66+/As4Uw1tuuYWUlBSSkpIYOnQoDz/8MPv27avzOIvFwjvvvMMNN9xAly5d6N69O2PGjGHevHnk5eW51a4PP/yQMWPG0K1bN7p168ZNN93EunXr6hxTWVnJzJkzufrqq0lKSmL48OF8+OGHzXgVRGtodkB77Ngx0tLSXPdramqYP38+M2fOZMmSJTIDtY316NEDgEOHDqHVOYju5KzqkJlu9mSzhBBCCJfbbruNn3/+ucFVq5YsWUJqaiq9evXi+eef5/777yc1NZWFCxeyfv16XnrpJeLj43nxxRddjzGbzUyfPp033niDqVOn8uWXX/Ltt9/y1FNPUVxczMKFC91qV8eOHXniiSf45ptv+OabbxgyZAh//OMfOXTokOuY2bNns2HDBt544w02bNjA3XffzdNPP82aNWsu/YURl6zZAe1HH33Erl27XPc/+eQTfvjhB2w2G1999RWrV69ukQYK93Tq1AmTyURNTQ1ZWVkkJDtTDXJPWKmplslhQghxuVNVlRqbwyM3dwexxo4dS1hYGEuXLq2zvbq6muXLlzN9+nR27tzJ22+/zTPPPMPs2bMZOHAgnTp1YvDgwTz00EMsWrTI9bj333+f7du3s3TpUmbMmEHv3r1JSEhgxIgRvPjiizz++ONut2v06NEkJSWRlJTE448/jslkqhPn7Ny5kylTpnDttdcSFxfH7bffTkpKCnv27Lno+f/85z/XS7G0Wq307NmTJUuWALB+/XpuvvlmevToQWpqKnfccQdZWVlutd8dq1atYuTIkSQkJDBw4EDefffdOvs/+OADhgwZQmJiIn369OHuu+927Vu5cqXr9enWrRu33norVVVVLda2ltDsHNrjx49zww03AM430U8//cQtt9zC5MmT+fTTT1m/fj3jxo1rsYaKC9NoNHTv3p2dO3eSlpbGhAldCAnTUlxo59hRM916+nq6iUIIIVqR2a5y65LDHrn2klu74uPGYj46nY4pU6awdOlS/va3v7mWO12xYgVWq5VJkybx2muvYTKZ+MMf/tDgOc5dIvWrr75i2LBhjeaUNmc5VbvdzsqVK6mqquLqq692bR8wYADfffcd06ZNIyoqis2bN5ORkcGcOXMues5JkyZx3333UVlZiclkAmDDhg1UV1czfvx4AKqqqrjnnnvo3r07VVVVvPLKK/zpT39i7dq1aDSXliG6d+9e7rvvPh5++GEmTJjAjh07ePLJJwkJCeHWW29lz549zJo1i3//+9/079+fkpIStm3bBsCpU6d44IEHmDlzJuPGjaOmpoaff/653X0S3+yAtqqqyrU6ybFjx6ioqODaa68FoGfPnnz77bct00LhtpSUFHbu3MmxY8eorKwkMdnIzsIqso5Y6NLDB61WVg4TQgjhWdOmTeOdd95h8+bNDBkyBHCmG4wbN47g4GAyMjLo1KkTOt3ZEOW9997jlVdecd3fuXMngYGBZGZmumKPWjNmzGDjxo2AMx1v+fLlbrXrwIEDTJgwAbPZjMlkYv78+XTt2tW1/7nnnuORRx6hf//+6HQ6NBoNL7/8Mtdcc81Fzz1ixAj8/Pz49ttvmTJlCuAMxseMGeNauvi3v/1tnce8+uqr9O7dm8OHD9O9e3e3nkNj/vOf/3Ddddfxt7/9DXAuYpWens67777LrbfeSk5ODn5+fowZMwZ/f39iY2NdfyTk5+djs9kYP348sbGx6PV6kpOTL6k9raHZAa2/v7+rnNa+ffsIDg52rfbVVsvJirpCQkLo2LEjJ0+e5ODBg/TrdxU+vgo11Sq5J6zEdZaVw4QQ4nJl1CosubXrxQ9spWu7q0uXLvTv359PP/2UIUOGkJWVxbZt21i8eLHrmPNHVqdNm8bYsWPZvXs3Dz744AVHB1944QWqqqpYsGABW7dudbtdSUlJrF27lrKyMr755hv+3//7f3zxxReuoHbBggXs2rWLhQsXEhsby7Zt23jyySeJiIhg2LBhFzy3Xq/nxhtvZNmyZUyZMoWqqirWrFnDW2+95TomKyuLl19+mV27dlFUVITD4UwXzMnJueSANj093fWpeq0BAwYwf/587HY7w4YNIzY2lsGDBzNixAhGjhzJuHHj8PX1JSUlheuuu47Ro0czfPhwRo0axW9+85t2t6BVs8ewe/TowWeffca3337LqlWr6Nevn2tfXl4eHTp0aJEGiqapnRyWlpaGouAq25V52NzuPh4QQgjRchRFwUen8citqR/tT58+nW+++Yby8nKWLFlCbGysa0GlhIQEjh07VmfF0KCgIBISElwDZ7USEhI4evRonW2RkZEkJCQ0OeAyGAwkJCTQp08fnnjiCVJSUpg/fz7gzPF98cUXeeaZZxg7diwpKSncddddTJgwgffee8+t80+ePNlVYnP16tUYjUZGjhzp2n/nnXdSXFzMSy+9xMqVK1m5ciVAk1ZObYyqqvX66NyYwN/fn9WrV/PWW28RGRnJK6+8wpgxYygtLUWr1fLpp5/y8ccf07VrV+bPn8+wYcM4fvz4JberJTU7oL3ttttQFIUPPvgAvV7vGkIH2LJlS7scjr4SJCcno9PpKC4u5tSpU3RKcpbwKi22U3za7unmCSGEENx0001otVqWLVvGZ599xq233uoKuCZOnEhlZaVbJbEmTpzIxo0b65XyagmqqmKxOJeRt9lsWK3WermsGo3GNZJ6Mf379yc6Oprly5ezbNkybrzxRgwG5yenRUVFpKen89BDDzF06FCSk5MpLS1tsefStWtXtm/fXmfbjh07SExMRKvVAs785mHDhvHUU0/x/fffk52dzc8//ww4/1gaMGAA//jHP1i3bh16vb7dpZY2O+UgIiKCf/3rX1RUVODv719n34wZM9rdUPSVwmg00qVLFw4ePMj+/fsZPTqKmHgDJzItZB42Exrm8bU0hBBCXOFMJhMTJkxg3rx5lJWVMXXqVNe+/v37c++99zJnzhyys7MZP3480dHRnDp1ik8++QRFUVyB5d13380PP/zA1KlTefjhhxk4cCBBQUFkZGSwfv16V7B2MXPnzmXUqFFER0dTUVHB119/zZYtW/jvf/8LQEBAAIMHD+af//wnPj4+xMbGsmXLFr744gtmzZrl1jUUReHmm29m0aJFZGRk8Nlnn7n2BQcHExISwscff0xERAQ5OTnMnTvX3Zfzou69917Gjx/P66+/zoQJE9i5cycLFy7khRdeAOC7777j+PHjDBw4kODgYH744QccDgdJSUns2rWLn376ieHDhxMWFsbevXspKipqdwOXlxzdnB/MWiwWOnXqdKmnFZcgNTXVFdAmJyeTkBzDiUwLJ7OtVFc58PWT9TSEEEJ41rRp0/jkk08YPnw4MTExdfbNmjWLvn378tFHH7FkyRKqq6sJCwtj0KBBLF++3DWRysfHhyVLljB//nyWLFnC3LlzUVWVuLg4Ro4cWaf01IUUFhby17/+lfz8fAICAujRowf//e9/6+TGvv3228ydO5cHH3yQkpISYmJiePTRR7njjjvcfs6TJ0/mjTfeIDY2lgEDBri2azQa3n77bWbNmsXo0aNJTEzkueeeq/Pp96Xo1asX7777Lq+88gr/8z//Q0REBI888ohrkYugoCC+/fZbXnvtNWpqakhISOCtt96iW7dupKens23bNubPn09FRQWxsbHMmjWLUaNGtUjbWoqiNjOxcvPmzZSXl7uSjPPy8pg3bx65ubl069aNRx99tF6w294UFBS0SG6KOxRFcU3Yaotc1h9++IH9+/fj6+vL9OnT2btd5XSBnS49jPToLSW8mqqt+0+0POlD7yd9WF9ZWZmr4pA30Ov1bfb/rmgdrdGHjf0c6/V6wsPD3TpHs4fqVqxYgdl8dhWqRYsWUVlZyfjx48nJyWHZsmXNPbVoAbUfDVRXV7N69WriuzhXDjt21ILdJv8RCCGEEOLy0eyUg1OnThEXFwc40wz27NnD3XffzfDhw4mOjmbFihX8/ve/b7GGiqbR6XSMGzeOTz/9lNzcXLJO7MLXL5XqKpXsYxbik4yebqIQQgjR6nJychgxYkSj+zds2FAv5aGpvvzySx577LEG98XGxrJ+/fpLOv/5HnvsMb788ssG902ePJl58+a16PW8QbMDWrPZjNHoDIqOHDmC1Wp1le6KjY2lqKioZVoomi0kJITRo0ezevVqdu7cwTVXh1NdFU56Wg2xnQ2y0IIQQojLXmRkJGvXrr3g/ks1duzYOuVLz6XX6y/5/Od75JFHuO+++xrcV5tffKVpdkAbEhJCVlYWKSkp/PLLL0RHR7vyHyorK13BrvCsrl27kpOTw6+//sre/euJDbuR6io/jmdYSEiWPhJCCHF50+l0JCQktOo1/P3923TeUFhYGGFhYW12PW/Q7ID2mmuu4dNPPyUtLY1ffvmFiRMnuvYdO3asRf7iES1j6NCh5OXlUVBQwOnKTQTpryc9rYa4BAM6N9beFkIIIYRoz5o9KWzatGlcd9115OXlcd1119UJaHft2kWvXr1apIHi0tXm0xoMBoqLT1Fp2Ye5RuXYEfPFHyyEEEII0c41e4TWYDBwzz33NLjv+eefb3aDROsIDg5m5MiRrFmzhtNlv2IM6cyRgwrxSUZ0ehmlFUIIIYT3apEK+7m5uRw+fJiTJ0+2xOlEK+natSudOnXC4bBTXLUNc42DjHQZpRVCCCGEd7uklcK2bNnCokWLOH36tGtbhw4duOOOOxg0aNAlN060LEVRGDlyJB9//DGV1Sfx1Wdw9GASnbsYMBhk9TAhhBBCeKdmRzG7du3iX//6F35+fvzud7/jL3/5C7fddht+fn7861//Yvfu3S3ZTtFCgoKCuOaaawAortyB2VxDxiEZpRVCCCG8xYkTJ4iJiWHfvn0tcr5XX32V66+/vkXO5SnNDmiXLVtGnz59eOmll5gwYQJDhw5l4sSJvPzyy/Tq1avRgr/C86666ipCQ0Ox280Ule8i47AZc43D080SQghxmbv99tu59dZbG9y3Y8cOYmJi+PXXXwFYtWoVt9xyCykpKSQlJTF06FAefvjhekGcxWLhnXfe4YYbbqBLly50796dMWPGMG/ePPLy8txu2wcffMCgQYNITEzkN7/5Ddu2bauzv7KykpkzZ3L11VeTlJTE8OHD+fDDD90+f0xMDKtXr3b7+AuJjo5m9+7ddO/evUXOdzlodkCblZXF2LFj0WjqnkJRFG644QaysrIutW2ilWi1WkaNGgVARc0RKqpOcfSgjNIKIYRoXbfddhs///wz2dnZ9fYtWbKE1NRUevXqxfPPP8/9999PamoqCxcuZP369bz00kvEx8fz4osvuh5jNpuZPn06b7zxBlOnTuXLL7/k22+/5amnnqK4uJiFCxe61a6vv/6a2bNn89e//pU1a9ZwzTXXcPvtt5OTk+M6Zvbs2WzYsIE33niDDRs2cPfdd/P000+zZs2aS39hzrBarW4dp9VqiYiIQKe7pMzRy0qzA1qNRoPNZmtwn81mqxfoivYlOjqanj17AnC6bCsZ6VXUVMsorRBCeCtVVbHZPHNTVdWtNo4dO5awsDCWLl1aZ3t1dTXLly9n+vTp7Ny5k7fffptnnnmG2bNnM3DgQDp16sTgwYN56KGHWLRoketx77//Ptu3b2fp0qXMmDGD3r17k5CQwIgRI3jxxRd5/PHH3WrX+++/z7Rp07jttttITk5mzpw5REdH89FHH7mO2blzJ1OmTOHaa68lLi6O22+/nZSUFPbs2XPR8w8cOBCAGTNmEBMT47pf+1H/p59+yuDBg0lISEBVVdavX8/NN99Mjx49SE1N5Y477qgzUHh+ysHmzZuJiYlh06ZNjBs3jqSkJCZMmMCRI0fcev7nczgcvP7661x99dUkJCRw/fXX11m+12KxMHPmTPr160diYiIDBw7kjTfecO1/9dVXGTBgAAkJCVx11VU8/fTTzWpHUzQ7tE9KSmL58uVcddVVGAwG13ar1cqKFSvo0qVLizRQtJ5rr72Wo0ePUl1dSnHZftLT+tPraj9PN0sIIUQz2O3w7RelHrn2uP8vCHcGC3U6HVOmTGHp0qX87W9/Q1GcZSNXrFiB1Wpl0qRJvPbaa5hMJv7whz80eI7axwB89dVXDBs2zDVAc6FjG2OxWNi7dy8PPPBAne3Dhw9nx44drvsDBgzgu+++Y9q0aURFRbF582YyMjKYM2fORa/xzTff0Lt3b1577TVGjhyJVqt17cvKymLFihW8//77rsHAqqoq7rnnHrp3705VVRWvvPIKf/rTn1i7du0FBwznzZvHrFmz6NChA48//jh///vf+frrry/avvPNnz+f9957j3nz5pGamsqSJUu46667WLduHd26dWPBggWsXbuWd999l5iYGHJzc8nNzQVg5cqVvP/++7z99tt069aN/Px80tLSmtyGpmp2QDt16lTmzJnDX/7yFwYNGkRwcDAlJSVs27aNiooKZs2a1ZLtFK3Ax8eHYcOGsWbNGoor95K2P4jEbj0x+Wsv/mAhhBCiGaZNm8Y777zD5s2bGTJkCOBMNxg3bhzBwcFkZGTQqVOnOh+nv/fee7zyyiuu+zt37iQwMJDMzEyuvfbaOuefMWMGGzduBKBHjx4sX778gu0pKirCbrfXW0o2LCyM/Px81/3nnnuORx55hP79+6PT6dBoNLz88suuidYX0qFDB8A5MTsiIqLOPqvVyr///W/XMQC//e1v6xzz6quv0rt3bw4fPnzBvNnHHnuMwYMHA/DAAw9wxx13UFNTg4+Pz0XbeK733nuPP//5z65Fs2bOnMnmzZuZP38+L7/8Mjk5OSQkJHDNNdegKAqxsbGux+bk5BAeHs7QoUPR6/XExMTQr1+/Jl2/OZod0Hbv3p2nnnqK//73v678EUVRSE5O5qGHHqrTMaL96tq1K5mZmRw+fJhTJRvZtEHlNzf29XSzhBBCNJFW6xwp9dS13dWlSxf69+/Pp59+ypAhQ8jKymLbtm0sXrzYdcz5I6vTpk1j7Nix7N69mwcffPCCKQ4vvPACVVVVLFiwgK1bt7rdrvOvqapqnW0LFixg165dLFy4kNjYWLZt28aTTz5JREQEw4YNc/s654uJiakXM2VlZfHyyy+za9cuioqKcDicKYE5OTkXDGhTUlJc30dGRgJw+vRpYmJi3G5PeXk5eXl5DBgwoM72/v37u0Zap06dyrRp0xg6dCgjR45kzJgxDB8+HIAbb7yR+fPnM3jwYEaOHMmoUaO4/vrrWz3f95LOnpKSwvPPP4/ZbKayshKTyYTRaGTr1q08++yzLFmypKXaKVqJoiiMHTsWh13DkaMHOZyxkZCtKgMHtf5fU0IIIVqOoihufezfHkyfPp2ZM2fywgsvsGTJEmJjYxk6dCgACQkJbN++HavVil6vB5wjm0FBQfUWcEpISODo0aN1ttUGcsHBwW61JTQ0FK1WS0FBQZ3tp0+fJjw8HHDm+L744ovMnz+fMWPGAM4YaP/+/bz33nuXFND6+dVP9bvzzjuJjo7mpZdeIioqCofDwahRoy46aayhoLE2GG6qCwX4vXr1YuvWraxbt46ffvqJ++67j+uuu47333+fmJgYNm7cyKZNm9i0aRNPPvkk77zzDl988YWrP1tDi8zcMhqNhIaGYjQaW+J0oo1pNBrGjb+ejhGpAGzbvont27e7neQvhBBCNMVNN92EVqtl2bJlfPbZZ9x6662uYGnixIlUVla6VRJr4sSJbNy48ZLqsRoMBnr37u1KU6i1ceNG+vfvDzgnu1ut1nr5qxqNxu2AUa/XY7fbL3pcUVER6enpPPTQQwwdOpTk5GRKS9suNzogIICoqCi2b99eZ/vOnTtJTk6uc1xtudZ33nmHb775huLiYgB8fX0ZO3Yszz33HJ999hk7d+7k4MGDrdpuL/lbTrQ2RVG44TfD+eoLHSWVe9i6dStms5nrrrvOraR6IYQQwl0mk4kJEyYwb948ysrKmDp1qmtf//79uffee5kzZw7Z2dmMHz+e6OhoTp06xSeffIKiKK7A8u677+aHH35g6tSpPPzwwwwcOJCgoCAyMjJYv359nclXF3L33Xfz0EMP0adPH66++mo+/vhjcnJy+P3vfw84g7fBgwfzz3/+Ex8fH2JjY9myZQtffPGF23OGYmNj+emnnxgwYAAGg6HREeTg4GBCQkL4+OOPiYiIICcnh7lz57p1jZZy33338eqrrxIfH09qaipLly5l//79rkoG//nPf4iMjCQ1NRVFUVi5ciUREREEBQWxZMkSHA4H/fr1w9fXly+++AIfH58mpT00hwS0wiUwWEevnv3Zn2agqPz/2L17N1qttl7CvRBCCHGppk2bxieffMLw4cPrBTuzZs2ib9++fPTRRyxZsoTq6mrCwsIYNGgQy5cvJyAgAHBObl6yZAnz589nyZIlzJ07F1VViYuLY+TIkdx9991utWXixIkUFxfz+uuvk5+fT7du3Vi0aFGdyU5vv/02c+fO5cEHH6SkpISYmBgeffRR7rjjDreuMWvWLJ599lkWL15MVFRUvYUbamk0Gt5++21mzZrF6NGjSUxM5LnnnmPKlCluXaclzJgxg4qKCubMmcPp06dJTk5m4cKFJCYmAs4/SN566y0yMzPRarX06dOHRYsWodFoCAoK4s033+TZZ5/FbrfTvXt3PvjgA0JDQ1u1zYraCp8rb926lddff73d59AWFBS4XcT4UimKQseOHTl58mS7/ii/qsLOum/LKatMp7BsCxqNht/97neEhIR4umke5S39Jxonfej9pA/rKysrIzAw0NPNcJter2+z/3dF62iNPmzs51iv17vymC+mSSO0GRkZbh13bpmLi1m7di1r1651JWPHxsYyZcqUC5Z4SEtL48MPPyQ7O5uQkBAmTJjA2LFj3b6maJyfv5b4RANZR5KxOLIpqzjBzz//zI033ujppgkhhBBCNKhJAe0TTzzR4g0IDQ3ltttuIyoqCoAff/yRl156iZdeeom4uLh6x+fn5zN37lxGjx7Ngw8+yKFDh5g/fz6BgYEMGjSoxdt3JUpO8eF4poUA41WUV2aTkZHBiRMnGuwPIYQQoj3LyclhxIgRje7fsGHDJed3fvnllzz22GMN7ouNja2zypYnjBw5ssHlhsG5GMPkyZPbuEUtr0kB7f3339/iDaidQVhr+vTprF27lvT09AYDqLVr1xIWFsadd94JOH9Qjh49yooVKySgbSE+vhoSk40cORhEaGA3TpceZNOmTUybNk2WNBZCCOFVIiMjWbt27QX3X6qxY8c2+slya5aqcteiRYsaTRNw9yP99q5JAe2F/sJpCQ6Hgy1btmA2m+natWuDx6Snp9O7d+862/r27cv69eux2WwN1mCzWq11OlJRFHx9fV3ft4Xa63hLxYAuKT4cz7BgcvSmTJdBYWEhBw8eJDU11dNN8whv6z9Rn/Sh95M+FM2h0+lISEho1Wv4+/vj7+/fqte4FOdObmuvLvV93S6qHBw/fpyZM2ditVrx8fHhH//4R6MvfklJCUFBdVdCCQoKwm63U15e3uDkpWXLlvH555+77ickJDBv3jyP/FVSm1rhDa65zpef1uUREtCH/OL/Y9u2bQwdOvSKrjfsTf0nGiZ96P2kD8+qrq5uFyOATeFt7RX1tXQfGgwGOnbseEnnaBcBbXR0NC+//DKVlZVs27aNt956i2effbbRoLah1Ssa2l5r0qRJdSY11R5XUFCAzWZriadwUYqiEBUVRV5entfMzg0OUwkI0qCWdMXX5xDl5WWsWrXKtU70lcQb+0/UJX3o/aQP67NYLF5VNUCqHHi/1uhDi8VSbxU4cI6ut0qVg9ai0+lcf3EnJSVx9OhRvvnmG+655556xwYHB1NSUlJnW1lZGVqtttHhfr1e3+hfE239S1FVVa/5RawokNrPl60bHAT6XEV1zQZ27txJamqqqwbglcab+k80TPrQ+0kfCnH5udT3dLuc4aOqaqPRf3JyMnv37q2zbc+ePSQmJjaYPysuTXiknqgYPb6GOAJMUdjtdjZv3uzpZgkhhBBCuHg8oF28eDEHDhwgPz+f48eP88knn7B//36GDh3q2v/mm2+6jh87diyFhYWuOrTr1q1j3bp13HTTTZ56Cpe9lL4+aLUKAcarATh06BBff/01v/zyCyUlJTJSIoQQQgiP8viQZmlpKW+++SbFxcX4+fkRHx/PzJkzXZUMiouLKSwsdB0fERHBE088wYcffsiaNWsICQnhrrvukpJdrcjkryWhq5GjBzvQISiV06X7OXbsGMeOHWPjxo0EBgbSuXNnevTo0SLlT4QQQghR14kTJxg0aBBr1qyhZ8+eFzx28+bN3HLLLaSlpdWbSH+58nhAe7Hatg888EC9bSkpKcybN6+1miQakJziQ3aWhQD1KlIH98ChzSMrK4vc3FzKysrYu3cvBw4cYMaMGRgMBk83VwghRDt0++23U1VVxZIlS+rt27FjBxMnTmT16tX06tWLVatW8cEHH7B//37MZjPR0dEMGDCAP/7xj3UCOovFwv/+7//y1VdfcfToUXQ6HbGxsVx//fX84Q9/cLsqxgcffMC7775Lfn4+Xbt25dlnn2XgwIGu/ZWVlbzwwgusXr2akpISYmNj+eMf/8gf/vCHS39hxCXzeMqB8A56vUL3Xj4oisLJE36kpvRl8uTJ3HPPPdx4440EBARgtVo5cuSIp5sqhBCinbrtttv4+eefG1y1asmSJaSmptKrVy+ef/557r//flJTU1m4cCHr16/npZdeIj4+nhdffNH1GLPZzPTp03njjTeYOnUqX375Jd9++y1PPfUUxcXFLFy40K12ff3118yePZu//vWvrFmzhmuuuYbbb7+dnJwc1zGzZ89mw4YNvPHGG2zYsIG7776bp59+mjVr1lz6CyMumQS0wm1xCQaCQrTYrLBraxWqQ8VgMJCYmOj6a/ngwYMebqUQQlyZaidUe+Lm7lyKsWPHEhYWxtKlS+tsr66uZvny5UyfPp2dO3fy9ttv88wzzzB79mwGDhxIp06dGDx4MA899BCLFi1yPe79999n+/btLF26lBkzZtC7d28SEhIYMWIEL774Io8//rhb7Xr//feZNm0at912G8nJycyZM4fo6Gg++ugj1zE7d+5kypQpXHvttcTFxXH77beTkpLCnj17Lnr+P//5z/U+kbZarfTs2dM1Wr1+/XpuvvlmevToQWpqKnfccQdZWVlutd8dq1atYuTIkSQkJDBw4EDefffdOvs/+OADhgwZQmJiIn369OHuu+927Vu5ciWjR48mKSmJbt26ceutt1JVVdVibWsJHk85EN5DURT6DfRj0/flFJ6ycWh/Dd17OVdc69atG1u2bCE7O5vy8vIrtqyXEEJ4is1m45133vHIte+//363iu3rdDqmTJnC0qVL+dvf/uaqC79ixQqsViuTJk3itddew2QyNfpR/rk157/66iuGDRvWaE6pO6tPWSwW9u7dWy/Fcfjw4ezYscN1f8CAAXz33XdMmzaNqKgoNm/eTEZGBnPmzLnoNSZNmsR9991HZWUlJpMJgA0bNlBdXc348eMBqKqq4p577qF79+5UVVXxyiuv8Kc//Ym1a9de8rLze/fu5b777uPhhx9mwoQJ7NixgyeffJKQkBBuvfVW9uzZw6xZs/j3v/9N//79KSkpYdu2bQCcOnWKBx54gJkzZzJu3Dhqamr4+eef292EcBmhFU0SEKSlT38/ANLTzJzKdZZXCwwMJCYmBpBRWiGEEI2bNm0aJ06cqFMCcsmSJYwbN47g4GAyMjLo1KlTnVKc7733HsnJya5bWVkZAJmZmSQlJdU5/4wZM1zHTZgw4aLtKSoqwm63ExYWVmd7WFgY+fn5rvvPPfccycnJ9O/fn86dO3P77bfzwgsvcM0111z0GiNGjMDPz49vv/3Wte2rr75izJgxrgGg3/72t4wfP971qeerr77KgQMHOHz48EXPfzH/+c9/uO666/jb3/5GUlISt956K3fddZdrlDYnJwc/Pz/GjBlDbGwsPXv2ZMaMGQDk5+djs9kYP348cXFxpKSkcOedd7oC8/ZCRmhFk8XEGyg+bSMz3cLurVUMHeuPyV9L9+7dycnJ4eDBg/Tv31/WWxdCiDak0+kuOtG6Na/tri5dutC/f38+/fRThgwZQlZWFtu2bWPx4sWuY87//2PatGmMHTuW3bt38+CDD15wdPCFF16gqqqKBQsWsHXrVrfb1dAqpOduW7BgAbt27WLhwoXExsaybds2nnzySSIiIhg2bNgFz63X67nxxhtZtmwZU6ZMoaqqijVr1vDWW2+5jsnKyuLll19m165dFBUV4XA4AGew2b17d7efR0PS09O54YYb6mwbMGAA8+fPx263M2zYMGJjYxk8eDAjRoxg5MiRjBs3Dl9fX1JSUrjuuusYPXo0w4cPZ9SoUfzmN78hODj4ktrU0mSEVjRLSh9fQjposVpVdvxchd2m0qVLF7RaLcXFxXX+qhVCCNH6FEVxrYzZ1remDmBMnz6db775hvLycpYsWUJsbKyr/nxCQgLHjh2rs8BSUFAQCQkJ9SoWJCQkcPTo0TrbIiMjSUhIcDvgCg0NRavVUlBQUGf76dOnXcuuVldX8+KLL/LMM88wduxYUlJSuOuuu5gwYQLvvfeeW9eZPHkymzZtorCwkNWrV2M0Ghk5cqRr/5133klxcTEvvfQSK1euZOXKlQAtsszs+cF57bZa/v7+rF69mrfeeovIyEheeeUVxowZQ2lpKVqtlk8//ZSPP/6Yrl27Mn/+fIYNG8bx48cvuV0tSQJa0SwarcLV15owGBXKSuzs21WN0Wh0ffQjaQdCCCEac9NNN6HValm2bBmfffYZt956qyvgmjhxIpWVlXz44YcXPc/EiRPZuHEj+/bta3ZbDAYDvXv3ZuPGjXW2b9y4kf79+wPO/GSr1Vovl1Wj0bhGUi+mf//+REdHs3z5cpYtW8aNN97oKnNZVFREeno6Dz30EEOHDiU5OZnS0tJmP6fzde3ale3bt9fZtmPHDhITE9FqtYBzlH3YsGE89dRTfP/992RnZ/Pzzz8Dzj+WBgwYwD/+8Q/WrVuHXq+vkz7RHkjKgWg2Xz8NVw32Y+uPlRzPtBAS5kw7OHz4MIcOHeK6665zvVGEEEKIWiaTiQkTJjBv3jzKysqYOnWqa1///v259957mTNnDtnZ2YwfP57o6GhOnTrFJ598gqIorsDy7rvv5ocffmDq1Kk8/PDDDBw4kKCgIDIyMli/fr3b/wfdfffdPPTQQ/Tp04err76ajz/+mJycHH7/+98DEBAQwODBg/nnP/+Jj48PsbGxbNmyhS+++IJZs2a5dQ1FUbj55ptZtGgRGRkZfPbZZ659wcHBhISE8PHHHxMREUFOTg5z58519+W8qHvvvZfx48fz+uuvM2HCBHbu3MnChQt54YUXAPjuu+84fvw4AwcOJDg4mB9++AGHw0FSUhK7du3ip59+Yvjw4YSFhbF3716KiopITk5usfa1BAloxSUJj9TTvacPB3+t4ddd1QwZFYOfnx9VVVUcO3aMxMRETzdRCCFEOzRt2jQ++eQThg8f7ppUXGvWrFn07duXjz76iCVLllBdXU1YWBiDBg1i+fLlrolUPj4+LFmyhPnz57NkyRLmzp2LqqrExcUxcuTIOqWnLmTixIkUFxfz+uuvk5+fT7du3Vi0aBGxsbGuY95++23mzp3Lgw8+SElJCTExMTz66KPccccdbj/nyZMn88YbbxAbG8uAAQNc2zUaDW+//TazZs1i9OjRJCYm8txzzzFlyhS3z30hvXr14t133+WVV17hf/7nf4iIiOCRRx7h1ltvBZwpHd9++y2vvfYaNTU1JCQk8NZbb9GtWzfS09PZtm0b8+fPp6KigtjYWGbNmsWoUaNapG0tRVHbW92FNlRQUNAiuSnuUBSFjh07cvLkyXZX6uJSqarK9k2V5J+04R+oQeP3C3v2/EKXLl1c5Ui83eXcf1cK6UPvJ31YX1lZGYGBgZ5uhtv0en2b/b8rWkdr9GFjP8d6vd6Vx3wxkkMrLpmiKPS9xg+jj0JFmQOdmgBARkYGNTU1Hm6dEEIIIS53knIgWoTRR0O/QX5s3VDJ6Tx/ggJDKS0r4siRI40WvBZCCCFaW05ODiNGjGh0/4YNG+qlPDTVl19+yWOPPdbgvtjYWNavX39J5z/fY489xpdfftngvsmTJzNv3rwWvZ43kIBWtJjwSD1dehg5csCMXukMFHHgwAEJaIUQQnhMZGQka9euveD+SzV27Fj69evX4D53VlBrqkceeYT77ruvwX1X6kqdEtCKFtWtpw+n823Y8hOB3Zw8eZKSkpJ2V4BZCCHElUGn05GQkNCq1/D398ff379Vr3GusLCweiubXekkh1a0KI1G4arBfvj4+OFrcBbAXrduXb2C1UIIIYQQLUUCWtHi/Exa+gzwI9AvFVDIzs7mk08+YdWqVRLYCiFEC5OKD8KbtdTPr6QciFYRHWege4/O6A7fRGnVXiqqszh69ChHjx4lMTGRgQMHul2KQwghRMOMRiPV1dX4+fl5uilCNEtVVRVGo/GSzyMBrWg1Pa/ypaoyDMOpYXQI7IPGN43MrHQyMjLIyMigT58+DB482LX0nxBCiKYxGo1UVlZSWlrqWjq2PTMYDFgsFk83Q1yCluxDVVXR6XQS0Ir2TatVGDDExNYfKyg+HYTBcS2Tbu7P/rSdHD58mD179pCRkcHIkSPp3LlzvcerqkpBQQGFhYXEx8djMplarG2qqrJmzRqsViu//e1v663PLYQQ3qIlfze2JlkYw/u15z6UgFa0Kp1eYeAwE1s2VFJabOfgLwaGjrqelJQU1q1bR1lZGcuXL6d79+4MHToUHx8fTp8+TXp6Ounp6ZSUlADOsieDBg2iT58+LRJ8njhxgsOHDwOQl5dHdHT0JZ9TCCGEEJ4hAa1odXqDhoHDTWxZV0F5mYOtGyq5dlQsv/vd79iyZQu//PILBw8e5NixY/j6+lJUVOR6rFarJSAggJKSEjZt2kRaWhojRoy45CLYe/bscX2flZUlAa0QQgjhxeRzVtEmjEYNg0b4Y/LXUFXpYMuGCuw2LcOGDeOWW24hNDSU6upqioqK0Gg0JCYmcsMNN3D33Xfz+9//nlGjRrlGb7/44gvWrl1LVVVVs9pSWlpKZmam635WVlYLPUshhBBCeIKM0Io24+PrDGo3ryunstzBzz9UMGiEiY4dOzJ9+nQOHz6MoigkJCTUSxDv2bMnSUlJbNmyhX379nHw4EGysrK45ZZbCAkJaVI79u7dCzhXhzl16hSFhYVUVFS0aVFsIYQQQrQcGaEVbcrPpOHakf74nRmp/fmHCspL7Wi1Wnr06EH37t0bne3o6+vLqFGjmDp1Kh06dKCmpoZVq1Y1abalxWJh//79AAwcOJCoKOfiDzJKK4QQQngvCWhFm/Pz1zJklD8BQRrMNSo/r6ug+LTN7cdHRUVx8803YzKZKCoq4vvvv3d7tuXBgwexWCwEBQURHx/vqq5w7Nix5jwVIYQQQrQDEtAKj/DxdY7UBodqsVpUtmyooPCU1e3Hm0wmxo8fj0aj4ciRI+zcufOij1FV1TUZrE+fPiiK4gpojx8/jt1ub9ZzEUIIIYRnSUArPMZg1DB4hD9hkTrsNti2sZKT2e6nD3Ts2JHhw4cDsGXLFo4fP37B40+cOEFxcTF6vZ4ePXoAEB4ejp+fH1arldzc3OY/GSGEEEJ4jAS0wqN0eoVrhpqIitHjcMCOn6s4vL/G7RSCnj17kpKSgqqqrF69mtLS0kaPrR2d7dGjhytPV1EU4uPjAcmjFUIIIbyVBLTC47Rahauv9SM+ybkE7qF9NfzfT5VYLRcPahVFYcSIEURGRromiVmt9VMXzi3V1adPnzr7atMOJKAVQgghvJMEtKJd0GgUevf3o88AXzQaOJVrY9N35ZSXXjyvVafTMX78eHx9fSksLOSLL77gwIEDdQLb2lJdnTp1qlfmq1OnTiiKQnFx8QVHeIUQQgjRPklAK9qVTolGhoz2x8dPobLCwabvy8k9cfG82oCAAMaNG4dOpyM/P5/vvvuO//3f/2XdunXk5OS4SnX17du33mONRiMdO3YEpNqBEEII4Y0koBXtTnCojmHXBxAW4ZwstnNzFXv+rwqLxXHBx8XGxnLHHXcwePBgAgMDsVgs7Nu3jy+++KJOqa6GSNqBEEII4b08vlLYsmXL2L59Ozk5ORgMBrp27crtt99OdHR0o4/Zv38/zz77bL3tr7/+OjExMa3ZXNFGjD4aBg43cXBvDUcPmTmeYeFUrpXUfr5Ex+lRFKXBx/n7+zNgwAD69+9PdnY2aWlpHDlyBLvdzlVXXdXo4zp37szmzZvJzs7GZrOh03n8rSGEEEIIN3n8f+20tDRuuOEGkpKSsNvtfPrpp/zzn//ktddew8fH54KP/de//oWfn5/rfmBgYGs3V7QhjUYhpa8vkTF69v5fFRXlDnZtqSI7S0evq33xM2kbfayiKMTFxREXF8fw4cMpKSkhMjKy0eM7dOiAv78/FRUVZGdnu0ZshRBCCNH+eTzlYObMmYwYMYK4uDg6d+7Mn//8ZwoLC8nIyLjoY4OCgggODnbdNBqPPx3RCjqE6xh2QwBdU33QaCD/pI0N35Zz9GANDsfFKyH4+PgQFRXV6OgsUGeRBcmjFUIIIbyLx0doz1dVVQU4Pzq+mEcffRSr1UpsbCyTJ0+mZ8+eDR5ntVrrzHhXFAVfX1/X922h9jptdb3LjU6n0L2XLzHxBvb+XxWnC2yk7akh+5iVPgP8COlw6T/KnTt3Zt++fWRlZTFixIg6+6T/vJ/0ofeTPvRu0n/erz33oaK6W8G+DaiqyksvvURlZSVz5sxp9Ljc3FzS0tJITEzEZrOxceNGvvvuO5555hlSUlLqHb906VI+//xz1/2EhATmzZvXKs9BtD5VVTm0v4StG09hNjsnivXsG8qAa8MxGBtPQ7gYs9nMnDlzsNvt/OMf/yAsLKylmiyEEEKIVtSuAtr58+eze/du5syZQ4cOHZr02BdffBFFUXjsscfq7WtshLagoACbzXbJ7XaHoihERUWRl5fn9ipY4sLMNQ72764m+5izrJePr0Kvq/3oGGto9jm//PJLTpw4Qd++fenduzeBgYFotVrpv8uA9KH3kz70btJ/3q+t+1Cn0xEeHu7esa3cFrctWLCAnTt38uyzzzY5mAXo2rUrmzZtanCfXq9Hr9c3uK+t31SqqsobuYUYjAr9BvkR21nP3p3VVFU4+L+fKomKtdD7al+MPk3PqY6Pj+fEiRP88ssv/PLLL2g0GoKCgggNDaVr164kJiai1V58FLiqqgpfX992+bHMlU7eg95P+tC7Sf95v/bYhx4PaFVVZcGCBWzfvp3Zs2cTERHRrPNkZmYSHBzcso0TXiE8Ss+IG3SkH6jhyAEzedlWigtt9BngR2R0w3/INCY1NZXi4mLy8/MpLi7GZrNRXFxMcXExR48epVevXowcOfKC59i7dy8bNmwgNDSUgQMH0qVLFwlshRBCiFbk8YD2f//3f/npp5949NFH8fX1paSkBAA/Pz8MBudHx4sXL6aoqIi//OUvAKxatYrw8HDi4uKw2Wxs2rSJbdu28fe//91TT0N4mPbMpLGOsXp2ba2ioszB9k2VxCcZSOnri07nXkBpNBoZPXo04Pxjq6KigqKiIvLz89myZQu//vornTp1IikpqcHH5+XlsXHjRgCKior49ttvCQ0N5ZprriE5OVkCWyGEEKIVeDygXbt2LQCzZ8+us/3Pf/6za6Z5cXExhYWFrn02m41FixZRVFSEwWAgLi6Oxx9/nKuuuqqtmi3aqaAQHcPGBnBwbw0Zh80cO2qh8JSNfoOaXglBURQCAgIICAigc+fO6PV6Nm7cyA8//EBkZGS9Shw1NTV8++23OBwOkpKSCAsLY/fu3RQVFbF69Wq2b9/ONddcQ5cuXaTEnBBCCNGC2tWksLZWUFBQZ7JYa1IUhY4dO3Ly5Ml2l3dyuSo4ZeWXbVXUVKugQFy8gS4pRvwDml4JQVEUwsPD+fe//01+fj5xcXHcfPPNrhFXVVVZuXIlmZmZBAUFMW3aNIxGI2azmV9++YXdu3djsTgnrwUEBNCnTx9SU1MxGo0t+pxF4+Q96P2kD72b9J/3a+s+1Ov1bk8Kk2EicdkKj9Qz4jcBxMTrQYUTWRbWf1vOrq2VlJfZm3w+nU7Hb37zG3Q6HSdOnGDXrl2ufbt37yYzMxOtVsu4ceNcgarRaGTgwIHcddddDBw4EB8fH8rLy/npp59YsGABP/74oyvNRgghhBDNIwGtuKzpDRquGmTiujH+REbrQIWcY1Y2fFvOzi2VlJc2LbANCQlh2LBhAGzZsoX8/HxOnjzJ5s2bARg2bFiDExtrA9s//vGPjBo1itDQUKxWK3v27OGjjz5i/fr1OByOi16/urqa4uLiJrVZCCGEuNx5PIdWiLYQ0kHHNUP9KSmykZ5mJi/HSu5x5y0qVk/XFCNBIe69HVJTUzl27BhHjx5l9erV2Gw2HA4HycnJja5WV0un09GzZ09SU1M5fvw4v/zyC8eOHePXX3/FbrczevToRieOnTp1iq+//pqamhq6d+/OkCFDMJlMTX4thBBCiMuNBLTiihIcqmPAdTpKi+2kp9VwMttK3plbZLSO5BSfi04eUxSF0aNHk5eX50oXCA4OZtSoUW5XMVAUhfj4eOLj40lPT2f16tWkpaWh0+kYPnx4vfNkZ2ezYsUKV873wYMHycjIYNCgQfTu3VsmmQkhhLiiyf+C4ooUFKKl/xCTM8e2kx4UOJVr46fvK9iyoYLT+RdeQc7Hx4cbbrgBoF7ebFMlJyczZswYwFnD9ueff66TbJ+ZmcnXX3+N1WolJiaGSZMmERERgcViYePGjXz66afk5uYCzslpVquVyspKSkpKqKioaFabhBBCCG8iVQ6kyoEAKsrtHDlgJjvLQm33hIZp6ZLiQ0SUDo1G02D/nTx5sklL813Ivn37WLduHQADBw5k4MCBHD58mLVr1+JwOEhISGDcuHHodDocDgdpaWls3ryZmpoawJmna7FY6v18DR48mAEDBlxy+7ydvAe9n/Shd5P+837tucqBpBwIAfgHaOl7jR9dU40cOWDmRKaFokI72zdWEhispWuqD5GR9d+8HTt2bLE29OzZE6vV6loopLCwkKNHjwLQrVs3xowZ41p2V6PR0LNnT5KSkti8eTP79+/HbDbXOZ9er8dqtbJlyxZ8fX0vmt8rhBBCeCsJaIU4h59JS+/+fnRN9SHjkJmso2bKSuzs+LmS9LSjxMZriYnXY/RpnWydfv36YbPZ2LJliyuY7dWrFyNGjGgwP9fX15fRo0czcOBArFYrer0eg8GAXq9HURS2bNnC//3f/7F+/Xp8fX0bXeFMCCGE8GYS0ArRAB9fDSl9fenSw0hmupnMdAulxRZKiyFtbzVR0Xo6JRoIj9ShaFp2OdsBAwbgcDjYsWMH/fr1Y/DgwRedbHb+qmW1Bg0aRGVlJWlpaaxevZpJkyYRHR3dou0VQgghPE0CWiEuwGDU0K2nL126+1Je4suvu/MpKbJzMtvKyWwrPn4KnZOMJCQb0elbLrAdOHAg/fv3d6UYNJeiKIwaNYrq6moyMzNZsWIFU6ZMoUOHDi3UUiGEEMLzpMqBEG7Q6RVSeocwbGwgw28IICHZgN6gUFOlcvDXGn5YVUbGoRrs9pZLkr/UYLaWRqPhN7/5DR07dsRsNvPVV19RXl7eIucWQggh2gMJaIVoosBgLT2v8uP6CYH0HeiHyV+Dxayy/5ca1q0q49hRMw5H+5rBq9fruemmmwgNDaWyspLPP/+cvXv3tlmVDyGEEKI1SUArRDNptQpxnQ2MGBdAnwG++Pgp1FSr7N1RzYZvyzl21IzN1n4CWx8fHyZOnEhAQADl5eVs2LCBBQsW8PPPP8uIrRBCCK8mObRCXCKNRqFTopGYeAPHjlpIT6uhssLB3h3VHNhTQ1yigc5dDJj8WyaF4FIEBATwu9/9jgMHDvDLL79QWlrKzp072bVrF8nJyfTt25eoqChPN1MIIYRoEglohWghWq1CYlcjnRIMHMswk5VuoarSQcYhMxmHzERG6+icbHRWRnBzidzWYDAY6NOnD7169SIrK4vdu3eTk5PD4cOHOXz4MNHR0fTr14+EhIQGl9Stqanh5MmTBAYGyuQyIYQQ7YIEtEK0MJ1eIambD4ldjeSftJGZbqYgz8apXOfNP0BDQlcjsZ0N6HSeC2w1Gg2JiYkkJiZSUFDA7t27OXz4MLm5ueTm5hIYGEi/fv1ISkoiPz+f7OxssrOzKSwsBJwVFK655hoGDBjQYODbHKqqUlRUREhISIudUwghxOVPlr6VpW+FGy61/yrK7GQdca5AZrM5t+n1CnGJBhKSDfiZPJ+OAFBZWcmePXv49ddf6608dq7aPFyA2NhYbrjhBkwm0yVd22KxsHr1arKysggPD2fEiBEtuhKbvAe9n/Shd5P+837teelbCWgloBVuaKn+s1pVTmRayEo3U1nhOHNyCI/UERWjJypGj4+v50cmrVarK8+2pKSE4OBgYmNjiY2NJSYmBpPJxIEDB9iwYQNWqxVfX1/Gjh1LfHx8s65XUVHBihUrKCgoqLM9JSWFa6+9Fj8/v0t+TvIe9H7Sh95N+s/7SUDbTklAK9zV0v2nqmqddIRzBYdqiYp1BrcBgZ4duVVVFYvFgtFobHB/UVERq1evdqUh9O/fn549e+Ln54dO515GU2FhIcuXL6eiogJfX1+uv/56jhw5QlpaGuDM+R08eDC9evUCnDm81dXVVFdXU1VVRU1NjetWXV1NTU2NK8j29/fHZDJhMpnw9/cnJiaGgoICVFV19aOiKISFhbndXuE58nvUu0n/eT8JaNspCWiFu1qz/yrK7eRlW8nLsVJ82l5nX2CwlrgEAzGd9Bh9PD9y2xCbzcamTZv49ddf62w3GAyYTCb8/PwICAigY8eOREdHExoa6poUd/z4cVatWoXVaiUkJIQJEyYQFBQEwMmTJ9mwYYNr1Fav12Oz2Vrl/ePj40Pv3r3p3bt3i4wGi9Yhv0e9m/Sf95OAtp2SgFa4q636r6baQV6OM7gtzLeh1mYlKBARrSOus4HIjno0Ws9NJmvM4cOH2bp1K2VlZTgcjkaPMxqNdOzYkaCgIH799VccDgcxMTH89re/xcfHp86xDoeD/fv3s3nz5jo5vUajET8/P3x9ffH19cXHxwcfHx/X9zqdjurqaioqKqisrHTd7Ha7q221QbXFYqGmpgZwrs7WvXt3+vXrR2hoaEu/ROISye9R7yb95/0koG2nJKAV7vJE/5nNDnKPWzmRaaG0+OzIrUYL/v4aTAFaTAEa/M98DQrWovVg1YRatWkKlZWVVFVVUVVVRVFRESdPnuTkyZPYbHVTLLp168bo0aMv+JG/xWKhrKzMFbA2Z1ngxvrQ4XBw5MgRdu/ezalTp1zbExISuO666wgJCWnytUTrkN+j3k36z/u154BWksaEaKeMRg0JyUYSko2Ul9o5kWUhO8uCuUalrNRBWWndUVCdHjrGGojtrKdDuOdq3SqKgtFoxGg01hvltNvtFBYWkpuby8mTJ4mMjOSqq666aFsNBgNhYWGt0l6NRkPXrl1JTk4mNzeX3bt3k5GRQWZmJsePH2fAgAFcffXVzQqihRBCtA0JaIXwAgFBWlL6+NKjlw9VlQ4qyh1UltudXysclJfaMdc4KyicyLTg66cQE28gNt6Af6DGows5nEur1RIZGUlkZCT9+vXzdHPqUBSFmJgYYmJiKC4uZuPGjRw7doytW7eSnp7OqFGjWrSMmBBCiJYjAa0QXkTRKGdSDbSA3rVdVVWKCuxkH7OQe8JCdZXKkQNmjhww4+unEB6lJyxSR1ikDqOxfU4ua09qJ6gdPnyYH3/8kdOnT/PZZ5/Ru3dvrr766nqLPqiqSnV1dZ00i6qqKqqrq7Hb7dhsNtdXm82GyWRyBfaRkZH4+vp66JkKIcTlQQJaIS4DiqLQIUJHhwgdPa/y5VSulewsC/l5NqqrVI5nWDieYQGclRMio3XExBs8XhasPVMUhW7dutGpUyd++uknDhw4wN69e9m7d+8ln7ugoICsrCzX/cDAQCIjI+nZsydxcXGXfP7WZrfb+eWXX/j111/p168fffr08XSThBBXOAlohbjMaLUK0XEGouMM2KwqpwttFObZKDhlpbzUQVmJnbISO+lpZoJCtMTG64mJN7TbsmCeVlsbt1u3bvz444+UlJQ0epyfnx9+fn6ucmW1FRdqb1qtFq1WS2lpKadOnSI/P5/i4mLKysooKysjPT2duLg4Bg0a1G7TG06ePMm6des4ffo0AD/++CNGo5Hu3btf8HGVlZXo9XoMBkNbNFMIcYWRgFaIy5hOrxDZUU9kRz3gS021g8JTNnJPWMg/aaO02E5psZ20PTWER+mIiNITEqYlMFiLRtM+8m7bi06dOvH73/++xc9rNpvJz8/nyJEj7N+/nxMnTnDixAk6d+7M4MGD3Z7heyksFgsnTpzg+PHjlJWVERERQceOHenYsaNrUY2amho2b97Mvn37AGft3ujoaDIyMvj+++/x9fVtcKU4VVXZu3cvmzZtwmg0MmrUKJKSki7YntoUjcYW9BBCiPNJ2S4p2yXccDn2n7nGQe4JZ2pCSVHdBR00WueKZSEddISG6QiP0qFth7Vvm8Ib+rCsrIzt27dz4MABVxujoqJQVRWr1YrNZsNqtWK1Wl31dM9d9Uyj0RAeHk50dDTR0dF07Nix3kIRdrvdVaO3Nog9efJkg7WDFUWhQ4cOREVFkZGRQVVVFeBcknjIkCH4+PiwZs0aDh8+jF6vZ/LkyURGRroeb7PZ2LBhg2vVt1opKSkMHTq0XsBqtVr59ddf2blzJ1arldGjR9OtW7c67WnvfSgaJ/3n/dpz2S4JaCWgFW643PuvotxO7gkrRQU2Sk7bsVrrPkedDqJi9cR0MhAWqfPK0Vtv6sPi4mK2bdvG4cOHL/lcwcHBmEwm1yS12kUkzhcUFESnTp0IDQ0lPz+f3NxcSktL6xwTEhLCyJEjiY2NdW2z2+0sX76cEydO4Ovryy233EJwcDAVFRWsWrWKU6dOoSgK1157LTU1NezcuROAgIAArr/+emJjY+sEstXV1XWu2a9fP4YMGYJGo/GqPhT1Sf95Pwlo2ykJaIW7rqT+U1WVinIHxYU2ik/bKcizUl119jkbjAodY/VExugJDtF6Te6tN/ZhUVERhYWF6HQ69Hp9na9ardZVjk1RFBRFwWKxuBawyM3NpaioqMHzKoqCr68vkZGRxMfH06lTJ4KDg+sdV1FRwcmTJ8nLyyMgIICePXs2uACG2Wzmyy+/pKCggKCgIK677jrWr19PVVUVRqORcePG0alTJwBycnL47rvvKCsrA6Br166cOHHCFcgGBQUxYMAASkpK2LFjBwCxsbGMGzcOPz8/r+tDcZY3vgdFXRLQtlMS0Ap3Xcn9p6oqxYV2co5byD1hxWKu+/x9/RSCQnUEh2gJCtUSHKLF0A5Lg12JfVhTU0NeXh5ms9k1Ya12ueCWrk1cWVnJZ5995gpUATp06MCNN95IUFBQnWMtFgubNm1i//79rm21gWz37t1dZdHS09P5/vvvsVqtBAQEcOONN9KnTx+P9qHZbKa4uJgOHTqg1+sv/gDhciW+By83EtBewLJly9i+fTs5OTkYDAa6du3K7bffTnR09AUfl5aWxocffkh2drarZuTYsWObdG0JaIW7pP+cHA6VwnwbucetFBXaqCyvn3cJZ4PcoBBngBvUDkZypQ9bX0lJCUuXLqWmpoYuXbowZsyYC1Y1yMzMZN++fSQlJdUJZM91+vRpVq5cSWlpKVqtlsGDB2MymQgLCyMkJKTeY2w2G+Xl5ZSWlromlvn4+LhWr9Pr9W4H8w6Hg6KiIvLy8sjLy+PkyZMUFxcDztXrunXrRs+ePev9h6uqKgUFBaSnp5OVlUVgYCBDhgypt3LelUbeg95PAtoLeP755xkyZAhJSUnY7XY+/fRTjh8/zmuvvYaPj0+Dj8nPz+fvf/87o0ePZsyYMRw6dIj58+fz0EMPMWjQILevLQGtcJf0X8OsVtVZKaHIWTGhpMhOZUXDQa6Pn0JwiM41itvWQa70YdsoLy/n9OnTxMfHt9gosNlsZs2aNXVq94Jz5bkOHToQFBREZWUlpaWlVFZWXvBcGo0Gk8mEv79/nZter6eiooLy8nLKysooLy+noqKiwclyBoMBi8Xiul9bQzg8PJyjR4+Snp5er7ybRqOhd+/eDBw48KLVGywWi2txjsrKSqqrqwkMDCQ6OtqtsmeqqlJRUUFJSQnFxcWUlJRQXl5OZGQkKSkp9SYKns9sNqPVahtML7kU8h70fhLQNkFZWRl/+tOfmD17NikpKQ0e8/HHH7Nz505ef/1117b//Oc/HDt2jOeff97ta0lAK9wl/ec+q0WltMRGaZGzJFhJsb3RkVyTv8a1glmHiNZdxUz60Lupqsrhw4cpLS3l2LFjFBYWNvr7W6/XExgYiF6vx2w2U1NTg9lsbjA4vRi9Xk9UVJTrVruy24kTJ9i3bx8ZGRkNnler1ZKQkEBiYiJHjhwhIyMDcNYrvvbaa13/v5WXl7vynmtHgG02W4NtURSFiIgIYmNjiY2NJTw8nIqKCoqLiykuLqaoqMgVxNrt9gbPodFoSExMpFevXsTGxqIoinOlwaIiMjMzycjIIC8vD4PBQP/+/enbt2+zAtvagD4gIACtVutqv7wHvVt7DmjbXR3a2rIw/v7+jR6Tnp5O796962zr27cv69evx2az1Xvz1Za5qVU7IaL2+7Zw7uQN4X2k/9xnMCqERxoIP1u96cxIrjPILSm2U1LkTFeorHBQWWHh2FHnaFdQiJawCGeqQkCQc4lfna5lXnPpQ++mKAo9evQgKiqKvLw8HA4HpaWlFBQUUF5ejslkIigoiMDAwAZzhFVVxWazUV1dTVVVlWsEtvZmNpsJCAggICCAwMBA11eTydRgKkR8fDzx8fFUVlZy4MAB9u3bR0VFBfHx8XTt2pWEhATXaGqPHj04duwYP/74I8XFxfzwww/s2rULi8XS6IiyXq935T37+Phw+vRpysrKOHXqFKdOnXJVi2iMRqMhKCiI4OBggoOD8fPz4+jRo+Tl5XHkyBGOHDlCUFAQcXFxnDhxol5FC4vFwubNm9m7dy/XXnst3bt3v+B7R1VV8vPzOXr0KEeOHHGlZmg0GgIDA13tiI+PR6fT0aFDh1Zf8rl2uWlFUdDpdA32Y0tzOByuSZqXo/b8e7RdjdCqqspLL71EZWUlc+bMafS4hx56iOHDhzN58mTXtkOHDvH000/z3nvvERISUuf4pUuX8vnnn7vuJyQkMG/evJZ/AkIIt5nNdk5mV5FzopLc45UUnTY3eFxgkJ7gUCMhoUaCQgwEBRsICjHgZ9K1y1+q4sqlquoFfybtdjtbtmzhu+++w2x2/rxrNBpiYmLo1KkT8fHxREdHExAQ0GBaQnFxMUePHiUjI4OMjAxKSkowmUyEh4cTERFBeHg44eHhrvzi2pHRc+Xm5rJ9+3Z2797tagOATqcjKSmJlJQUunXrxtGjR1m7dq0r0I2OjmbcuHF06NCBmpoaVwm4mpoacnNz2b9/f500i9oqHI2NNoNz4Kp21Ds0NBRfX198fHzw8fFxTV48d4S3IWVlZRw6dIjDhw9TWFiI2Wx23c6/tlarRa/Xo9frMRqNrlX9alNQTCYToaGhdOrUiYCAgEavCWcXRMnPz6egoMD19fTp0xiNRmJiYoiNjSUmJoaYmBhCQkJa/PeV3W6npKQEnU5HYGDgRc/vcDiorKxsci65t2hXAe38+fPZvXs3c+bMoUOHDo0e99BDDzFixAgmTZrk2nbw4EFmzZrFf/7zn3rlZxoboS0oKLjgm60lKYriGlloRy+5cJP0X+urXcXsdKGVilIH5aV2LJbGX2utFkwBzlXNQsN0hHTQEhikRWmkRq70ofe7XPqwqqqKY8eOERgYSGRkZLM+0q8dcW5upQWLxcLhw4c5ffq0K6A+Pz/XZrOxe/duduzYUSdnuDE6nY7OnTvTpUsXOnfujMFgcOXy1t6qqqrIzc2tUw3jQjQaDSEhIYSGhtKhQwdCQ0Px8fHhxIkTZGVlUVBQ0KznfzEBAQGuNJPw8HAqKys5ffq06+Zu+2vVTk40GAyuoNpgMLi21wbztV8dDgdWqxWLxeK61dTUuHK8y8rKqKysdL0P/Pz8XH8cREZGutp8fsBdG/NoNBqMRqOrDbXtOPdmNBpdQe+577egoCBCQkIwmUwt9Go3TqfTeV/KwYIFC9i5cyfPPvvsBYNZcBYKPz/hvqysDK1W22CqQu0PT0Pa+pfiuav6CO8j/dd6jD4KMfF6YuLPvlfNNQ7Ky+yUlzqoLLdTcSZNobrSgd0OZSV2ykrsZGc5/7PV6iAkVEdI2JkgN0yHXl//o2fpQ+/m7X3o6+tL9+7dXfeb+1x0Ol2zH6vX60lNTa2z7fxzabVa+vfvT0pKCv/3f//Hvn37UBTFFQTVfvX39ychIcGVTnCu2kl3tfm6tfmXZrOZoqIiV4BYXl7uCtzOHWV1OByuY9LT0xt8LpGRkXTu3JnIyEjX6KPBYMBgMLheI5vNVudWGyDWpqBUV1dTXV1dpz3l5eWNXhOcQWRoaKgr4A4JCSEkJITq6mrX6O2pU6c4ffq06/m0NK1Wi8PhoKqqyjVy7w6Hw+F6zs0xadKki04ubGseD2hVVWXBggVs376d2bNnExERcdHHJCcn18sf2rNnD4mJiS0+K1MI4TlGHw1GHw1h5/1acNhVqqocVJQ5KClyLgBRctqGzQaF+TYK822AGRQICtYSGq6jQ7iO4KC2+URGiMuJn58fw4cPZ9iwYS32MbXBYHCNgDZGVVXKy8spKipyBb9FRUVUVlYSHR3tymN2J7Bqykh2bTpBbbm206dP4+/vT4cOHVy32hSJhgQEBNSJZWw2GyUlJa6AvfZTY6vV6pq0WBtc1n6v0WhcQXntzWg01svz9vPzw263U1BQQF5enivHurS0FIPB4EpFqf0aHByMzWbDbDbX++OhNoXk3ImUtX/knNvvtSPJ7Y3HUw7mz5/PTz/9xKOPPlqn9qyfn5/r44/FixdTVFTEX/7yF+Bs2a4xY8YwevRoDh8+zPvvvy9lu0Srkf5r/1SHSnmZg+LTNooKbRQV2KmqrD/73BSgIaSDcwQ3NEyHf6Dmssslu1zJ+9C7Sf+1HavVik7X8vMMpMrBBaxduxaA2bNn19n+5z//mREjRgDORPjCwkLXvoiICJ544gk+/PBD1qxZQ0hICHfddVeTglkhxOVF0SgEBjtzauOTnBNqqqscFBXYOF3gDHKdqQvOW3aW849ZnR78A7T4mjT4+Wnw9dM4vzdp8A/UoGkkJ1cIIdqrK3EVO4+P0HqSjNAKd0n/eT9FUQgNieDA/hyKCq0UF9opLrJhv0AWgkYDgcHORSBqb/6BLVdKTDSNvA+9m/Sf95MRWiGEaAeMPloio/VEdHT+6nM4VMpLHVRV2qmudFBd5czNra50UFlhx2aFkiLnCmjn0hsUfHwVfP00+Pg6R3X9AzUEBWvx85cUBiGEaGsS0AohrlgajeIaeT2fqqpUVTrqrHhWWmzHalFdt/LSBlaI0p0Z1T2T/lC7SIRWK0GuEEK0FglohRCiAYqiYPLXYvLXEt3p7HarVaWmykF1tYOaKgc11c7At6zETnmpHbsNZzpDof2cc0FAkIagEJ0z0A1xBrvnlxQTQgjRPBLQCiFEE+j1Cvog56jr+RwOlcpyB6XFdspKnSO6taO6ZSUOykosnDjneD+TxjWRzTmS65yMJikLQgjRNBLQCiFEC9FoFALOC3ZVVaW6SqW02EZZyZkgt8ROTZVzZLeq0kFeztnJqRotBAQ6g9uAQGdOrlanoNMqaHWgPfPVx0eDRtIYhBACkIBWCCFalaIo+JkU/EwGOsae3W4xO9MUSs+sdlZW4qCizI7DjmtkFxqvwqJowD9AQ2CQloBg57K/AUFafP0UGeEVQlxxJKAVQggPMBg1hEVqCIs8Wy9SdahUVjooL3Uu91teZqemyrnMr92mYrOr2G3O7x0OnMeUOuB43RFe/wANpgAt/gEa/AO0+AdqZGKaEOKyJgGtEEK0E4pGcQagAdo6o7nnq01jKC915uqWlzi/VpQ5cNg5k69btwJDQxPT/AM0GIwyoiuE8H4S0AohhJc5m8agITL67Aivw+HMy60sd1BR7gxwK8vtlJU6Gp2YptGCr59zMpqzru6ZANf5D0UBFDAYFAICnQtL6A0SAAsh2hcJaIUQ4jKhOWeEN5JzUhkuMDHNYce1HLC7fHwV/AO1BARqnF+DnN8bjJrWeFpCCHFREtAKIcRlrrGJaQ67SnW1c2W0qkoH1VUOzDUqrhUtVVBxBsQ11SoVZXZqqtUzNxuFp+pex+ijuILb2nJkAYFatLJUsBCilUlAK4QQVyiN9uziEe6yWhxUlDknrJWXOSszlJfaqa5SMdeomGvOC3QVMPk7A1yTvzNn1+ijweijYDRqMPoqGAySxyuEuDQS0AohhHCb3qAhJExDSFjd/z5sVtUZ5JY6c3bLS53lyCxm9aIpDVot+Jqceby1Nx9fDTq9s+auTqc4b3oNDofa6HmEEFcuCWiFEEJcMp1eIaSDjpAOZ/9bUVXnqG1tJYbqKgdmc+1IrjO9wWpRsduhosw58nsxGk0pfiYNpgCNc3Q5QOMsTxaoxegjI71CXKkkoBVCCNEqFEXBx1fBx1dDRJS+wWPsdpWaKodr1bTam7lGxWZVnfV3bc76u7Yz9Xcryh1UlDsAW51zaXWcmRTnrMPrZzqT2uCjYDBqMBoVWV1NiMuUBLRCCCE8RqtVMAVoMQW4l8cbGBBOxpGTzrJk5c6yZBXlziDYbrv4Kms6vTOFQaNR0GidlSG0WtDqFIy1+b2+Z/N8fXycpcz0kucrRLsmAa0QQgivoCgK/gF6wqP0hEXW/e/LYXeuslZRZj9Th9dZtcFS40xzsJid1RtsVme+r7N+g/s0WlzBrY+vM+XBWdHBmfYgq7AJ4VkS0AohhPB6Gq1z4YeAwIZHelXVma9rNquupYMddhX7ma82G87gt0al5sxXc42Dmmrn4xx2zqRDANjrnlwBk0mDn78GjRa0GgWNxtkmjcY5+uuc2ObMNdbpFLR6Z3UHg9GZDqHTISPAQlwCCWiFEEJc9hSlNnhs+mPtdhVzteNM/V3nyG9FubN0WUWpA6tVpbLCQWWF+4tT1GufxrkaW+3ob20esH+ABv8ALTq9BLtCXIgEtEIIIcQFaLUKfv5a/Pzr76ut5FBR5qzF63A4R3MdjrOjv7UT2mw250Q351ewWBxYzM7jVQdnRoVrc4DPa4MO9AbnqK7eoEGvd+b11hn1PTMSXLvAhWsZYyGuABLQCiGEEM10biWH5rLZnGkNFrOD6iqVinI7lWUOKirsVJQ5g167Dew2lZoqFXBvJFinx5WG4R+kQatRsDtUVAfOlIszNX1rF7gw+mjw8VEw+mrQaDgbmJ/56nCAXu8c6dZoJFAW7YsEtEIIIYQH1S4c4eunISgEoG6JM2furwOrRa1zs9SWNbPWLW1WXelMf7BZofi0neLT9Ud8L5VzxTdnEGwwKq4R43O/arQKigIooCigURRUeyVVVXZ8fKWEmmhZEtAKIYQQ7ZjeoKA3uL88MThTHWrzfMtLnZUfVBXnZDVXyTJQVeosdFFT4yx/di5FA1oNKBoFq1UFFSxnKkeUlzY1b7jC9Z2PrzOI9zNp8DVp8PXTnL3vp5G8YdEkEtAKIYQQlxmNViEwWEtgcNMCYXCWNXOoqrNG75lAtpbqULFY6q72ZjY7sFnPjBxbz9zOVIZQVecNnGXTFEVHRbkFh50zk+waH0HWGxRX0K06wKE60yXURiqu6fQKJv+6q8iZTBpUODuyfaZ9DrvqSp/QGzTO3OQzI83OfGSpOuFtJKAVQgghhItzZLThYE7R1KYaADQtWFYUhY4dO5Kbm4u5xkF1pYOqKufX6jOrxdVus1mdQWhTWC0qJUV2SooaX1ijKbS6M+kg+gZSKgzOwPdMrA44Jwg6g3bnc1XOpFooGuer6VCducuqo7Zs3NnraLXOSX1arfN7H18FP38NPr4ayVd2kwS0QgghhGgzilK7EpuG4A4NH2O1qFRXOVBVFUVxjtQqmrqB4rlU1fmYinI7lRUOqsqdk+qqKh1oNPUDUo0GrFZn2oTV4hx1tppVrDbVFaDWTsQz1zQtsG5JioIzDcPfOWHPbj9bMcNuddZPdjico+mKBjSK84+O2tdLU1sT+cxIu1bj/INFbzgbqOv0ChrlTLCtqmeCbmcAXtsGcAblikahuKAYH5MDH9/2FWhLQCuEEEKIdqU5ecO+fjQrxeJcquqs6mA/t8yaFVcahdXicH1vs50T7J0XZDscgHomTeJM2oXmnACzNrhUObuwh93unORnt0F1tXO02uGoXdDjYrnKbRl0VzF4hD8+vu0rhGxfrRFCCCGE8BBFOVPbV6fQjDU4WpSqqtRUq86AtsKBucaBVqug059Zfe5Mvq9GwzmjqmfLstWOttaWX1NVZ9Bcm+/sCtStKuqZnGlFOTuaW5vpUJtWURsy+xh9MPh46EW5AAlohRBCCCHaGUVR8PVzVoLoEO7p1jjV5kGfPHkStbHZeR7S/ErQQgghhBBCtAMS0AohhBBCCK/m8ZSDtLQ0li9fTmZmJsXFxfzjH//gmmuuafT4/fv38+yzz9bb/vrrrxMTE9OaTRVCCCGEEO2QxwNas9lM586dGTlyJK+++qrbj/vXv/6Fn5+f635gYGBrNE8IIYQQQrRzHg9o+/XrR79+/Zr8uKCgIEwmUyu0SAghhBBCeBOPB7TN9eijj2K1WomNjWXy5Mn07NnT000SQgghhBAe4HUBbUhICPfccw+JiYnYbDY2btzIc889xzPPPENKSkqDj7FarVitZ5fBUxQFX19f1/dtofY6sja0d5L+837Sh95P+tC7Sf95v/bch14X0EZHRxMdHe2637VrVwoLC1mxYkWjAe2yZcv4/PPPXfcTEhKYN28e4eFtX9gtKiqqza8pWo70n/eTPvR+0ofeTfrP+7XHPvS6gLYhXbt2ZdOmTY3unzRpEjfeeKPrfu1fFgUFBdhstlZvX+01o6KiyMvLa3fFiMXFSf95P+lD7yd96N2k/7xfW/ehTqdze/DxsghoMzMzCQ4ObnS/Xq9Hr9c3uK+t31Sqqsob2YtJ/3k/6UPvJ33o3aT/vF977EOPB7Q1NTXk5eW57ufn55OVlYW/vz9hYWEsXryYoqIi/vKXvwCwatUqwsPDiYuLw2azsWnTJrZt28bf//53Tz0FIYQQQgjhQR4PaI8ePVpnoYSPPvoIgOHDh/PAAw9QXFxMYWGha7/NZmPRokUUFRVhMBiIi4vj8ccf56qrrmrytXW6tn/6nrimaDnSf95P+tD7SR96N+k/79dWfdiU6yhqexszFkIIIYQQogk0nm7AlaK6uprHHnuM6upqTzdFNIP0n/eTPvR+0ofeTfrP+7XnPpSAto2oqkpmZma7S6IW7pH+837Sh95P+tC7Sf95v/bchxLQCiGEEEIIryYBrRBCCCGE8GoS0LYRvV7PlClTGq2HK9o36T/vJ33o/aQPvZv0n/drz30oVQ6EEEIIIYRXkxFaIYQQQgjh1SSgFUIIIYQQXk0CWiGEEEII4dUkoBVCCCGEEF5NFlRuA2vWrGH58uWUlJQQGxvLnXfeSY8ePTzdLHGeZcuWsX37dnJycjAYDHTt2pXbb7+d6Oho1zGqqvLZZ5/xww8/UFFRQXJyMjNmzCAuLs6DLReNWbZsGZ988gnjx4/nzjvvBKQPvUFRUREff/wxv/zyCxaLhY4dO3L//feTmJgISB+2d3a7nc8++4xNmzZRUlJCSEgII0aMYPLkyWg0znE06cP2Iy0tjeXLl5OZmUlxcTH/+P/bu/egqMo+DuBfllsgIHdQ2FVZQkVY5ZKYOGJewoKRLGQcc1YFyxkg0nrHcRQwyCStsRonp2ZCcXAQvKAU1qbUOAkSJGqIOpIhgaGDIDeFFZfd94/ePeNxoZcsYDe+nxn+OM959uxz9jcrXx6fc85//oOZM2cK+wdTq4cPHyI3NxdlZWXo7e1FQEAA1q5dCxcXl2E7D87QDrGzZ88iJycHL7/8Mnbs2IGpU6di+/btaGlpGemh0WOuXLmCyMhIvPfee0hNTYVWq8W2bdugVquFPkVFRThx4gTi4+ORlZUFR0dHbNu2zSgfAzjaXb9+HSUlJZgwYYKonTU0bvfu3UNaWhosLCywefNm7Nq1C0qlEra2tkIf1tC4FRUV4dSpU0hISMBHH32ElStX4ssvv4RKpRL1YQ2Nw4MHDzBx4kTEx8f3u38wtcrJyUFlZSXefPNNZGZmQq1W4/3334dWqx2u02CgHWrFxcWYP38+FixYIMzOurq64uTJkyM9NHrMli1bMG/ePEilUkycOBGJiYloaWlBXV0dgD/+Sv3666+xdOlShIWFQSaTISkpCQ8ePEBpaekIj54epVarsXv3bqxbtw5jxowR2llD41dUVAQXFxckJibC19cX7u7uCAwMhKenJwDW0BTU1tYiNDQUwcHBcHd3x6xZs6BQKPDrr78CYA2NTVBQEJYvX46wsDCDfYOpVXd3N77//nsolUooFApMmjQJb7zxBhoaGlBdXT1s58FAO4Q0Gg3q6uowffp0UbtCocC1a9dGaFQ0WN3d3QAAOzs7AEBzczPa29tF9bS0tIS/vz/raWS++OILBAUFQaFQiNpZQ+N37tw5+Pj4YNeuXVi7di02btyIkpISYT9raPymTJmCmpoaNDU1AQDq6+tx7do1BAUFAWANTclgalVXV4e+vj7Rv7fOzs6QyWSora0dtrFyDe0Q6uzshFarxdixY0XtY8eORXt7+8gMigZFp9Nh//79mDJlCmQyGQAINeuvnlxCYjzKyspw48YNZGVlGexjDY1fc3MzTp06haioKCxduhTXr1/Hvn37YGlpiYiICNbQBMTExKC7uxsbNmyARCKBVqvF8uXLMWfOHAD8HpqSwdSqvb0dFhYWwuTPo32GM+sw0A4DMzOzQbWR8cjOzkZDQwMyMzMN9j1eOz5sz3i0tLQgJycHW7ZsgZWV1YD9WEPjpdVqIZfLsWLFCgDApEmT0NjYiJMnTyIiIkLoxxoar7Nnz+LMmTNISUmBVCpFfX09cnJyhIvD9FhD0/EktRruejLQDiEHBwdIJBKDv1A6OjoM/toh47F3715UVVUhIyNDdIWmo6MjAAhX7ep1dnaynkairq4OHR0d2LRpk9Cm1Wpx9epVqFQqfPzxxwBYQ2Pm5OQEb29vUZu3tzcqKioA8HtoCg4cOICYmBiEh4cDAGQyGe7cuYPjx49j3rx5rKEJGUytHB0dodFocO/ePdEsbWdnJyZPnjxsY+Ua2iFkYWEBHx8fg0XR1dXVw1pkGhydTofs7GxUVFQgPT0d7u7uov3u7u5wdHQU1VOj0eDKlSusp5EIDAzEhx9+iJ07dwo/crkcc+bMwc6dO+Hh4cEaGrnJkycLay/1mpqa4ObmBoDfQ1Pw4MED4fZcehKJRJixYw1Nx2Bq5ePjA3Nzc1GftrY2NDQ0wM/Pb9jGyhnaIRYdHY3du3fDx8cHfn5+KCkpQUtLCxYtWjTSQ6PHZGdno7S0FBs3boSNjY0ws25rawsrKyuYmZnhxRdfxLFjxzBu3Dh4enri2LFjsLa2FtaG0ciysbER1jzrWVtbw97eXmhnDY1bVFQU0tLSUFhYiNmzZ+P69ev47rvv8PrrrwMAv4cmICQkBIWFhXB1dYW3tzfq6+tRXFyM5557DgBraGzUajVu374tbDc3N6O+vh52dnZwdXX9v7WytbXF/PnzkZubC3t7e9jZ2SE3NxcymczgwtyhZKbjopUhp3+wQltbG6RSKVatWgV/f/+RHhY9Ji4urt/2xMREYd2X/gbTJSUluH//Pnx9fZGQkGAQosh4vPPOO5g4caLBgxVYQ+NVVVWFvLw83L59G+7u7oiKisLChQuF/ayhcevp6UFBQQEqKyvR0dEBZ2dnhIeHIzY2FhYWf8yjsYbG4/Lly8jIyDBoj4iIQFJS0qBq1dvbiwMHDqC0tFT0YAVXV9dhOw8GWiIiIiIyaVxDS0REREQmjYGWiIiIiEwaAy0RERERmTQGWiIiIiIyaQy0RERERGTSGGiJiIiIyKQx0BIRERGRSeOTwojoX+306dPYs2fPgPu3bt2KadOmDeOIxJqbm5GcnIyVK1diyZIlIzaOf9K/8ZyIyLgx0BLRqJCYmIjx48cbtHt7e4/AaIiI6J/EQEtEo4JUKoVcLh/pYdA/SKPRwMzMDObm5iM9FCIaYQy0RET/ExcXh8jISMhkMhQXF+POnTvw8PBAbGwswsPDRX0bGhqQn5+Pq1evore3F+PHj0dUVBTmzZsn6nf//n0cPXoUlZWVuHv3LmxtbSGXy6FUKuHl5SXqW1xcjG+++QadnZ2QyWRYtWoV/Pz8/nTM+iUV6enpKC8vx48//gidTgd/f3/Ex8fD2dlZdH6xsbGIi4sTHSMpKQn+/v5ISkoyOGZpaSkqKyvR19eHZ555BmvXroVarcbevXtRXV0NKysrzJkzBytWrICFhfhXik6nQ2FhIU6dOoXOzk5IpVK8+uqrCAwMFPW7desWDh06hEuXLqG7uxseHh6IjIzE4sWLhT76580nJyejvr4eZWVlaG9vx65duww+RyIafRhoiWhU0Gq16OvrE7WZmZlBIhFfG3vu3DlcvnwZcXFxsLa2xsmTJ/HJJ5/A3Nwcs2bNAgA0NTUhLS0NDg4OWLNmDezs7HDmzBns2bMHHR0diImJAQD09PQgPT0dzc3NiImJwdNPPw21Wo2rV6+ira1NFMS+/fZbeHl5YfXq1QCAgoICZGVl4dNPP4Wtre3/Pb/PP/8cQUFBSElJQWtrK3Jzc7F7925s3br1iT+zzz77DDNnzsT69etx48YNHDx4EH19fWhqakJYWBgWLlyIS5cuoaioCM7OzoiOjha9XqVSwc3NDatXr4ZOp0NRURG2b9+OjIwMIajfvHkTqampcHV1hVKphKOjIy5evIh9+/ahq6sLy5YtEx0zLy8Pfn5+eO211yCRSDB27NgnPj8i+vdgoCWiUWHLli0GbRKJBPn5+aK2rq4uZGVlwdHREQAQHByMt99+G3l5eUKgPXToEDQaDbZu3QpXV1ehX3d3N44cOYJFixbB1tYWJ06cQGNjI1JTU6FQKIT3CAsLMxiLjY0NNm3aJARsJycnbN68GRcuXDCYHe7P9OnTER8fL2zfu3cPBw4cQHt7u3Auf1VwcDCUSiUAQKFQoLa2FmVlZVAqlUJ4VSgU+Pnnn3HmzBmDQKvVapGamgorKythjElJSSgoKEBaWhoAYP/+/bCxsUFmZqYQ3BUKBTQaDY4fP44XXngBdnZ2wjE9PDzw1ltvPdH5ENG/FwMtEY0KycnJBv81bWZmZtAvICBAFAAlEgmeffZZHDlyBK2trXBxccHly5cREBAghFm9iIgIXLhwAbW1tZgxYwYuXryIcePGicLsQIKDg0WzxRMmTAAA3LlzZ1DnFxoaKtqWyWTC65800IaEhIi2vby88NNPPyE4ONigvbq62uD1YWFhQpgF/gjtISEhKCsrg1arhUajQU1NDRYtWgRra2vRDHpQUBBUKhV++eUXBAUFiY5JRPQ4BloiGhW8vLwGdVFYf+FP39bV1QUXFxd0dXXBycnJoJ9+vWpXVxcAoLOz0yD0DuTRWUgAsLS0BAD09vYO6vX29vZ/6/WDGZN+jWx/7f29z0CfpUajgVqthlqtRl9fH1QqFVQqVb9j0H+Wev197kREDLRERI9ob28fsE0fGu3t7dHW1mbQ7+7du6J+Dg4OaG1tHZqBPgFLS0toNBqD9sdD4z9loM/SwsICTz31FMzNzSGRSDB37lxERkb2ewx3d3fRdn+z6kREfFIYEdEjampqREFMq9WivLwcHh4ecHFxAfDHsoSamhohwOr98MMPsLa2Fi54mjFjBm7duoWampphG/+fcXNzw2+//SZqq6mpgVqtHpL3q6ioEM3c9vT0oKqqClOnToVEIoG1tTWmTZuGGzduYMKECZDL5QY/j888ExH1hzO0RDQqNDY2GtzlAAA8PT3h4OAgbNvb2yMzMxOvvPKKcJeD33//HevXrxf6LFu2DOfPn0dGRgZiY2OFuxycP38eK1euFC5uioqKQnl5OXbu3ImXXnoJvr6+6O3txZUrVxAcHIyAgIAhP+9HzZ07FwUFBSgoKIC/vz9u3rwJlUo1qLsoPAmJRIJt27YhOjoaWq0WRUVF6OnpEd25YM2aNUhLS0N6ejqef/55uLm5oaenB7dv30ZVVdXfuksDEY0eDLRENCoM9PjbdevWYcGCBcJ2aGgopFIp8vPz0dLSAk9PT6SkpGD27NlCn/Hjx+Pdd9/FwYMHkZ2djd7eXnh5eSExMVF0H1r91fuHDx9GSUkJDh8+DDs7O8jlcixcuHDIznUgS5YsQXd3N06fPo2vvvoKvr6+2LBhAz744IMheb/Fixfj4cOH2LdvHzo6OiCVSrFp0yZMmTJF6OPt7Y0dO3bg6NGjyM/PR0dHB8aMGYNx48aJLgYjIvozZjqdTjfSgyAiMgb6ByskJCSM9FCIiOgv4BpaIiIiIjJpDLREREREZNK45ICIiIiITBpnaImIiIjIpDHQEhEREZFJY6AlIiIiIpPGQEtEREREJo2BloiIiIhMGgMtEREREZk0BloiIiIiMmkMtERERERk0hhoiYiIiMik/RefzmGphDy1qgAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -155,9 +143,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAEJCAYAAABi2tVNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXSU5dn48e8ze/ZlspFAWBLCDrIrsggEUECWvljaX62nVVtrN6q1r2Cx1h7bUmvVYrWv9aXU81ZPLValKFJAQZbIvhsCWSAkgSRkT2afeZ7fHyMjMQlMyB6uzzk5JDPPcs+dIdfc66VomqYhhBBCiB5N19UFEEIIIUTbSUAXQgghegEJ6EIIIUQvIAFdCCGE6AUkoAshhBC9gAR0IYQQohcwdHUB2urixYvtdq24uDgqKira7Xo3K6nHtpM6bDupw7aTOmy7jqjD5OTkZh+XFroQQgjRC0hAF0IIIXoBCehCCCFELyABXQghhOgFJKALIYQQvYAEdCGEEKIXkIAuhBBC9AI9fh26EEII0RE8bg1V0zCbr9/21TQNl1Ojod6Hx63hdml4PBqF+kr6pWnodEqHl1cCuhBCiB7B69XQ60FR2h4cnQ6V6kovbpeGTq+g14NOpwQer6n00VCvAhAWriMmTk9snIHQcB0+L3g9Gl6vhsOuUlfjo7bah8upNbmPonPSJzUSk1kCuhBCiJuQy6VSU+kPlP4vLw67ht4A4RF6IqJ0hEfo0TRwOVXcLg2XS8Pr0fD5NFQf+HwaBoOCJVSHJUQhJESHw6FSXeHDblNbvLfJrBBj1ZPS34ROB9WVPsoveSk+72lyrKJARKSOhCQjUTF6wqN0mEw6jCYFk0khMSmOysrKjqyqAAnoQgghOoTToVJT5aOmyktNlQ9bvYolVCEsXE9YhI7QMB2KApoGmupvgddW+aiq8AZaxwBhETpirAZSB+lxu1Tq61Qqyr4IsEajgsmiYDIrmC0KOr0OvR70egWPR8NpV6m67MPp1DCZFGLiDAxINxETZyAkVIfq01BV/wcAk1khJFTXpBdA0zTsDSoOh4rBoGAwKhgMCkaTgl7fcuu7PXoTgiUBXQghRNC8Xu2qLmaViCg9kdF6wsL9wbmmykdpiYeyix7qa/1BWVEgIkpPtFWP065SfsmD61zT7mkAo8nfOu47wERsnIGoGD0GY/NB0evR0OlAd42AejVN0z4vT+uDrKIohEXoCYvQt/rcziIBXQghehGXS6XkvJui8x48Hg2LRcES4u9yNlt0mC3+f01mBUXxT/xyfz6JS1U19Hrl8y+oraynvNyJ067isKvY6tVGLeer6XSgNyh43BqKArHxBoaP8beCI6P1GAyNg6jHo+H4vNtb0fmDvk6nEBKqBB1wWwr0LenM1nJXkIAuhBA9mKpq2G3+iVkXL3govehBUyE6Vk9snB6XQ6O+1sflMhVv0yHg67AD/lZzSIhCWKSO5FQTUTF6omL0mMwKDXUqdbU+6mt8uF0acUkGEvoYMJmuPTPcaFQwRnff1m5PJAFdCCG6KbdbpbrSR3WFfwza59PQKQqKzt8idtj8LWb180azyawwMN1Mv4EmIpsJlj6vf+KYy6kGZmRfmbxlMivodOD7fDKZ6oOY2BicztprtoSvBHfR9SSgCyFEF3PYVaoqvNgaVBw2f/e2vUHF1tB4DNpoUvD5NDQvqCpYQnXE9zESEemf9R0Zpb/meLLeoBBqUAgNa7n1bLzq++gYExUVvbubujeRgC6EEB3A69Ww1avYGvyzux12Fb1B8Xc1m5TABLLKcm+jJVRXZllHRuvpO9BErFVPdKyh1ePF4uYjAV0IIW6QpvkndtXXqTTU+TcisTWo2Op9OB2NZ3EbTQqqT8Pna/yYNd7AwAwz1ng94RF69AYJ3OLGSEAXQoireNwa1VVe6mt9OO0aToeK06HidmvoFFB0/ta1qoKt3tcoQJvMCmHhOuISDYRF6AkP1xEWoSMs/IulV6rPvyWoz0erZnQLcT0S0IUQvZ6m+YOopn6+iYnmX8Pscqo4nRouh39yWXWlN7B2GkCnh5DPl3yFR+rRtC+uoShgTTATEakjIlJPeKQOUxB7fuv0CuYg100L0RoS0IUQvZbXq1F0zk3+GVdgzXNLjEaFaKue5H4mYqz+mdv+sW4JvqJnkIAuhOiRAjuWVfl3LdPQCA3TExqmIyRMR/G5Kj47XofbpRFj1TMw3YJOr3y+gYl/xrfZomCx6DBbdBiMvX/jEdG7SUAXQvQIXq9G1WUvl8u8VJR5qKtV4fN5Z1fWUDsdjXdOSUw2kDbUQmycXoK16PUkoAshui27TaWsxL/7WdVlL6rqb13HxBnIGG4kKsa/17clxN817vP501nabSrJKVa8vrqufglCdJpOC+jHjh1j/fr1qKrK7NmzWbJkSaPnP/vsM5599lkSEhIAmDx5MsuWLeus4gkhuoGrd0Yru+ihrsY/7h0eqWNAupn4JAOx8YYm+4JfodcrhEf4l3/5N0XpzNIL0bU6JaCrqsq6detYvXo1VquVVatWMWHCBPr27dvouGHDhrFy5crOKJIQohtwu9TPu9C9/pSZdZ9PXFMg1qpn+BgLiSlGwrtxhishuotOCeh5eXkkJSWRmJgIwJQpUzh48GCTgC6E6HlU1Z/84+q11lfYGnwUn3dTdtGLTucf6zaZ/bmqqyv9k9nAP8M8Jk5PSn/ZGU2IG9UpAb2qqgqr1Rr42Wq1kpub2+S4s2fP8rOf/YyYmBi++c1v0q9fvybHbN++ne3btwOwZs0a4uLi2q2cBoOhXa93s5J6bLueUIder0peTj2njlZTX+cFIMZqIj7RQkSUkaJzNspLnQAk9rGg1ys4HT7qa324XSqxcWbGTooiuV8ocQlmdLr2DeA9oQ67O6nDtuvMOuyUgH4lqfzVvjzjdODAgbzyyitYLBaOHDnC73//e9auXdvkvMzMTDIzMwM/V7TjIFlcXFy7Xu9mJfXYdt25Dh12lZILbgrOuHA5NaJj9YyZGILDrlFd6eVcbj0ej0Z4pI5hoy2k9DcREtrShisq0EBVVUO7l7M712FPIXXYdh1Rh8nJyc0+3ikB3Wq1UllZGfi5srKSmJiYRseEhoYGvh83bhzr1q2jrq6OyMjIziiiEOIqXq+Gz6t9/q8/iF8u83K51BMY545LNDDuVjPWBEOjD+iapuF2aZjMsimL6N18Ph9ut5uQkJCuLgrQSQE9LS2NS5cuUV5eTmxsLFlZWfz4xz9udExNTQ1RUVEoikJeXh6qqhIREdEZxRPipuX1alRe9lJT6f08M5j/y+Nu2qum04M13kDqIBMJSUYiopqfqKYo/g1bhOjNLl26xLZt26ipqWHAgAHccsst9OvXr0s/xHZKQNfr9dx///38+te/RlVVZs6cSb9+/di6dSsAc+fOZd++fWzduhW9Xo/JZOInP/mJfLoXop1caTX7E434d1i7XOalusK/thsgJExHWLiO5H5GQsN0GAwKeoOC3gAmk0KM1SCZwES7KS0tJT8/n6SkJFJTUzEajdc/qRW8Xi/l5eVERETcUOPQbrdz9OhRbDYbgwYNon///hiNRrxeL/v37+fIkSOEh4czduxYcnJyeO+994iJiWHYsGFERUURHh5OeHh4k97ojqRozQ1w9yAXL15st2vJeFH7kHpsu/aoQ9WncanEQ2Gei6pKH9qXtjKPjNYRn2gkPslATFzLa7t7KnkfNuZ2u3G5XJjNZoxGY1ANppbqUNM06urqcDqdJCQkBN340jSNwsJCDh8+TElJSeBxg8FA//79SUtLIyUlhfDw8FY36DRNo7S0lMLCQkpKSigtLcX3eSq8/v37M2LECAYOHIher8fhcFBaWkpZWRk6nY7ExEQSExOxWCzY7XYOHz7MyZMn8fl8mM1mnE4ner2e/v37U1tbS2VlJcOHD2fatGmYzWa8Xi+5ubmcOHGCsrKyRuVSFIUHH3ywXbvlu3QMXQjReewNPgoL3FwocON2aYSG6Rg02ExIqA5LqH/v8tBw//7lovdzOp0cO3aMY8eO4Xa7AdDpdFgsFhISEpg4cSJ9+vS55jV8Ph81NTWUlpZSUlJCSUkJ9fX1AMTHxzN+/HjS09PR6Zp/T9XU1FBQUMDp06eprKwkPDycadOmMWzYMC5fvkxeXh4FBQXk5+cDEBYWFgiy8fHxxMXFERYW1myQ93q9nDlzhuPHj1NRUYGiKMTHxzN69GiSk5O5fPky2dnZbN68mZCQEIxGI3V1/h0EFUVpNGk7OjqahoYGfD4fQ4YMYdKkSURGRnLx4kXy8/PJy8tDURTuvvtuBg4cGDjPYDAwbNgwhg0bhsPhoKGhAZvNRkNDA6qqYrFYWvEbu3HSQr+KfKJvH1KPbdfaOtRUjbJLXgrzXZRf8oLi38d8QJp/d7WbcfiqN70Pq6qqOHr0KIMHDyY1NTWoc74cyNPS0ujfvz8ulwun04nD4aCgoACn00n//v2ZNGkSSUlJ2Gw2KioqqKyspKGhgZKSEqqqqlA/H5uxWCz07duXlJQUdDodR48epaamhsjISEaMGIHZbA6UwW63U1BQEPg9JCQkMGbMGDIyMtDrG8/B0DSN8vJySktLA63nmpqawPMWiwWr1YrFYsFgMGAwGNA0LfAarFYrY8aMYfDgwY3KAP7NzS5cuMDp06dRVTWwL0pCQkKj+5aVlWGxWJgwYQLR0dFN6vRKuGzN/6fOnOUuAf0qvekPQFeSemy7a9WhqmrYG76YwGZv8HGpxIPTrmG2KPRPM5E6yHyNpWI3h97wPqyvr2f//v2cPn0aTdPQ6XQsXLiQAQMGXPO8vLw8Pv74Y5xOJ2lpaUyePLnZtdBut5uTJ09y+PBhnE4nJpMp0IoHiIyMJCYmhri4OKxWK/Hx8cTGxjYKaKqqUlBQwOHDh5t0N4M/+KSlpZGWltbqVUtOp5PKysrAB4zKykpcLhderxefz4fP5yMlJYUxY8aQkpLSLT+4SkBvBQno3Y/UY9t9uQ41TaOqwr/r2qUiDx7PF/9t9QaIsRron2YiKcXY7hu09FTd7X3o8/koLy+nuLiYkpISysvLCQ8PDwTL2NhYVFUNtKBra2vJzs5G0zRGjx7NqFGj2LJlC5WVlS0GdafTySeffMKZM2dISEhg9uzZxMfHX7dsbrebU6dOUVNTg9VqxWq1EhcXR9++fYOuQ03TcDqdjbqw9Xp9k9byzabXrUMXQrSex61RVemlstzLpSIPdpuKXg9JfY3EJxoJi/DPSpf13l3P7XaTn5+P3W7H6XTicrlwOByB4Hyli/vKJC2r1cqgQYOw2WwUFRWRk5PT5Jo6nY6MjAxuvfXWQMt26dKlvPvuu7z//vuBoK6qKnV1dVy6dImsrCwcDgeTJ09mwoQJTbq1W2IymRg3blyb6kBRlG6zHvtmJQFdiC5UVeEl56QTj1vDaASDUcFgUHDYHVRVukADRQFrgoGMERb69DXKHudB0DSt2R0qb4Tdbqe4uBi3282QIUOaLK+qrq7m/fffp7q6GvhiwpnZbCYkJISIiAji4+MJCQkhKSmJlJSUJoHP6XRSXV2NXq8PnGsymZp8ULNYLI2Cenx8PJWVlXi9/q13rVYrd999dyBrpbi5SEAXogu4nCqnTzgpOufGEqIQFaPH49Fw2DW8HpWoaAMZw81Y4w1EW3vfkrKOpGka77zzDg0NDYwfP55hw4Zdt6WqaRp2u52GhobAV1VVFcXFxYFADXDgwAFuv/12MjIyUBSF/Pz8wP4ZixYtIjk5OeglYVezWCzXnWl+9bFLly5l+/btuN1uRo4c2WiMu6WZ5qL3kzH0q3S3Mbee6mavR7dLxd9g8v/X0jTwejQ8bg23W8NWr5Kf48Lr1UgbYmbwcEuTVvfNXofXc+rUKWJiYkhJSWny3OnTp9m2bRuxsbFUVVURERHBhAkTGDp0KAbDFzP+XS4XFy5coLCwkMLCQmw2W6PrGI1GkpOTAzO6vV4vu3fv5vLly4FZ0sePHycxMZH58+f3yp0t5X3YdjKGLkQP5PVo5Jx0cC7Xfd1j4xIMjBwfQkTkzZfn2+12U1JSQnV1NTU1NdTU1FBXV0d0dHQgeCYkJLTYqi4sLOTjjz/GZDLx9a9/naioqEbX3rt3L4mJiTz88MMcPXqUffv2sWPHDnbs2AEQWPLkcrnQNA2z2UxqairJyclEREQEdvgKCQlp0tJevnw5OTk5ZGVlUVpaysiRI5k+fToGg/wpFV1P3oVCtIPySx5OHLLjsGv0TzMRHesPRlfigcGoYDTpMJkUTGb/Xuc9eSJbbW1tYIIX+CdVhYeHt3h8VVUV586do7CwkIsXLzZa0xwVFUVCQgJVVVVkZWUB/tbx1KlTGTVqVKPruN1uPv74Y6Kjo7Hb7WzZsoVly5YFgv/Bgwex2+0sXLgQnU5H//79SU1NpaioiLKyMrxeb+DLYrHQv39/kpKSgu6m1ul0DB8+nPT0dKqqqkhKSmpVvQnRkSSgC9FKLpeKw6bicmo47CqVl71cvOAhPELH7bPCiI3vvf+tNE1j165dHD9+vMlzs2bNYuTIkU0ez8nJCeRtsFqtjB07ltTUVOLj45vsoGW32ykpKeHUqVPs2LEDs9lMRkZG4PmsrCzq6+u55557sNlsbN68maysLKZNm0ZNTQ1Hjx5l2LBhjQKtoiikpqYGvSFLMEwmkwRz0e303r88QrQjTdMov+Sl4KyLijJvo+d0Ohg83D8Wrtd3/1a3qqo4HA5CQkJaNYFK0zQ++eQTTpw4wciRI+nbt2/guezsbHbs2EFoaCiDBg0KPH7+/Hm2b99O3759mTNnznXHmUNDQxk8eDADBw7kvffeY+vWrVgsFlJTUykpKeHEiRPccsstgQlko0aN4ujRo/Tt25eTJ0+i1+uZMmVKK2tEiN5BAroQ12C3qZSWeDiX68LeoGIJUcgYYSEyWoclxP9ltihdupmL1+tFVVVMJlNQx2/fvp2cnBwURSEsLIywsLDAtpktbUJydTAfO3YsU6dObTRkMGDAAN59910+/PBDli5dSnJyMqWlpWzevJnY2FgWLFjQqg1GDAYDd999N2+//TYffPABixcv5qOPPiIyMpJbb701cNy0adO4dOkSW7ZswePxMHXqVMLCwoK+jxC9iQR0Ia7i9WiUXfJQUealotyLvcE/1htj1TN0VCh9+navndh8Ph9vv/025eXlREZGEhcXR1xcHIMGDWp2LfKVTUwyMjKIiooKLNHKzc0lOzub1NRUxo8fT9++fQOJKzweD1lZWS0Gc/B3QS9atIgNGzawadMmZs+ezccff0xoaCiLFy++od3CzGYzixcvZsOGDfzrX/9C0zSWLFnS6IOLwWDgzjvv5B//+AfR0dGMGTOm9ZUoRC8hy9auIks02kdPq0dN06ip8nGhwE3JBTc+LxiMYI03EJdoJD7RQERU585GD7YOP/30Uw4ePMioUaNwOBxUVlZSU1ODXq/nnnvuadTi9vl8vPnmm/h8Pu69995GM7NdLhcnTpzg+PHj2O12wsPDUVUVp9MZmMDWUjC/Wl1dHRs2bMBmsxESEsI999zTbJKL1qiqquKdd94hLS2NmTNnNntMZWUlJpOpUZd+T3sfdkdSh20ny9aE6GAet0Z1pZeqCi9lFz3U1fi3VU1ONZE60ESMVY/SjVrizSktLeXQoUMMGzasUaCz2Wy89dZbvP/++yxfvpzQ0FAAjh49SnV1NYsWLWqyzMpsNjNx4kTGjh3L6dOnKS4uxmw2YzabsVgsREdHM2jQoOvOzI+MjGTx4sXs2bOHKVOmtDmYA8TGxvLtb3/7muP9Vqu1zfcRoqeTgC5uGl6vRmGei+Lzbupq/a1ORYGoGD2jxoeQ0t+EsYdsq+r1etm2bRthYWFMnz690XNhYWEsXLgwMP68dOlS7HY7Bw4cIC0t7ZqZugwGA6NGjWqyXKw14uLiWLJkyQ2f35xg9yQX4mYmAV30ej6vxvl8F3mnXbhdGrHxeoaMtBATpycm1tAj90bPysqiurqapUuXNjs+nZCQQGZmJlu2bGHnzp04nU6AJsFfCNF7SEAXvZbXo1FY4CI/x4XLqRGXaGDICEuPXydeVFTEsWPHGD16NP369WvxuIyMDKqqqjhw4AAAt99+e6/cnlQI4dez/7IJ0Qy3S+VcrotzuW48bg1rgoHxt1mwJrT/2/1KUo/Q0NAO3/nN5XJx5MgRjh49SnR0NLfffvt1z5k8eTK1tbXU1tZyyy23dGj5hBBdSwK66DVsDT7OnXVx4Zx/pnpisoH0YRZi49r3bV5RUUFRURElJSWUlJTgcrkYMGAAM2bMaLSv+BV2u73ZfcFb4nA4qKqqwmazBZKJnDp1ikOHDuF0OsnIyGDKlClN0ng2R1EU5s2bh6ZpPXqrWSHE9UlAFz2apmlUXfZRcNZFaYkHRQcp/YykDbUQGd3+E6lOnDjBzp07AYiKiiItLY2wsDCOHTvG3//+dyZMmMD48eNxuVycPXuWM2fOUF5ezsiRI5k5c2aLQdXlcpGfn8+ZM2coKipq9pjU1FSmTJlyQ7muJZgL0ftJQBc9Sl2Nj6oKL/W1PhrqVOrrfLicGkaTwuDhZgakm7GEdEw+6JKSEnbt2sWAAQOYOXNmo/HoUaNGsXv3bvbv38+JEydwOp1omkZ8fDzp6emcOnUKg8HAtGnTGgVXm83G3r17yc3NxefzERkZyaRJk0hJSaGmpiaQSKRPnz6NtloVQogvk4Auuj2PW6XkgocLBW5qq/0ZvgwGCI/Uk5BkJDZeT0qqCb2h41qh9fX1bN68maioKObNm9dkZnl4eDh33XUXI0aM4NixY8THxzNkyBBiY2PRNI3du3dz7NixwF7jiqKQm5vLjh078Hg8jBgxgiFDhpCUlISiKLKhhxCi1SSgi25J0zSqKnwU5ru4VOxB9UFklI4RY0NISjESEtp56Ue9Xi+bN2/G6/Ved0/y5rJ6KYrCtGnT8Pl8HD58GPB/QDh79iyJiYnMmTOH2NjYDn0NQojeTwK66FbcLpXi824KC9w01KkYjNBvgInUQSaiYvTtHsTLyso4efIk8fHxJCYmEhcX12gXNZ/Px44dOygrK2PBggU3HHgVReGOO+7A6/Vy+PBhdDodt912G+PHj29VxjMhhGiJBHTRLWiqRmGBm9MnHHg9/mQoYyaGkJxqwtBBXekNDQ1s2rQJp9NJdnY2ADqdjujoaNxuNy6XC4/HA8CkSZNIS0tr0/0URWH27NkkJCSQnJzcYmYzIYS4EZ0W0I8dO8b69etRVZXZs2e3uDVkXl4eP//5z3nkkUcapUkUvVdttZcThxzUVPmISzQwfIyFqJiOfWte6Ub3eDx8/etfx2QyUVZWRmlpKTU1NYE9zC0WC5GRkWRkZLTLfXU6nWQEE0J0iE4J6Kqqsm7dOlavXo3VamXVqlVMmDChyaxdVVV54403ZAOMm4TDrpKf4+RcnhuTSWHs5FBS+hvbrVu9pqaG/fv3U19fz8SJE+nfvz/wRW7v0tJS5s+fH0jsERERQXp6ervcWwghOlunBPS8vDySkpJITEwEYMqUKRw8eLBJQP/www+ZPHky+fn5nVEs0UXqa33k5TgpKfR3Z/cfZGLoaAsmU/uMJdtsNg4cOMBnn32GTqcjJCSEjRs3MmDAAKZNm0ZxcTGfffYZEyZMkAAuhOg1OiWgV1VVNUpvaLVayc3NbXLMgQMHeOqpp/jzn//c4rW2b9/O9u3bAVizZg1xcXHtVk6DwdCu17tZtVSPDXUe9u+t4EKBDYNBYeioKEaOiSY88vo7ngXr2LFjbNq0CZ/Px4QJE5gxYwYhISHs27ePTz75hDfeeAOAwYMHs3Dhwm47IU3ei20nddh2Uodt15l12CkBXdO0Jo99uVv1b3/7G9/4xjeu+wc2MzOTzMzMwM/tuVZX1v62jy/Xo6ZqnMtzk3PSAUDGCDMDBpsxmxWc7lqc7VTl1dXVbNy4kcTERDIzM4mOjsblcuFyuRg6dCipqans27eP6upqZs2aRVVVVfvcuAPIe7HtpA7bTuqw7TqiDpOTk5t9vFMCutVqpbKyMvBzZWUlMTExjY7Jz8/nj3/8IwB1dXUcPXoUnU7HpEmTOqOIooPU1fg4ftBOTZWPhD4GRo0PJTSs/VvFqqqybds2DAYDd911F2FhYU2OCQ0NZdasWe1+byGE6A46JaCnpaVx6dIlysvLiY2NJSsrix//+MeNjnn55ZcbfT9+/HgJ5j1YTZWX/BwXF4s9mEwK424NJTm1/Sa8fdmxY8coLS1l7ty5zQZzIYTo7ToloOv1eu6//35+/etfo6oqM2fOpF+/fmzduhWAuXPndkYxRCeoKPdyOKuEi0UODEZIH2ombYgZk7n1rXKv18vOnTsxm81MmTIFvb75ZCvV1dV8+umnDBw4kCFDhrT1JQghRI/UaevQx40bx7hx4xo91lIg/8EPftAZRRLtyOfTOH3cwblcNyEheoaNttA/zYzRdGMtcrfbzfvvv09xcTHgH6a56667mmy7enVX+6xZsySrmBDipiU7xYk2szf4OPypf5x8YIaZqTNTqKm58QlnDoeDf//735SXlzN37tzA9qsbNmxg0aJFREZGomkaly9f5sSJE9LVLoQQSEAXbXSp2M3xAw40NCbcHkqfviYMhhuf9FZfX897771HXV0dCxYsYNCgQQBERkbywQcf8M9//pP09HTOnTtHfX09iqIwcuRI6WoXQtz0JKCLG6JpGrmnXZw56SQqRs/4KaGEhTc/xn0tXq+X0tJSSkpKKC4uprS0FJ1Ox+LFixttPNSvXz/uueceNm3axKlTp0hNTWXy5MkMHDiQkJCQ9nxpQgjRI0lAF62mqhonDzu4UOAmpb+RMRND0eubjl37fD6OHDmCx+MhOjqa6OhoIiMjqampaRTAfT5/jvP4+HhGjx7N8OHDG21EdIXVauW+++7D5/NhNLbfZjRCCNEbSEAXreL1aBzKsnG51Mvg4WaGjLQ0OxFN0zQ++ugjcnJyUBSl2c2FrgTwlJQUkpOTsVgs172/Tqfrtru7CSFEV5KALoJWW+3l2AE79bUqY2NXT5oAACAASURBVCaGkDrI3OKxe/fuJScnh1tvvZXx48dTX19PTU0NtbW1REREkJKS0mTGuhCieZqm4XQ6UVW1U1dylJWV4XK5Ou1+vdGN1qGmaeh0OiyW5htNzZGALq7LblM5c9JBcaEHo0lh0rQwEvq03OWdlZXFkSNHGD16NBMnTkRRlECXuxCi9ZxOJ0ajEYOhc/9kGwyGFvd/EMFpSx16vV6cTmfQ84QkoIsWeb0auZ85KTjr/3SZPtRM+jAzxs+zommaRm5uLqqqBnKHV1RU8PHHH5Oens706dNlXbgQ7UBV1U4P5qLrGQyGVrXu5R0imlVd4eXofju2BpW+/Y0MGRXSZA/2wsJCtmzZ0uTcAQMGMHfuXBnrFqKdyAfjm1drfvcS0EUjqqpx9jMnuaddhIQo3DYznLiE5t8mn332GRaLhWXLluF2u3E6nXi9XsaNG0ddXV0nl1wIIW5uEtBFQH2tj6P77dRW++g3wMSIcSEYjc1/OrTb7Zw7d44xY8YQGxvb6DmTydQZxRVCCHEV6RMVaKpG3mknu7bW47CrTLg9lFsmh7YYzAGys7NRVZURI0Z0YkmFEF1h2bJl7Ny5s9Fjr732GqtWraKgoID77ruPKVOmcOedd7Js2TL27dsXOG7Hjh0sWLCA6dOnM2fOHL73ve9RUlLS4r2effZZMjMzmTNnDl//+tcpLS0FwOPxsGLFCmbPns2MGTN46aWXrlnmtWvX3tBrfeyxxzh79uwNndvVpIV+k2uo83HsgJ3qSh9JfY2MHh+C2XLtz3mapvHZZ5+RnJzcpHUuhOhY6j9eQys6167XVPoNRPe177T4/OLFi9m4cSN33HFH4LGNGzfy5JNPct999/GLX/wikGwrJyeH48ePc+utt5KTk8Pq1av529/+xuDBgwHYunUrRUVFpKSkNHuvhx9+mP/+7/8GYN26dbzwwgv87ne/4/3338ftdvPRRx/hcDi44447WLJkCf369Wv2Oi+99FKTNN3g//t1ZUlYc5577rkW66G7C6qFXlhY2NHlEF3gYpGbT7bW01CvMu7WUCZMCb1uMAcoLi6mtrZWWudC3CQWLFjA9u3bAzOui4qKKCsro6CggPHjxzfKnDl06FCWL18OwMsvv8yPf/zjQDAHf5bNW2+9tcV7RUREBL632+2BSWGKomC32/F6vTgcDoxGI+Hh4c1e4ze/+Q1Op5M5c+bwwx/+kKKiImbMmMGqVauYN28eFy9eZOXKldx1113MnDmzURBftmwZx48fB2Dw4MGsWbOGzMxMFi5cyOXLl1ss99atW1m4cCFz585l+fLlgWNtNhuPPPIIs2fPJjMzkw8++ADw91zMmzePzMxMvvrVr7Z43dYIqoX+q1/9itjYWKZNm8a0adOIiYlpl5uLrnOp2M2RT+1Ex+qZcHsYlhAdPp+P4uJidDodISEhmM1mQkJCmiyX+eyzzzCbzY3+kwohOse1WtIdJTY2lltuuYWdO3cyb948Nm7cyKJFizhz5gyjRo1q8byzZ8/yve99r9X3W7NmDW+//TaRkZFs2LAB8H+o+M9//sPYsWNxOBz88pe/bDEWPfHEE6xfv55t27YB/g8g+fn5PP/88/z2t78F4PHHHycmJgafz8fy5cvJzs5m+PDhja5jt9sZN24cK1eu5JlnnuGNN97gJz/5SbP3nDRpEps2bUJRFN58801eeeUVnnrqKZ5//nkiIiL46KOPAKipqaGyspKf/exnvPPOO6SmplJdXd3qOmpOUAH9L3/5C0eOHGH37t1s2LCBIUOGMH36dCZPniy7ffVApSUeDmf5g/mtM8IxGBXcbjcffPABRUVFjY7V6XRMnjyZ8ePHo9PpcDgc5OXlMWrUKFkXK8RNZMmSJWzcuDEQ0J9//nn+9a9/NTrmgQce4Ny5cwwaNIj//d//bfRcVVUVy5cvx+FwcO+9914z0K9cuZKVK1fy0ksvsX79eh577DGOHTuGXq/nyJEj1NbWsnTpUqZNm0b//v2DKn/fvn0ZP3584OdNmzbxxhtv4PP5KCsrIzc3t0lAN5lMzJkzB4BRo0axe/fuFq9/6dIlHn74YcrLy3G73aSmpgKwa9cuXn755cBx0dHRbN26lVtvvTVwTHs1koPqctfr9UycOJFHH32UV199ldtuu41///vffOc73+FPf/oTOTk57VIY0fHKLno4lGUjKkbP5On+YO50OnnvvfcoLi5mxowZLF26lPnz5zNr1iwGDhzIp59+yjvvvEN9fT05OTkyGU6Im9Cdd97Jnj17OHnyJE6nk1GjRjFkyBBOnjwZOObKmHdNTQ0AGRkZnDp1CvC38rdt28a9996LzWYL6p5Lly5l8+bNALz77rvccccdGI1G4uLimDhxYqBrPBihoaGB7y9cuMCrr77KW2+9xfbt25k9ezZOp7PJOQaDIdDlr9fr8Xq9LV7/ySef5Nvf/jYfffQRv/vd7wLDE5qmNbuWvCP2FmjVLHen08mBAwfIysqisrKSKVOmkJSUxEsvvdTk05jofsoveTi010ZklJ5bZ4RhNCnYbDb+9a9/UV5ezvz58xkzZgz9+vUjPT2dkSNHMn/+fObMmcPly5d58803OXLkCImJicTFxXX1yxFCdKKwsDBuu+02Hn30UZYsWQL4W+2HDh1i69atgeMcDkfg++9///usXbuW3NzcZp9vTkFBQeD7rVu3kpaWBkBKSgp79+5F0zTsdjtHjhwhPT29xesYjUY8Hk+zz9XX1xMSEkJkZCSXL19mx44d1yxTMOrq6khKSgIIDBMAzJgxg/Xr1wd+rqmpYfz48Xz66adcuHABoHO73I8cOcKuXbs4evQoQ4cOZdasWTz++OOB9cZ33nknDz/8MA8++GC7FEq0v7JLHg7tsREeeSWY66irq+Odd97B4XCwePHiZmeLKorCsGHD6NOnD1u3bqW0tPSaE1qEEL3XkiVLePDBB/nzn/8MQEhICK+//jpPP/00Tz31FHFxcYSHhwdmlw8bNoynn36aFStW0NDQQExMDCkpKfz0pz9t8R6//e1vyc/PR6fTkZKSwpo1awD41re+xSOPPMKsWbPQNI3ly5c36SK/2je+8Q0yMzMZNWoUjz/+eKPnRowYwciRI5k5cyapqalMnDixrVXDT3/6Ux566CGSkpIYN25cYPjy0Ucf5b//+7+ZNWsWOp2ORx99lPnz5/Pss8/y4IMPoqoqcXFx/OMf/2hzGRStubyWzRR0xowZ15wQ99FHHzF79uw2F6i1Ll682G7XiouLo6Kiot2u111cCeYRn7fMTWYdHo+HDRs2UFdXx5IlSwKfLK/F5/Nx8eJF+vbte83uot5aj51J6rDtelMd2u32Rl3GncVgMFyzm1lcX1vrsLnffXJycvP3CuaCf/jDH657TFcEc3F9ZRf93exXB/MrucorKipYtGhRUMEc/GNILa35FEII0bWCCujPPfccCxYsYNiwYYHHTp8+zebNm6/ZdSK6VtlFNwf3NBAZbQwEc4CjR49y9uxZbrvtNgYMGNC1hRRC3JSeeOIJDh482OixBx98MLCGPVgLFy5skpFs7dq1jeJVe/rjH//I+++/36QMK1as6JD7tUZQAT07O5tHH3200WMZGRn8/ve/75BCibarrvCy7T+fUt1wirTwQZSVj6Rv374UFRWxd+9e0tLSmDBhQlcXUwhxk/rNb37TLtf5cnDtaCtWrOgWwbs5QQV0o9GI0+ls1I/vdDol8X03VV/rY8+OcqobThEdHUVR0QXy8nKJiorC6XQSGxvLnDlzJCWjEEL0IkEtWxszZgx/+ctfsNvtgH+Qft26ddxyyy0dWjjReg67yr5PGqiqO4qiaCxevIgHHniAuXPnEh4ejsFgYMGCBZIRTQghepmgWuj33XcfL730Evfffz/h4eE0NDRwyy238KMf/aijyydawe1S2bezAZu9ilpbPuPGjSMyMhLw7688dOjQLi6hEEKIjhJUQA8PD2fVqlVUV1dTWVlJXFwc0dHRHV020QqapnFknx27TcWjO4bZbJYxciFEu1i2bBk//OEPG2Vbe+211ygoKOA73/kOv/zlL8nLyyMyMpLw8HAee+yxwH4VO3bs4LnnnqO+vh6z2UxaWhpPPvlki9nWnn32WbZu3YqiKMTFxfHCCy+QlJSEx+Phscce49SpU3i9XpYtW9aujcrJkyfz4Ycf9ugMkq3ajDsmJobo6Gg0TUNVVYAWU9B92bFjx1i/fj2qqjJ79uzATkNXHDx4kLfeegtFUdDr9XzrW9+SFmUrnM9zc7nUS2JqJfsOFjF16lQsFktXF0sI0Qv0xPSpN6OgAnpVVRXr1q3j9OnTTfbgfeutt657vqqqrFu3jtWrV2O1Wlm1ahUTJkygb9++gWNGjRrFhAkTUBSFwsJCXnjhBV588cVWvpybU32dj+zjDuKT9OSd209kZCSjR4/u6mIJITrA/x4q41x1033H22JgjIUHJyS2+PyCBQt49tlncblcmM3m66ZPvdIYayl96rW0R/rU119/naKiIlavXg3449TJkyd55plnuP/++7l48SIul4sHHniAe++99zq149fSeTt27GDNmjX4fD5iY2P55z//ic1mY/Xq1Zw4cQJFUXjkkUdYsGBBUPdpi6CzrZnNZn7xi1/w1FNP8fTTT7NhwwbGjh0b1E3y8vJISkoiMdH/hpkyZQoHDx5sFNCvbk26XC6ZgR0k1adxdJ8dcOFUz1BRUcG8efMkE5oQot30tPSpCxcuZNGiRYGAvmnTpsB2tH/4wx+IiYnB4XCwYMEC5s+fH1Q3e3PnaZrWbBrUF198MZAy1WAwdNqOhUH91T979iyvvPIKFosFRVEYMGAADz/8MKtXryYzM/O651dVVWG1WgM/W63WRpv1X3HgwAHefPNNamtrWbVqVStexs3r0P5i8s6fwO4+j3rRR3p6OhkZGV1dLCFEB7lWS7oj9aT0qVarldTUVA4fPszAgQPJz88P7Nf+17/+lQ8//BDwbx1+7ty5oAJ6c+dVVlY2mwZ19+7dvPLKK4FzO2vOWVABXafTBdach4WFUVdXR0hICFVVVUHdpLnt4ptrgU+aNIlJkyaRnZ3NW2+9xZNPPtnkmO3bt7N9+3bA/ymuPbN+GQyGHpVFbON7Wzh8JAudzsD48eOYPHkyCQkJXV2sHleP3ZHUYdv1pjosKyvrsl63K/dduHAhTz/9NNnZ2bhcLsaOHUt2djb79u0LHPP6669z7Ngxnn76aQwGA0OHDiU7O5sxY8aQkJDAjh07eOWVV7DZbEG9nmXLlvGNb3yDlStXsnHjRmbPnk1ISAghISFMmjSJU6dOBbKxfdmSJUv44IMPSE9PZ/78+RiNRvbu3cuePXvYvHkzoaGhLF26FK/XG0iTqtfrmy1XS+fpdDp0Ol2z5xiNxsDjbfndmc3moN/HQd0lPT2do0ePMmnSJMaMGcMLL7yAyWRqsSK/zGq1UllZGfi5srLymgndhw8fzssvv0xdXV1g2dUVmZmZjXoF2rMroyclc6i4XM3hI58SGTaAZcvnEh7uH7LoDuXvSfXYXUkdtl1vqkOXy9UlG3ldnVjEbDZz2223sWLFChYvXozX62XRokWsXbuWzZs3B8bGGxoa0DQNr9fL9773PR588EFuueWWwDi6zWZDVdUWE5YUFBQwaNAgAD788EPS0tLwer306dOHXbt2sWTJEhwOB4cPH+aBBx5o8Trz5s3jxRdfJCUlhZ///Od4vV5qamqIjIzEZDKRk5PD4cOH8fl8eL1eNE0LfP9lLZ03duxYVq5cSUFBQaDLPSYmhunTp/Paa6/xq1/9KtDlfqOtdJfL1eR93FJylqCmqP/oRz8KpKn71re+xciRI+nXr19gTOJ60tLSuHTpEuXl5Xi9XrKysposqSotLQ205AsKCvB6vY0mR4jGtm3dg6Loycy8IxDMhRCiIy1ZsoTs7GwWL14MfJE+9f/+7/+47bbbuPvuu/njH//YbPrU6dOns3jxYnJzc5uscrrab3/7W2bNmkVmZiaffPIJv/rVrwB/7LHZbMyaNYv58+dfN31qdHQ0gwcPpqSkJDDf64477sDn85GZmcmzzz7LuHHjgnrdLZ1ntVoDaVAzMzN5+OGHAf/2sLW1tcyaNYuZM2eSlZUV1H3a6rrpU1VV5ZVXXuGhhx7CaDTe8I2OHDnC66+/jqqqzJw5k6985Sts3boV8M96fO+999i1axd6vR6TycQ3v/nNoJat3YzpU7NPFbH943cZ1H8cCxdP7eriNNFT6rE7kzpsu95Uh5I+tefqVulTdTpdYOp9W4wbN67Jp6Grly8sWbLkmp/ahJ/L5WPv3j0Y9CHMnjuxq4sjhBCimwhqDH3BggX885//5Ktf/aosh+pin3yUg8N1mVsnzyAkxNzVxRFCiBvSHdOnXpmJ/2VvvfVWj9hBLqjovGXLFmpqavjggw+aTFL785//3CEFE00VFzrIO3eAsNBoJkxsee2nEEJ0d90xfWpsbCzbtm1rt+t1tqACuiRh6Xr2Bh+7PzmO11fPvJkLg95yVwghxM0hqIB+rZmEouOpPo0De2upqjtBUlIygwYN7OoiCSGE6GaCCujX2q+9teMdovWyTzgpKj6FT3Uybdrtsi2uEEKIJoIK6FdvCgP+RfbZ2dlMmjSpQwolvlBa4iEvp5Y652cMHDiQPn36dHWRhBBCdENBBfTvf//7TR47duwYe/bsafcCiS/YbT6O7bfj9GXj83mYMmVKVxdJCHET6sx86NXV1Tz88MMUFRXRr18//ud//ofo6OhW50Nfu3Zt0JufXe2xxx7ju9/9bo/MiXHDM6tGjx7dZMmBaF/HDzrw+GxU1p5m6NChjRLcCCFEZ7mSD/1qGzduZMmSJdx3333ce++9ZGVlsWXLFp555hkKCwsBAvnQX3zxRXbt2sW2bdv4yle+QlFRUYv3evnll5k6dSp79+5l6tSpvPzyywCN8qFv2bKFv//979e8zksvvdTs45qmoapqi+c999xzPTKYQ5At9LKyskY/u1wu9uzZ02sSH3RHleVeKsq8+Iyn0DSNyZMnd3WRhBDdwKkjdupqfO16zchoPSPHtbwTXWfmQ//Pf/7D22+/DcA999zDsmXL+PnPf96qfOi/+c1vcDqdzJkzhyFDhvD4449z7733MmXKFA4fPsxf//pX/vSnP3H8+HGcTicLFizgscceA/y9EU8++SRjxoxh8ODBPPDAA2zfvh2LxcL69euJj49v9p5bt25l7dq1uN1uYmJi+NOf/kR8fDw2m42VK1c2yY3eXB71tgoqoH+528JkMjFw4EB+8IMftLkAonlns50o+nqKSvz5hqOiorq6SEKIm1Rn5kOvqKggMdGfIjYxMTEwh6s1+dCfeOIJ1q9fH1hTXlRURH5+Ps8//zy//e1vAXj88ceJiYnB5/OxfPlysrOzm6zostvtjBs3jpUrV/LMM8/wxhtv8JOf/KTZe06aNIlNmzahKApvvvkmr7zyCk899RTPP/98IDc6+OegVVZWNptHva3aPMtdtL+qy15KL9bR4P0Ug8Egkw+FEAHXakl3pM7Mh96c1uRDb07fvn0ZP3584OdNmzbxxhtv4PP5KCsrIzc3t0lAN5lMzJkzB4BRo0axe/fuFq9/6dIlHn74YcrLy3G73YEc6bt27QoMG4A/aczWrVubzaPeVkGNoZ8/f75JkoOKigrOnz/fLoUQX9A0jay9pyip/Df1DRXMnDmzS5IyCCHE1e6880727NnDyZMncTqdjBo1iiFDhnDy5MnAMevWreOFF16gpqYGgIyMDE6dOgV8sQvbvffei81ma/E+cXFxgWHesrKywNyhd999lzvuuAOj0UhcXBwTJ07k+PHjQZf/6r+jFy5c4NVXX+Wtt95i+/btzJ49G6fT2eScK3nSAfR6/TWTrDz55JN8+9vf5qOPPuJ3v/tdYDtaTdOaXWrcEcuPgwroL730Ej5f4zEbr9fLn/70p3Yv0M3Mbrez8b0PKLiwi6ioGP7f//t/QWWcE0KIjhYWFsZtt93Go48+GkiktWTJEg4dOhTInAngcDgC33//+99n7dq15ObmNvt8c+bOncuGDRsA2LBhA/PmzQMgJSWFvXv3omkadrudI0eOkJ6e3uJ1jEYjHo+n2efq6+sJCQkhMjKSy5cvs2PHjuu8+uurq6sjKSkpUO4rZsyYwfr16wM/19TUMH78eD799FMuXLgA0G5d7kEF9KvHNK5ISkri8uXL7VIIAT6fj3feeYei4vPER49n+fJlREdHd3WxhBAioDPyof/gBz9g165d3H777ezatSswV6u1+dC/8Y1vkJmZyQ9/+MMmz40YMYKRI0cyc+ZMHn30USZObHvmyp/+9Kc89NBDLF26tFEil0cffTSQGz0zM5OsrKwW86i31XXzoQM88sgj/OhHP2LQoEGBxwoKCli7di0vvvhiuxTkRvWWfOiHDx9m7969JEbPZNzEwQweZumScrSH3pSHuqtIHbZdb6pDyYfec3WrfOjgn134+9//nkWLFpGYmEhZWRmbNm3iK1/5yg0XUnyhoaGBAwcOEB3Zj6iIVAamS1pUIYQQrRNUQM/MzCQsLIyPP/6YyspKrFYr9913X2AnINE2e/bswedTCTdOYNAQMwaj7NUuhOjdumM+9GD88Y9/bJKydeHChaxYsaJD7tcaQXW5d2c9vcu9uLiYd955h5SkWwgzjGH23ZEYe3hA701dnV1F6rDtelMdSpd7z9WZXe5BTYr761//ypkzZxo9dubMGf72t7/dWAkF4J8It3PnTsLDIjCowxk0xNzjg7kQQoiuEVRA37t3L2lpaY0eGzRokCRnaaMTJ05QVVVFStIkTCYDAweburpIQggheqigArqiKE02s1dVlR7eW9+lnE4n+/fvJzk5FVd9MoMyzBhNN5wrRwghxE0uqAgydOhQ/vGPfwSCuqqq/POf/5RNT9rgyJEjuN1uEqLHYTQqDBwsM9uFEELcuKAC+re//W1OnjzJQw89xKpVq3jooYc4efIk999/f0eXr1ey2+0cP36cgQPSqa2MZMBgMyaztM6FEN3TsmXL2LlzZ6PHXnvtNVatWkVBQQH33XcfU6ZM4c4772TZsmXs27cvcNyOHTtYsGAB06dPZ86cOXzve9+jpKSkxXtVV1fzta99jdtvv52vfe1rgW1kPR4PK1asYPbs2cyYMaPF9Kg3avLkyVRVVbXrNTtbUFHEarXyu9/9jp/97GcsWrSIRx55hBEjRvDEE090dPl6pUOHDuH1eokJH4PeAGlDpHUuhOi+emI+9JtRUOvQwb/5SV5eHjt37qSwsJBhw4bxrW99qwOL1jvV19dz8uRJBqcPoboijLQh0joXQgRv165d7b7tdnx8PNOnT2/x+Z6WD/3111+nqKiI1atXA/6MoSdPnuSZZ57h/vvv5+LFi7hcLh544AHuvffeoOqopfOay2tus9lYvXp1kxzoHe2aAd3r9XLo0CF27tzJ8ePHSUpK4vbbb6eiooJHHnlEcnTfgIMHD6JpGtaoMZQ1wKAMaZ0LIbq3npYPfeHChSxatCgQ0Ddt2hTYX/4Pf/gDMTExOBwOFixYwPz58xvtvd6S5s7TNK3ZvOYvvvhiIAe6wWDotP0QrhnQv/Od76DT6ZgxYwZf/epXA3u5X51ZRwSvtraW7Oxshg0dweWLZvqmmrCESOtcCBG8a7WkO1JPyodutVpJTU3l8OHDDBw4kPz8/EAClr/+9a98+OGHgH9jsnPnzgUV0Js7r7Kystm85rt37+aVV14JnNtZibauGU369++PzWYjLy+P/Px8GhoaOqVQvdX+/ftRFIX42NH4fJA2VFrnQoieoaflQ1+0aBGbNm1i8+bN3HnnnSiKQlZWFrt372bTpk1s376dkSNHNtk2tjnXOq+5vOYt5UDvaNcM6L/85S956aWXGD16NJs2beK73/0ua9asweVyNcmPfj3Hjh1jxYoV/OhHP+K9995r8vzu3bt57LHHeOyxx1i9ejXnz59v1fW7u4qKCnJychg1ajSXLhhI6GMgIkrf1cUSQoig9LR86HfddRf/+c9/eO+991i0aBHgn8MUFRVFSEgIeXl5HDlyJKjX3tJ5LeU1by4Heme4bn9vfHw8y5YtY+3atfziF78gJiYGRVH42c9+xt///vegbqKqKuvWreOJJ57ghRdeYO/evRQXFzc6JiEhgV/+8pc899xz/Nd//Rd/+ctfbuwVdVNZWVmYTCaS4kbjdmmkDe256VGFEDennpQPPTo6msGDB1NSUsLYsWMBuOOOO/D5fGRmZvLss88ybty4oF53S+e1lNd8xYoVgRzoM2fOJCsrK6j7tNUNJWdxu90cOHCAXbt2BbV07ezZs2zYsIGf//zngL/rBGDp0qXNHt/Q0MBPf/pTXn311eteuyckZ7mSgGXKbVOoK8/AaFKYmhneJV0ynaE3JcXoKlKHbdeb6lCSs/Rc3S4f+peZTCamTp3K1KlTgzq+qqoqMA4C/k81V3fBfNnHH38c+ET1Zdu3b2f79u0ArFmzhri4uFaU/NoMBkO7Xg/8YynvvPMOkZGRpA+azO6CSu6Yl0R8fPPLLXqDjqjHm43UYdv1pjosKyvDYLihP9dt1lX37U3aUodmszno93Gn/Kaa6wRoqXV66tQpduzYwa9+9atmn8/MzCQzMzPwc3t+Au+IT/R5eXkUFxcze/ZsTh2tITRMR3ikg4oKZ7vepzvpTS2jriJ12Ha9qQ5dLhd6fefPuenIFnp3zId+ZSb+l7311ltBzYRvTlvr0OVyNXkft2sLvbWsVmtgLSFAZWVls+sHCwsLefXVV1m1ahURERGdUbQOpaoqWVlZxMTEkBg/mIJTdkaOC0HR9c6udiFEx+iNibB+85vftMt13n///Xa5DnwxE787ac3vvlMWnH4DkQAAHl9JREFUQaelpXHp0iXKy8vxer1kZWUxYcKERsdUVFTw3HPP8cMf/rDFTx89TXZ2NjU1NUyZMoXzuR6MJoV+AyVFqhCidXQ6nYxl34S8Xi86XfBhulNa6Hq9nvvvv59f//rXqKrKzJkz6devX2Cpw9y5c3n77bdpaGgIbEag1+tZs2ZNZxSvQ6iqyv79++nTpw9JCf3JPtxA+hAzBoO0zoUQrWOxWHA6nbhcrk6dTGs2m4Napy1adqN1qGkaOp0OiyX4FVE3NMu9O+mus9wLCwvZuHEjCxYswFmXzLlcF7MXRhIS2vt3hutNY5ddReqw7aQO207qsO06og5b6sXu/dGli5w9exaTyURKcn8uFLhI7me8KYK5EEKIriERpgN4vV7y8vJIT0+n5IIXrxcGSYpUIYQQHUgCegc4d+4cHo+HwYMzOHfWRWy8nuhYWcsphBCi40hA7wBnz54lNDQUg5KAw65JilQhhBAdTgJ6O3O5XJw/f56MjAzOnfUQGq4jKdnY1cUSQgjRy0lAb2f5+fn4fD76pqRTXeljQLpJNpIRQgjR4SSgt7MzZ84QFRWFyxYNCqSkykYyQgghOp4E9HZks9koLi4mIyODkgte4hMNWEKkioUQQnQ8iTbtKDc3F03TSIxPw2FTpXUuhBCi00hAb0dnz54lLi6OhppwdHro01cmwwkhhOgcEtDbSW1tLaWlpQwenMHFIg9JyUYMRpkMJ4QQonNIQG8nubm5AFijB+Jxa/QdIN3tQgghOo8E9HZy9uxZkpKSqL5swWhS+P/t3XtsHOW5+PHvzM7O+n7bje9OHDsBAjSQHKfQIKDU+UUqlzZCbUovqgJBahMQtFxEqCpUteVWmobCLygRgkCRWhWpJRIc2nIMKVDMaQNOmjQQYjuJ4xDHjr2+7Nq7O7Mz7/lj7Y3tOIkTG3ttno+08l7m8swz3nnmfWdnZk6xXBlOCCHE1JGCPgm6u7vp7Oykumohx4/ZlFZ40eXccyGEEFNICvokOHDgAADZGfNwHSifJ93tQgghppYU9AlSSnHgwAFKS0sJnjBJz9TJD3imOywhhBCfM1LQJ6irq4vu7m6q5i/kRHucsrleNE2624UQQkwtKegTdODAATRNw2fMBQUV8ut2IYQQ00B+ij0BSikaGxspLy/nxDEP+X6NrBzpbhdCCDH1pIU+AR0dHfT29lJeVk2oz5Vzz4UQQkwbKegT0NjYiK7reNxydB3K5sqlXoUQQkwP6XI/T0O/bq+omEtHm4fiMgOvKftHQgghpodUoPPU2tpKOBymuLAa21JUzJfudiGEENNHWujnac+ePaSnp6OscnxpMKdIUimEEGL6SAv9PPT19XHo0CEuvPBiOtsTN2LR5FKvQgghppEU9POwd+9eAPw5F6Lk3HMhhBApQPqJz1E8Hmffvn3Mnz+fznaT3HyN7Fw591wIIcT0mrKCvnv3brZt24brutTW1rJq1aoRn3/66ac888wzHDp0iFtuuYWvfe1rUxXaOWlsbCQajbKg6lIa97pcujR9ukMSQgghpqbL3XVdnnvuOX7yk5+wadMm3nvvPY4ePTpimKysLG699VZuuummqQjpvO3Zs4e8vDwcqxBNg9IKOfdcCCHE9JuSgt7U1ERxcTFFRUUYhsHy5cvZuXPniGFyc3NZsGABHk/qdl93dHTQ3t7O4sWLOdZqM6fYwJcmP0MQQggx/aakyz0YDOL3+5Ov/X4/jY2N5zWturo66urqAHjssccIBAKTEiOAYRhnnN67776LaZosrPovWj/p4otX+QkEsidt/rPF2fIozk5yOHGSw4mTHE7cVOZwSgq6UuqU9873FqMrVqxgxYoVydednZ3nHddogUDgtNOLRqPs2bOHRYsW0fRJCI8BmTlROjtjkzb/2eJMeRTjIzmcOMnhxEkOJ+6zyGFpaemY709Jf7Hf76erqyv5uquri/z8/KmY9aQ5ePAgjuOw6KJFtB21KS7zYhhy7rkQQojUMCUFvbq6mra2Njo6OojH49TX11NTUzMVs540TU1NZGdng+vHthRl8+TccyGEEKljSrrcPR4Pt912Gw8//DCu63LddddRUVHBG2+8AcDKlSvp6elhw4YNRCIRNE3j9ddf5ze/+Q0ZGRlTEeIZxWIxjhw5wuLFi/n0iI3p0+RSr0IIIVLKlFWlpUuXsnTp0hHvrVy5Mvk8Ly+PLVu2TFU45+TQoUO4rsv8+QvY80+bufNNdLnUqxBCiBQi51yNQ3NzM5mZmSi7ANdButuFEEKkHCnoZ2FZFocPH6a6uppPj8TJyNTJ96fuufJCCCE+n6Sgn0VLSwuO4zBvbhWdHXHK5nnP+5Q7IYQQ4rMiBf0smpqaSE9Px0MhKCguk0u9CiGESD1S0M8gHo8nu9s72x1Mn0ZuvnS3CyGESD1S0M+gpaUF27aprqqm43icwmJDutuFEEKkJCnoZ9Dc3IzP5yM7sxjbUswplu52IYQQqUkK+mk4jsPBgwcT3e0diWvRzymWi8kIIYRITVLQT6O1tRXLsqiurqbjuE1uvkdulSqEECJlSYU6jYMHD+L1eikuKqOny6GwRFrnQgghUpcU9DEopTh48CCVlZV0d4FSyPFzIYQQKU0K+hiOHz/OwMAAVVVVnDgex/AiV4cTQgiR0qSgj6G5uRld15k3bx4njtsEirxyMxYhhBApTQr6KEopmpubKS8vx7a8RAYUhfLrdiGEEClOCvoowWCQ3t5eqqurOdFmA3L8XAghROqTgj5Kc3MzAFVVVXQcj5OVrZORKWkSQgiR2qRSjdLc3ExxcTFpvgy6TsSZUyKtcyGEEKlPCvowPT09nDhxgurqao5/auM6UCTnnwshhJgBpKAPs3//fiDR3d78SYzMbJ1AkRR0IYQQqU8K+jAfffQRBQUFOHY2vd0O1Rf65O5qQgghZgQp6IMikQgtLS1UV1dz8JMopk+jfJ453WEJIYQQ4yIFfVB7ezuaplFcVEn7sTiVC0w8hrTOhRBCzAxS0AdVVlbywAMP0NuZg65D5QLfdIckhBBCjJsU9GE0TD49YlNeacqtUoUQQswoUrWG+XhvL64DVRdK61wIIcTMIudkDeoeiLP33/1kBnTCmoPqt0lzbTojDm39Dm0DDl1Rh8tLs1lcnDnmr9+VbSXutWoYBKMue9sHyDI9LCzwkWMAcRtcBxyHgVic1j6bTK9GWbYXzeMBXQfTB17zlOm39saoa+4lOBBnbp5JZV4alfk+AhkGmqahlIJYBCwLZaZxNAr7OiJ0R+MsLsrkojnpGIM3mFFWDNUfojMY4nhfjNysdPx5mWTkZqObI3dm4q6iI2xzLGTRFrLojsS5vCSTLxRlnPEMAKUUkbhLv+WS4/PgM86876hcF6IRiAwkcpCVzbGQzb+Ohkj36lw9L4dMc+Qd7/oth3db+ghbLktKMpmf70OfwWclKKXAisFAP67pRbkumn5u+9xKKVAuaPpp149yHYjHx/w/+6wppcCJJ+avVOKBSnxo+tCM6bmQk7KtxP+e10zkxUi9TWMid04iZ66bWM+uO+y1A7onsQzG4DZlrGnE42BFIRZLrIshmgYeA9LSwedD0xPjK9eFWDSRH9saOUFNg7Q0MNMS60/XT87DthLTV25iFSsFuga+DDBH/u8px4GBMAz0J4bTtJMPjycR19DfuJ34ngw9hpbZNMHrA41EPlxnVH4G82V4wZeeWE7DOOU7kPgeWoM5ig6OYyQeHm8iDl0HTU/81U//XZtqmlJKTXcQE3Hs2LFJmc777zTT2ebnv50gbcoacxhdubiaTkWkg+u793Kt1UJarJ9YJEpX3EOHN5v/5FWzq+BCDmWXjRi3KNLFwr5WLI9BS2YJ7en+5Gd5VohLepq5tOcgpQMnMDUX02vg85nsz62kLmcR+81CPMqlAIsTWlpyXNO18Vsh/NEe/NFubN1gX14VvWY2AJpSKE0jIx5lcd9B5oaPczijkAPZc+nx5YyIMc2JkWv3Y3u8WLoXSzewtJEbNh2Fi0ZJvI/a7r1c0/YhfUYGjVnlHMgs42BGMT3eDMKeNBzt5AalwA5RYvdR4oTIcqKYjoUZj+GLxzBjEcxYP6Zj4VUOjdkV/O+cL9CaWTRsOeMsDzfx/07sAuVS57+c93IvwNJPFoA8J8IS6xiX2B2U2r0Ux0PkxvtRClq8BfzHV8w+XzEnjEyK4mGKnTAlbphMZdNq5NJi5NFi5NGtpTHPDnJB5DgLw0eZHzqGV1PgNUAf3LA4g0UxbuO6LrZuYBkmlm5iebyJDZTjgGOD4+DVwDR0fIaO6dHJdGNk2BE8rpPY8EQjMNBPTEHYyMDRPYkNRkYmZGRh+rxkexQerxe8XrBt6A9BuA/CocTGx1XESYyvdJ0sn4E3MxMysxMbnlAvTqiPsOUQ072ADj5f4mH6EhtLwwCPga5rZLkxfK6NNlR4HSexMXXiiedDGzSPJ7HhtW2wY4N/rcE6Pbh5GRp/eAEZi+FNbGgHN7bDN5rD48NjJKYVi5582NbgPAbn47qJ+Q/FYfogJ+/kQ9OhqwOCJyDUO+rLric2+lnZkJGV+OtLS8wnGkn8tayRxUbXE/O17ZM7LZqWeB8S8xs9vG2dnKYVS3xm+hLzGlrP0cjgPCNnzt1oup4odpCIA4blZRxME003UNGB8c/TMBLLfTYeA9IzEssZ6U8U8ungMcCjn9zhgMGdkHMsi4aR3JHC60V/9NnkDlEgEKCzs3NSwy4tLR3z/Skr6Lt372bbtm24rkttbS2rVq0a8blSim3btrFr1y58Ph/r16+nqqrqrNOdrILe33qEw+/sIkyMfm8mIU8aEY8Pv25T4olRosfIcG3e60/nv61CDmrZpLs2Hk0R1k6e3qajuMjTz1K9h8u1biKal0ayaXSzaHIy8GkulV6LeWacuWacXkfnPzEf/4mmEXTHbhWU2j2s6N7Ll9sbyLPCDGTkciSnjJbMYo6l+ek2s+n0ZBLU0lCaxsWefi6lh0viJ8iND7BH99NAAQ346cJHqR7jgjSbC7KgLFOnN2ITHIjTFVP02gqvFcW0EkU2LRqmMNpNSbSLkmiQNMfif0su538CS/jIVzwizhxlscDtpchjk+HGyCZOhhanxzVoU2m0kc5xPZN+zcTWTn9/eR3FIq2PL0WP8MXgx/Ri8j+5l/BueiURLVHA05XN1fZRVkSa8dshdhtFNPhK+LdZSthzspchw03snA3oiXVUEu+jJN5HuyeLdiOb+GAcmlKUxHuZawXJcyIcSpvDIa8f6wxxTpSmFJnYZCkbW/MQ0kyssxwFy3Atsp0I5lBrTNdRuk5MMwgrgwgj401TcbLcGB7lEvL4GNDO7VRMr3LIcmNkKDsR2VCracjwzYemAVqihTT0nJN/ThmGUa2aod6FZItq+KZpWGFWg881EkVyeGtu2PQ1XUe5auT0B3vIcJ3Ee8Nbfrp+stdgeBxDj8GeD3Tt5HyHehiGhzo6R6OXcfjwI2LXhy3fYAxow1qDY+V0+Gtt1PiD+RpBGyNfo9fByeXXNC0xheF5HmuZhvI11LpOzmdEsIPDj+pZ0IfttI3Ia3KEYet+dM60YTEP6+05JS/D8j0UrzuU49G0wXU8tE6GzXv4PJIhqlExwP//Xk1yarOuoLuuy913381Pf/pT/H4/Dz74IHfffTfl5eXJYRoaGvjrX//Kgw8+SGNjIy+88AKPPPLIWac9WQUdxp94pRT7T0TYcagPjw7+dC8FGQaBDIPqgrRTuobHQynF8bBN54CNFVdYjiLmuBRmelk0J31SunSUUsQcRdpZur/H62hfjH+1hglkerkwkEZhphdN08aVR1cpbCcRj+W4WPHE8lqOoijLS17aqTs30bjL+0dCKOBLFdmke09dDsdN5LFt8BDBsZCF48LFhelcWpRBIMM7YtjOAZt+y6UsxzzlsEDcVRzujtHaG8M9w9dE0zS8uoZpaPg8Ol6PNqIsK8B21eB6dYk5in7LIWQ5hGIO4ZiLaWhkmR6yfR6yTJ383BzCoVBy/FhcJYcPxRxsd2Q8pq6R7Rsa34OmQdhyCMcS83FcEp8PzsNnaKM3syPzqEjEZjn0xRwG7HG26lKIzzSJWWP3tonxkRyenweuPtlDO5UFfUoOFDU1NVFcXExRUaILdfny5ezcuXNEQf/ggw+45ppr0DSNCy64gP7+frq7u8nPz5+KEM+JpmksKsxgUWHGpE6zJNukJPuzu5iNpmmkTeK59eU5PsovOb8fEOqahs/Q8BkA49sBSjN0rqvKPeMwHl2jLMekLOfsefToGkVZpx/O0DUW+NNY4E877TCflcRG4LPrHfg8+Cw2pJ83ksOZZUoKejAYxO8/eczY7/fT2Nh4yjCBQGDEMMFg8JSCXldXR11dHQCPPfbYiHEmyjCMSZ3e55XkceIkhxMnOZw4yeHETWUOp6Sgj9WrP+YvC88yDMCKFStYsWJF8vVk7j3K3ujkkDxOnORw4iSHEyc5nLip7HKfkvPQ/X4/XV1dydddXV2ntLz9fv+IhR5rGCGEEEKMbUoKenV1NW1tbXR0dBCPx6mvr6empmbEMDU1NbzzzjsopThw4AAZGRlS0IUQQohxmpIud4/Hw2233cbDDz+M67pcd911VFRU8MYbbwCwcuVKlixZQkNDA3fddRemabJ+/fqpCE0IIYSYFabsckhLly5l6dKlI95buXJl8rmmadx+++1TFY4QQggxq8i13IUQQohZQAq6EEIIMQvM+Gu5CyGEEEJa6CNs2LBhukOYFSSPEyc5nDjJ4cRJDiduKnMoBV0IIYSYBaSgCyGEELOA52c/+9nPpjuIVDKeW7aKs5M8TpzkcOIkhxMnOZy4qcqh/ChOCCGEmAWky10IIYSYBaSgCyGEELPAlF36NdXt3r2bbdu24boutbW1rFq1arpDSnmdnZ1s3ryZnp4eNE1jxYoVXH/99YTDYTZt2sSJEyeYM2cOP/7xj8nKyprucFOa67ps2LCBgoICNmzYIDk8R/39/WzZsoXW1lY0TWPdunWUlpZKDs/Ba6+9xltvvYWmaVRUVLB+/Xosy5IcnsUzzzxDQ0MDubm5bNy4EeCM399XXnmFt956C13XufXWW7n88ssnLxgllOM46s4771THjx9Xtm2r++67T7W2tk53WCkvGAyq5uZmpZRSAwMD6q677lKtra3qpZdeUq+88opSSqlXXnlFvfTSS9MZ5ozw6quvqieffFI9+uijSiklOTxHTz/9tKqrq1NKKWXbtgqHw5LDc9DV1aXWr1+vYrGYUkqpjRs3qh07dkgOx2Hfvn2qublZ3XPPPcn3Tpe31tZWdd999ynLslR7e7u68847leM4kxaLdLkDTU1NFBcXU1RUhGEYLF++nJ07d053WCkvPz8/+evN9PR0ysrKCAaD7Ny5k2uvvRaAa6+9VnJ5Fl1dXTQ0NFBbW5t8T3I4fgMDA3z88cd85StfAcAwDDIzMyWH58h1XSzLwnEcLMsiPz9fcjgOF1988Sm9FqfL286dO1m+fDler5fCwkKKi4tpamqatFikyx0IBoP4/f7ka7/fT2Nj4zRGNPN0dHRw6NAhFixYQG9vb/Je9vn5+fT19U1zdKnthRde4Hvf+x6RSCT5nuRw/Do6OsjJyeGZZ56hpaWFqqoq1qxZIzk8BwUFBdx0002sW7cO0zS57LLLuOyyyySH5+l0eQsGgyxcuDA5XEFBAcFgcNLmKy10QI1x5p6madMQycwUjUbZuHEja9asISMjY7rDmVE+/PBDcnNz5VzfCXAch0OHDrFy5Up+9atf4fP52L59+3SHNaOEw2F27tzJ5s2b2bp1K9FolHfeeWe6w5p1xqo1k0la6CRa5F1dXcnXXV1dyb0rcWbxeJyNGzdy9dVXc8UVVwCQm5tLd3c3+fn5dHd3k5OTM81Rpq5PPvmEDz74gF27dmFZFpFIhKeeekpyeA78fj9+vz/Z8rnyyivZvn275PAc7N27l8LCwmSOrrjiCg4cOCA5PE+ny9voWhMMBikoKJi0+UoLHaiurqatrY2Ojg7i8Tj19fXU1NRMd1gpTynFli1bKCsr48Ybb0y+X1NTw9tvvw3A22+/zbJly6YrxJT3ne98hy1btrB582Z+9KMfcemll3LXXXdJDs9BXl4efr+fY8eOAYniVF5eLjk8B4FAgMbGRmKxGEop9u7dS1lZmeTwPJ0ubzU1NdTX12PbNh0dHbS1tbFgwYJJm69cKW5QQ0MDL774Iq7rct1113HzzTdPd0gpb//+/Tz00EPMnTs3eYji29/+NgsXLmTTpk10dnYSCAS455575FSXcdi3bx+vvvoqGzZsIBQKSQ7PweHDh9myZQvxeJzCwkLWr1+PUkpyeA5efvll6uvr8Xg8VFZW8sMf/pBoNCo5PIsnn3ySjz76iFAoRG5uLqtXr2bZsmWnzduf//xnduzYga7rrFmzhiVLlkxaLFLQhRBCiFlAutyFEEKIWUAKuhBCCDELSEEXQgghZgEp6EIIIcQsIAVdCCGEmAWkoAvxObd69WqOHz8+3WGc4uWXX+app56a7jCEmDHkSnFCpJA77riDnp4edP3kvvaXv/xl1q5dO41RCSFmAinoQqSYBx54gMWLF093GLOK4zh4PJ7pDkOIz5QUdCFmiL///e+8+eabzJ8/n7fffpv8/HzWrl3LF77wBSBxXehnn32W/fv3k5WVxde//nVWrFgBJG6NuX37dnbs2EFvby8lJSXcf//9BAIBAPbs2cMjjzxCKBTiqquuYu3atWPeoOjll1/m6NGjmKbJv/71LwKBAHfccQfV1dVAovv+qaeeori4GIDNmzfj9/u55ZZb2LdvH08//TRf/epXefXVV9F1ndtvvx3DMHjxxRfp6+vjpptuGnGVRtu22bRpE7t27aKkpIR169ZRWVmZXN7nn3+ejz/+mLS0NG644Qauv/76ZJytra14vV4+/PBDvv/974+4Pa0Qs5EcQxdiBmlsbKSwsJDnnnuO1atX8+tf/5pwOAzAb3/7W/x+P1u3buXee+/lD3/4A3v37gXgtdde47333uPBBx/kxRdfZN26dfh8vuR0GxoaePTRR3niiSd4//33+fe//33aGD788EOWL1/OCy+8QE1NDc8///y44+/p6cG2bbZs2cLq1avZunUr7777Lo899hg///nP+dOf/kR7e3ty+A8++IAvfelLPP/881x11VU88cQTxONxXNfl8ccfp7Kykq1bt/LQQw/x+uuvs3v37hHjXnnllWzbto2rr7563DEKMVNJQRcixTzxxBOsWbMm+airq0t+lpubyw033IBhGCxfvpzS0lIaGhro7Oxk//79fPe738U0TSorK6mtrU3eAvPNN9/klltuobS0FE3TqKysJDs7OzndVatWkZmZSSAQ4JJLLuHw4cOnje+iiy5i6dKl6LrONddcc8ZhR/N4PNx8880YhsFVV11FKBTi+uuvJz09nYqKCsrLy2lpaUkOX1VVxZVXXolhGNx4443Ytk1jYyPNzc309fXxjW98A8MwKCoqora2lvr6+uS4F1xwAV/84hfRdR3TNMcdoxAzlXS5C5Fi7r///tMeQy8oKBjRFT5nzhyCwSDd3d1kZWWRnp6e/CwQCNDc3AwkbglcVFR02nnm5eUln/t8PqLR6GmHzc3NTT43TRPbtsd9jDo7Ozv5g7+hIjt6esPn7ff7k891Xcfv99Pd3Q1Ad3c3a9asSX7uui6LFi0ac1whPg+koAsxgwSDQZRSyaLe2dlJTU0N+fn5hMNhIpFIsqh3dnYm77Xs9/tpb29n7ty5n2l8Pp+PWCyWfN3T0zOhwjr83tGu69LV1UV+fj4ej4fCwkI5rU2IYaTLXYgZpLe3l7/85S/E43Hef/99Pv30U5YsWUIgEODCCy/k97//PZZl0dLSwo4dO5LHjmtra/njH/9IW1sbSilaWloIhUKTHl9lZSX/+Mc/cF2X3bt389FHH01oegcPHuSf//wnjuPw+uuv4/V6WbhwIQsWLCA9PZ3t27djWRau63LkyBGampomaUmEmHmkhS5Einn88cdHnIe+ePFi7r//fgAWLlxIW1sba9euJS8vj3vuuSd5LPzuu+/m2Wef5Qc/+AFZWVl885vfTHbdDx1//uUvf0koFKKsrIz77rtv0mNfs2YNmzdv5m9/+xvLli1j2bJlE5peTU0N9fX1bN68meLiYu69914MI7HZeuCBB/jd737HHXfcQTwep7S0lG9961uTsRhCzEhyP3QhZoih09Z+8YtfTHcoQogUJF3uQgghxCwgBV0IIYSYBaTLXQghhJgFpIUuhBBCzAJS0IUQQohZQAq6EEIIMQtIQRdCCCFmASnoQgghxCzwfy1tLhWqJT+1AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArQAAAF0CAYAAADSPqrzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACcAklEQVR4nOzdd3xUVf74/9ednt5DOmkEQkcCCKh0EURQFhD8qGDd4rp+1t3VZfcjq2JDt/w+61ddP7r2FUGxgEgRBVGR3jskBEhI75lMpt37+2PISEwCCYQ03s/HYyCZe+feM3MymXfOfZ/3UTRN0xBCCCGEEKKT0rV3A4QQQgghhLgUEtAKIYQQQohOTQJaIYQQQgjRqUlAK4QQQgghOjUJaIUQQgghRKcmAa0QQgghhOjUJKAVQgghhBCdmgS0QgghhBCiU5OAVgghhBBCdGoS0AohhBBCiE7N0N4NaE9lZWW4XK42O19ERARFRUVtdj7RuqT/Oj/pw85P+rBzk/7r/NqyDw0GAyEhIc3b9zK3pUNzuVw4nc42OZeiKN5zaprWJucUrUf6r/OTPuz8pA87N+m/zq8j96GkHAghhBBCiE5NAlohhBBCCNGpSUArhBBCCCE6NQlohRBCCCFEpyYBrRBCCCGE6NQkoBVCCCGEEJ2aBLRCCCGEEKJTk4BWCCGEEEJ0ahLQCiGEEEKITu2KXilMCCGEEEI0TlM1nM6zN7uG0wnWygoMZhWTSWnv5tUjAa0QQgghRCemaRrVVSrlJS7KStxUlrux+OoIDTcQGq4nMFiPTtd0AKppGjXVKuVlbirK3FSUuqmscOOwN7a8bTUjxvoTFtGxQsiO1RohhBBCiA5MVTWqKlScDhX/QD1mi4KitGy0UtM03G5QFNDrm36srUaltNhFaZGLqkr17P6g0yno9KDXKdhsKuUlbpzOnwSfJW7yTjsB0BsgJNRAYLAe9eyoq8ul4XaC06lhrXbjcjbdXr0BjCYFk0mHv7/5vMFxe5GAVgghhBCiEaqqUVl+dtSyzE15qZuqCjeq+uM+RqOCf6COgCA9AYE6FJ2CvVbFYdew12rY7Z6v3S5PEOt2a6jucx5vUvDxVbD46PDx1WG2KFirVEqKXdTWNDZC2jidHoJD9YSEGQgK1lNjPRsMF7twOaG40EVxoavpx+sgMFhPUIie4FDPqK6Prw6jUUF3NuhWFIXo6Gjy8vLQtOa3rS1IQCuEEEKILsMzgur2Xno3mhT8A/T4BejwC9BhMjU9oupyapSVeILAkiI35SUu3O6G+xmMYDbrqLGqOJ0aZSWe810Mp0PD6dCoLFcbbFMUT5AZGq4nKMSAopwNiFVQz/5vNCoEhzWdVqBpnhHl0mIX1irVM9pqVNAbFAxGBYNBwcdXR0CQrkOOvDaXBLRCCCGE6LRcLo2ifCelRW7KSl1UlLnrjYD+VN2IKBpoGqgaoHkC4Vqbxk8HHo0mheBQz8hl3c3XT4eiKLjdGtYqlapKz8htdaUnKDVbFExm3dn/PV8bDKA3KOj1Cnq952vV7TmnzaZSW6NSa1OptWn4+OoICdcTEmrAYLy0IFNRFAKDPQFvVyYBrRBCCCE6hFqb6r28Xze6WheMBQbrMZ4N7uy1KgVnnOTnOikqcDUIYA1GCA41EBSix+XUsFarVFe5qa3RvCOiTfHx0xEaric03EBYhAH/QF2TI7p6/SUGiwYFk5kuH2y2BQlohRBCCIHbrZGf6yQn24HDrmHx1WGxeHI7PTcFs+XHUcfGgjxNqx8w6upGI/UKeoNnu71WpcbqxlajYqvRqK3xBJvlpW7stefPy/T102E0KVSUuRvcHxltIDjMQEioJ72gsfa5XJ7Z/LU2zwQrz03xfm3x9eSxis5HAlohhBDiClZV4eZkloOcbEf9kcvS81y3V8BsVjCbPbmYjrNBrMOhwXliUp2uvN6Eqsb4B+o8l/aD9TgcnklZleVuam0aNVYVrJ79gkL0RMUaiYo1EhDU9CjquQyGK+Py+5VIAlohhBDiCqGqnsvvVRWenM+ifFe9yUwWH4WEZBOBwXpqbRq1NhX72RxPu03Fbtc8tUk1PDP4mxhR1RtAAdxu6uWk1gWzZotnIpKPrw6Lrw4/P08QGxiix2BoPDB12FVvYBsaYcDXT0ZSxY8koBVCCCE6Mbdbo6LMTVmxi9JiN/ZaFZ0OFJ1y9n9QUKipdlNdpTYYIVUU6BZjJCHZRGSUAeUCM91VVTtbkkrFXqvhdmveGqUms4LRpNSrraqqnnJVqgoR4ZGUVxShu4hY1GTWEd5NgljROAlohRBCiE5AdXtGSm1WlRqrSnWVSlmxi/JS9wUv459Lb4CAQD0BQZ5L7zHxRiw+zQ8UdToFi4/S7Mfo6gJrRcE/wEhVtdLhapiKzk8CWiGEEKKDcbs99VBLCj31UK1VnkvtTTGZFULOzsz389ehqZ4RUVX11CrVNM/EqYBAHT5+zcs3FaIzkYBWCCGEuIxUVcNWo2Kt8oyqWqs8M/wNZwvbG00KxrP/22s1igtdlJU0LEUFntWgfHx1+Pp5biFhekLOBrESpIormQS0QgghxCXylKPSzgatbk/d00o31ioVq1VFa0FKQB2zRSE80kBYpIHAYE8x/6bKZQlxpZOAVgghhDiHpmm4nJ4i/263hk6noOhAp3B2wlTd6lBnqwVUuqmu8CyB2hSdjrNLr+rx9/dc9lfdGk7n2bqtTs9Nr1MIOxvE+jdRS1UI0ZAEtEIIIa5IqlujotxNabHLUw6q5uwSpDYVt+vijunrp8MvQId/XfB69n8fXxlZFeJykoBWCCFEl6a6NWprPWWmbDUq5aXuZlUHMBrrVrfyTLDSVA1VAzTP8qieSgE6b8UAvwBdvXJVQoi2IwGtEEKITklVNXJPOik448Tt1tA0PLP7NQ1NBZfTE8jWW/3qJ0xmhZAwPcFhBnx9Pcu7Wnw9S702VeBfCNHxSEArhBCiU3G7NE5m2ck8XIutpnn1TBWdZ5KVxaIjMFhPSJie0AipDiBEVyEBrRBCiHbncnryWctLXVSUunE6NW9pKl9/z/9mi55dW4vZvb3Cs/wqniC1e4rZm6PqXRlLAYPBU/zfbPGUxJLAVYiuSwJaIYQQba7WplKU76K40ElFqZuqKhVasHiUj5+O1F5m4hNN6CU1QIgrngS0QgghLju3S6Ok2EVRvouifCdVFQ1nY1l8FIJDDQSF6jGbFWrOLvFaU+3532HXCAkzk9jDs1yrTieBrBDCQwJaIYQQl4XDrlJwxkV+rpPCfGeDla+CQ/WEdzMQGm4gKESPxUd33uOpKsTFxZCXl4emtWA4VwjR5XWIgHbNmjUsX76c8vJy4uLimDdvHunp6Y3ue+DAAZ544okG9//jH/8gNjb2cjdVCCFEEzRNo7rKk0qQn+uktMjFuXGnxUchMspIRJSB8G4GTObzB7A/JSWxhBBNafeAdtOmTbz11lvce++99OzZk3Xr1vHMM8/wj3/8g/Dw8CYf9//9f/8fvr6+3u8DAwPborlCCCHOcrk0Kko9CxOUlbgoLXY3KJEVGKwjKtZEVKyRwGCpKCCEuDzaPaD9/PPPGTt2LOPGjQNg3rx57Nmzh7Vr13Lbbbc1+bigoCD8/PzaqplCCHHF0zSNynI3RfkuCvNdlBa70H6SCqvTQ0iYgW4xBqJjjfj669unsUKIK0q7BrQul4usrCxuvvnmevf379+fI0eOnPexjzzyCE6nk7i4OKZPn07fvn0vY0uFEKLz0jTtvCOjmqpRVODidLaDilI3BqOCyaxgNiuYzDpMZoXqKk8ga6+tPwJrtiiEhhsIDdcTEm4gKFiPTlIDhBBtrF0D2srKSlRVJSgoqN79QUFBlJeXN/qYkJAQ7r//fpKTk3G5XGzcuJGFCxfyl7/8hd69ezf6GKfTidPp9H6vKAo+Pj7er9tC3XnkclvnJP3X+V1pfeh2a5zKspN52I7drhISaiAk3DMBKyRMj8mso6rCzelsOznZDmptzZtkpddDeDcjkVEGIqKNbbowwZXWh12N9F/n15H7sN1TDqDxF6apFysmJoaYmBjv92lpaRQXF7NixYomA9pPPvmEjz76yPt9UlISixYtIiIi4hJb3nJRUVFtfk7ReqT/Or+u3odOh8rBfWXs3V5CTY3Le39xoYviwh+/9/UzUGP98XuzRU9qz0C6pwTgdmnU2lzU2tzYbG5qbS58fAzEJfoRHeOL3tCyyVytrav3YVcn/df5dcQ+bNeANjAwEJ1O12A0tqKiosGo7fmkpaXx7bffNrn9lltuYcqUKd7v64LloqIiXC5XUw9rVYqiEBUVRX5+vpSb6YSk/zq/rt6HthqV0yfsZB2x4zg7McvHV0dqupnQcAPldZO3il1UV6nUWF0oCkRGG4lPMtEtxoheD1CFwQRmX/jxt7AOUIEqCouq2uPpAV2/D7s66b/Or6370GAwNHvwsV0DWoPBQHJyMnv37mXo0KHe+/fu3cuQIUOafZwTJ04QHBzc5Haj0YjRaGx0W1u/qTRNkzdyJyb91/l1lT50uzVKi10U5bko/MlCBX7+nkA2rrvJm88aGKwnIdkEeOrDVla4CQjUY7b8ONraWV6XrtKHVyrpv86vI/Zhu6ccTJkyhRdffJHk5GTS0tJYt24dxcXFTJgwAYD333+f0tJSfv3rXwOwcuVKIiIiiI+Px+Vy8e2337JlyxZ+97vftefTEEKIVqFpGrYaDWu1G2uVir1WxeX0BLAul4bbBU6nRnmJC/e5CxUoEBKqJ6mHmegLrKJlMusIj2zftAEhRPuz2+1s2bIFRVHo16/feQcHO7p2D2hHjBhBVVUVy5Yto6ysjPj4eObPn+8dYi4rK6O4uNi7v8vl4t1336W0tBSTyUR8fDx//OMfueqqq9rrKQghxEU5dyGC0iIX1VVurNVqgxW1mmK2nF2oINpAxEUsVCCEuHKdPn2aL7/8kurqagB27dpFUlISAwcOJC4urkNO/DofRetoY8ZtqKioqF71g8tJURSio6NlycZOSvqv8+sIfahpGg67RkmRi6J8F0X5Tmw1DduiKODrr8PPX4ePrw6DUUGvVzAYQG9Q0BsUAoN0BAbrO92HzqXoCH0oLl5H6b+ioiKKi4uJjY1t10WZ6l6D1n4PFxYWcvjwYfz9/UlNTW3wHF0uF5s2bWL37t2AZz5TSEgIJ0+e9O4TFhbGwIEDiY6Oxt/fH5PJ5G1rW/ah0WjsHDm0QgjRFWmqRkGei5JCF7U2FZtNpdamYbepqD9diEAHoRGeEdbAYD1+AZ4g9nwpA0KIlsvNzWX79u31ArfIyEhSU1NJTU297JfbNU2jrKyMnJwc703TNHr27Enfvn3PuzpqcxQXF7N582aysrK893333Xd069aNlJQUUlNTcTgcrF27ltLSUgD69u3LNddcg8lkoqysjN27d3Po0CFKSkr46quvvMcxmUz4+/vj7+9PZGQkaWlpl9ze1iYjtDJCK5pB+q/za4s+tNeqnMpycDLT3ujIax3/QB0RUZ5arqERBgwGCV6bQ96H7cdut5OdnY2iKFgslno3o9HYrFHG5vafzWYjNzeXgoICQkNDSUtLQ6+/uBXnNE0jOzub7du3k5eX521HeHg4xcXF9doRHh5OYmIi0dHRdOvWDV9f34s650/Pf+rUKQ4fPkxOTg5Wq7XJfaOioujbty89evRAp9NRUlJCfn6+91ZZWUloaCjR0dFERUURFRVFcHAwpaWlbNmyhePHj3uPlZqa6n0dz6UoCpqm4evry7hx40hKSmrQjtraWg4ePMjhw4eprKzE4XA02Gf69OnExcVdwivTPC0ZoZWAVgJa0QzSf53f5epDTdMoK3GTfczOmRyndylYo0khNsGz8IDFV4fFosPiq2C26NDLSloXRd6Hbc/hcLBnzx527dpFbW1to/v4+PgwcOBABgwY4L003Zim+s9ms5GXl+cdtTx33gyAv78/V111FX369GmyYtFPlZeXk5mZyeHDhykpKQFAp9PRu3dvrrrqKoKDg6mpqSErK4tjx455R0vPFRQU5A0cIyIiCAsLw2w2N+v8TqeTI0eOsHv3bu9oKIBeryc6Opq4uDji4uJwuVzs37+frKws1LOXb4xGI5qmNausqNlsxm63e7/v0aMHw4YNIzQ0FICamhoyMzM5fvy49zmmpKQwduxY7wJTF+JwOKiurqa6utobkHfv3r1VAv4LkYC2mSSgFc0l/df5tXYfulwauScdZB+3U1n+Yx5BcKiexFQzMfFG9DLy2qrkfXhhJSUlaJp2yZeDnU4n+/btY/v27d5ANjg4GD8/P2pra7039zmlNiwWCxkZGfTr16/RwFPTNAwGA4cOHfLmsRYXFzc6ahkaGkpUVBTZ2dnU1NR4jz9o0CD69+/faGBZVlbG8ePHOX78OEVFRd77jUYj/fr1Y+DAgfj7+zf6fG02GydOnODMmTPk5eVRVlbW6H6BgYGEh4cTHh5OSEgIBoOh3k1RFI4dO8aBAwe8r5vRaKR3796kpKQQFRWFwdAw29NqtXLo0CH2799PZWUl4LnMXxdQR0VFERQURHFxsXfEtrCw0Pv6p6SkMGzYsPP2u81mw263ExQUdNF5ux05h1YCWgloRTNI/3V+rdWH1VVuso87OH3Cjuvsrw+dHmITTCSmmggOlakJl4u8D5tWXl7Opk2bOH78OIqicMMNN9CjR48WH0dVVfbt28e2bdu8gWRQUBDDhg0jLS0Nna5+3WKXy8Xx48fZunUrFRUVAPj6+pKRkUFYWJg3aC0uLqa0tLReAHyukJAQYmNjvSOXdaN/LpeLQ4cOsWPHDm+gp9PpGgSFmqY1WOI+Li6O1NRUevTogcViadHrYLfbvYFjQUEBRUVF500XaExgYCADBgygd+/ezR7Z1TSNgoICTCYTISEh5w083W43JSUlmEymNiu3JQFtByUBrWgu6b/Or6V96HCo1FSpWKvrbm6qK1XKS3/8QPb105GYaiI+ySQls9qAvA8bqqmpYdu2bezbt897yRo8Qd+kSZNISUlp9rEqKytZu3YtZ86cATwB2dChQ+nVq1e9QLYxqqpy+PBhtm7d6g08G2MymQgLC/OOcoaHhxMWFnbeVIW64x87dozt27d7Uwh+SqfTER8fT2pqKsnJyc2+pN5cNpuN4uJiSkpKKC4uprKyEpfL1eAWHh7OgAEDSEpKuuDr1tl05IBWhhKEEOIse61K7iknOdkOKsqaLgYbGW0gsYeZyCjDFVU2S7Q+l8tVL3+0traWsLAwIiIivAGfv7+/dzKP3W6ntrYWm81GTk4O27dv9w7MdO/enREjRrBz506OHDnCqlWruPHGGxud+HMuTdM4dOgQ33zzDU6nE6PRyIgRI+jbt2+zJ2PV5af27NmTQ4cOsWvXLtxud73nERERQVpaGgUFBS0OhnQ6HT179iQtLY2qqqp6wXsdHx+fZo+EXgwfHx/i4+OJj4+/bOcQF08CWiHEFc3t1ig44wliC/NcnPs5a/FRztaD1eN3ti5scJgBX7+uNeoiLh+3210v57TuVlVVRW5uLvn5+Q0uw9flgtYxm80oitLkpKyIiAiuueYab6A1YcIENE3j6NGjrFy5kilTppCYmNjoY2tqavj666+9pZ6io6OZMGHCRV/C1uv19O3bl759+zbYpijKJY9YKorSrrVjRcclAa0Q4oqiqhoVZZ4asSVFnpvrnMyj4FA9cYkmYhKMmCWNQDRTZmYmR48ebRC4Nietzc/Pz5s76ufn572kXVxcTFlZWb1Z7OC5DGuxWPDz82PAgAGkpaXVu1Kg0+m4/vrrUVWV48ePe4Pa7t27o2kaFRUV3uPv27cPm82GTqfj6quv5qqrrupyl8nFlUECWiFEl+FyaRw/VMuZU04UHRiNCgajgvHsbZd6krwcKz+thmPxUYhLNBGXaCIg8OLqXYqupa6UVF0h+aaoqsp3333nXXWpMYqiYDab69Vu9fHxISoqiri4OIKDg+sFpOeOprpcLsrLy+vVf21OGoBOp2PixImoqkpWVhaff/454eHhlJSUNCgHFRYWxvXXX9/sXEUhOiIJaIUQXULBGSf7dtqwWRvm1v3IUyDcYISwCIP3FhSiR5GVuTq02tpaNmzYQHR0NGlpaa0+4cdut5OTk0Nubm6DWqipqalcc801DS5122w2Vq1aRU5ODgADBgygW7duDRYeqEsZuBgGg+GiS3Dp9XomTZrEypUryc7OpqCgwHt/3cSsbt26kZ6e3mgpKSE6E/kJFkJ0ajVWlQO7bOTnei7tWnwV0vv7YLEoOJ0aLidn/9cICw/CaK4hIFAnAWwns3nzZo4ePcrRo0fZtGkTAwYMYNCgQS0KbGtra8nJyaGystJbKP7c208FBwdTUVHB8ePHOXHiBIMHD2bw4MEYjUYKCwtZuXIlVVVVGI1GJkyYQGpqams+5Vah1+uZPHkyhw8fxmQyER4eTnBwsKQViC5HAlohRIeiqlq9iVmc/dqtajgdGk67hsPhuVVXusk6YsftBkWB5J5m0npbMBgbBquecjNh5OU5pORTB1FcXMzWrVsZOnToeUchS0pK2LdvHwCRkZEUFhayfft29uzZw6BBgxg0aFCjs9s1TaO4uJjs7Gyys7PJz88/b9+HhIQQFxfnrYfq6+tLcXEx33zzDbm5uWzdupWDBw+Snp7Orl27cLlcBAUFMWXKFMLCwi79BblMDAZDo5O0hOhKJKAVQnQILqfGob02TmY5vMvHNldouJ5+g30JDJb818tFVVWqqqooLy/33qqrqwkNDSUuLo7o6OgWXbZ2uVysWrWKsrIyCgsLmTNnTpNB6caNG71Ldt577718//33bN682RsQ79y5Ex8fHwwGA3q93rtqU1lZWYNi+KGhoURERODv71/vFhAQ0OhSnuHh4UyfPp3jx4/z3XffUVVVxbZt2wBPmayJEye2uGi/EKL1SUArhGh3hflO9m6rwVZz/pFTvQFMJgWjSXf2f4VuMUbiEo1SD7aVqapKQUEBJ06c4OTJk5SUlDRa+zMzM5Nt27ah0+m8a9QnJSWddyIVwPbt273Li1ZWVrJhwwYmTpzYYL/s7GxOnz6NTqfjmmuuQVEUUlJSSEpKIjMzk82bN1NaWkpVVVWj5zEYDMTHx5OYmEhiYiIBAQEtfi0URaFHjx4kJiayc+dODhw4QHp6OsOGDZNL90J0EBLQCiHajdOhcnB3LadOeCZr+fjp6J/hQ0iY51fTuSGqTgc6vQStTakLQBtbWjQ0NLTR0cefcrlcZGZmkp2dzcmTJxvUPdXr9QQFBREcHExwcDB+fn4UFhaSk5OD1WolNzeX3NxctmzZwrhx4+jTp0+j5ykpKWH79u0ADB482LsQQEJCAunp6d793G433377LQCDBg2qVxtVURRSU1NJSUmhrKwMp9PZYMUmi8VCbGxsq014MhqNDBs2jGHDhrXK8YQQrUcCWiFEm9E0T+5rbY1GZYWbw3tt1No8o7JJPUz06ufTaP6rOD+n08nnn3/O6dOnG91uNBq55ZZbiIqKOu8xPv74Y+9MePAU9E9ISCAxMZHY2Fj8/f0bHZHUNI3y8nJycnI4ceIE2dnZfP311/j5+TUo6K+qKuvWrUNVVZKTkxkxYgRGo5HNmzd7qxjUBa579+6lvLwcHx8fMjIyGm23oiiEhoZe4BUSQnR1EtAKIS4be61K9nEHxYVOams0am0qP71q7eevY8BQX8Ii5NfRxXC5XN5g1mAwNCgtZbfbsVqtLF++nFmzZjW6ApSqqqxatYqCggLMZjN9+/YlMTGR6OjoZl1SVxSFkJAQQkJC6Nu3L19++SWHDx9m1apV/OxnP6uXfrBv3z4KCgowmUyMHj0aRVHIyMjg9OnT5Obmsnr1ambOnIndbmfLli0ADB8+/LIuaSqE6PzkE0QI0eoqyz3VB3JPORoEsAAms4LFR0e3GAM90i3oDVfOqGxubi61tbXeyUg+Pj4XnYfpcrlYuXIlp0+fxmg0Mm3aNGJiYurt43A4+PjjjyksLOSzzz5j5syZ9dIPNE1jw4YNZGdno9frmTp1KtHR0Rf9/BRFYdy4cVitVk6fPs3y5cuZOXMmQUFBVFVVsWnTJgBGjhyJv78/8OPKVu+//z6FhYVs3rwZh8OBw+EgPDyc3r17X3R7hBBXBglohRCtwu3WKMp3ceKoneLCH1ciCg7V0z3FhF+AHh9fBbNFh/4KzYU9ffo0n3zySb37dDodfn5+BAQE0LNnz2YXuXe73XzxxRecPHkSg8HATTfd1CCYBTCZTEydOpWlS5dSUVHBihUrmD59OkajEYBt27axf/9+FEXhhhtuuKRgtk5d7dNly5ZRXFzsDaTXr1+P0+kkJiamQRmpgIAAxo8fz8qVK9mxY4d3kt91110nE6+EEBckAa0Q4qJoqkZFuZviAhdFBS5Ki12oZ+cjKQpExxlJTjMTEt41fs04HA5WrFhBdXU14eHhhIWFERERQVhYGEFBQRessuB2u9mwYQMAgYGBqKqK1Wr1lsOqqqrizJkzbN26lUGDBtG3b19MJlOTx1q1apV3VPWmm24iLi6uyXP7+voybdo0PvzwQwoKCli1ahVTpkzh8OHDbN68GYBRo0aRkpJycS9OI8xmM1OnTuXDDz+kvLycDz74gKqqKnQ6HWPHjm309UpJSaFv377s37/fW6brfM9LCCHqdI1PGiFEm9A0jZJCF6eyHBTmu3A66pfZMlsU4rqbSOxhxteva42qbdq0idzcXAAqKirIzMz0bjOZTIwaNareDP2f2r17N2VlZfj4+HhrrqqqSk1NDdXV1eTl5bFr1y6qq6v57rvv2LZtGwMGDCAtLQ2n00ltba33VleFQK/XM2XKFOLj4y/Y/pCQEG666SY+/vhjsrOz+eyzz7zPZ/DgwfTv3/8SX6GG/P39mTp1Kh999JG3rNbQoUPPO4nr2muvpaCggMrKSq655ppWb5MQomuSgFYIcUEOu8rpEw5OZjmwVv2YFGswQliEgfBuRiK6GfAP1HXJerCnT59m7969AIwePRq3201xcTHFxcWUlpbicDj46quvCAgIaHREsbq6mq1btwKe3NG6CU46nc6bSxsVFUX//v05cuQIO3bsoKysjK1bt3of91M6nY4bb7yR7t27N/t5REdHc8MNN/DFF194KyL07NmTESNGtOj1aImwsDCmTJnCihUrCA0NZfDgwefd32g0MmvWLFRV9aZFCCHEhUhAK4RolL1WpbTYRV6Ok7zTTu/kLr0B4rqbiEs0ERyqR6fregHsueqCVYC+ffs2GMlUVZUvv/ySI0eO8MUXXzB79uwGlQa+++47nE4nUVFR5x3F1ev19O7dm169epGZmcnOnTspKSnBbDbj4+ODxWLxft2rV69Gc2YvJCUlhdGjR7NhwwYSEhIYP378Zf8jJDY2lnvuuQe9Xt+sfFi9Xo9eL6u+CSGaTwJaIQQANdVuSopclBS5KS121RuJBQgM1pOYaiI2wXRF1Yr9/vvvqaysJCAgoNFL4DqdjnHjxlFaWkpRURErV65kxowZ3tHF06dPc/ToURRF8ZapuhCdTkePHj3o0aNHqz8fgH79+pGSkoKPj0+bjajLaKsQ4nKSgFaIK1xluZsj+2vJz3U22BYQpCMswkB8oomgUH2XTCc4n1OnTrFv3z4Axo8f3+QkLYPBwJQpU/jggw8oKiriq6++YuLEiaiqyjfffAN4RncvtBxsW2rOymFCCNFZSEArxBWqusrN0f215J76MZANCdMTFmEgNMJASJgek7lrTexqCbvd7k016Nev3wUnXgUEBDB58mQ++eQTjh49SkREBDqdjtLSUiwWC8OHD2+LZgshxBVJAlohrjA1VpVjB2o5ne1AO1ukIDrOSM++FgKCJG+xzvfff09VVRWBgYGMHDmyWY+JjY3luuuuY8OGDXz//ffeerIjR47EYrFczuYKIcQVTQJaIa4Q1VVujh+yk3NOIBsZbaBnXwvBofKr4FzHjx9n//79wPlTDRrTr18/ioqKOHDgAC6Xi27duslKV0IIcZnJp5gQXVxluZtjh2o5c9oJZwPZ8G6eQDa0HRc9cLlc6PUdKy+3tLSU77//nhMnTgAwYMCAFhf2VxSFUaNGUV5eTkFBAWPGjOlQz1EIIboiCWiF6KJKi10cP1RLwZkfl6HtFmOgR7qlXVbvcjgc5OXlkZOTQ05ODoWFhQQFBTF69GgSEhLavD3nqq6uZsuWLRw8eBBN01AUhb59+zY71eCnDAYDt9xyC06n01tzVgghxOUjAa0QXYiqauTnOsk6YqesxO29PzreSI90M0Ehbf+Wz8rKYseOHRQUFKCq9UuBlZeX8+mnn5KWlsa1116Ln59fg8eXl5dz5MgRVFVl6NChF1WftKSkhCNHjuB0OnE6nRgMBu/N4XCwf/9+XC5P4J+cnMyIESPOu5pVc+h0OglmhRCijUhAK0QX4HJqnDrhIOuoHZvVEzTqdBDb3URKLzMBge0z2SsvL48vvvjCG8gGBgYSFxdHbGwsUVFR7N27l71793L06FGys7MZMWIEffv2xW63c+zYMQ4fPkx+fr73eGVlZdxwww3NKs5vtVo5cuQIhw8fpri4+IL7R0VFcc0111zUYgVCCCHalwS0QnQimqZRU61SValSVeGmqtJNVYVKdaXbu5KX0aSQmGoiqYcZs6X9ym5ZrVZvMJuSksI111xDUFBQvX1GjRpFeno6X3/9NYWFhWzYsIFdu3ZRVVXlDYIVRSE2NpYzZ85w/Phxvvrqq/OubpWXl8fWrVs5deoU2tnZbzqdjqSkJHr27ElZWRkul8t7U1WV7t27k5KSIrmuQgjRSUlAK0QnUGNVOX3CzqkTDmprtEb38QvQkZxmJi7RhMHQvoGZ2+1m1apVWK1WQkNDmTBhQpOVAiIjI5k1axb79u1j06ZNVFRUABAeHk6vXr3o2bMnfn5+ZGZm8sUXX3Do0CGMRiOjRo2qF4C63W62bNnCjh07vIFsVFQUvXr1okePHvj6+hIdHU1eXp53uxBCiK5BAlohOijVrZF/xsmpLAdF+T9O7NLpwD9QT0CgjoAgPQFBevwDdfj56zrMCOP333/PmTNnMBqN3HjjjRcse6XT6RgwYAApKSmcPn2aiIgIwsPD6+2TkpLChAkTWLt2LXv37sVkMjFixAjAkyO7Zs0ab2pBr169GDp0KMHBwZfl+QkhhOhYJKAVooOpqXZzMsvBqSwHDvuPI4nhkQYSkk1ExRnR6ztG4NqYo0ePsnv3bgCuv/56QkJCmv1Yf39/0tPTm9zeq1cvnE4n69evZ/v27RiNRvR6PZs2bUJVVSwWC2PHjiU1NfVSn4YQQohORAJaIToATdUoyHNxMtNOYd6Po7Fmi0J8komEZBN+/m0/scvhcFBYWEhYWBg+Pj4X3L+kpIR169YBkJGRQUpKSqu3qV+/fjgcDr7//nt++OEH7/2JiYmMGzeu0UoJQgghujYJaIVoR26XRtYxO9nH7fVyYyOiDHRPMdEtxohO1z6jsS6Xi48//pjCwkIAgoKCiIqKIioqiujoaCwWC7W1tfVuu3btwuVyER8fz9VXX33Z2jZ48GCcTidbt27FaDRy7bXX0qdPnw6TciGEEKJtSUArRDspLnCyd7sNa7VnNr/RpJCQbKJ7SvuMxp5L0zQ2bNhAYWEhOp0OVVWpqKigoqKCI0eOnPexAQEBzS6tdSmGDRtGfHw8gYGBBAQEXNZzCSGE6NgkoBWijdntKgd328jJdgKetIL0/j7EJHSc3NgDBw5w8OBBFEVh2rRpREREkJ+f770VFBTgdDrx8fHBbDZjsVjw8fHB19eXQYMGNSs94VLVlfMSQgghOkRAu2bNGpYvX055eTlxcXHMmzfvvBND6hw+fJjHH3+c+Ph4XnjhhTZoqRAXT9M0crKdHNhtw+nwpBckppro1c8Ho6ntAtm8vDxcLhdxcXGNXqLPz89nw4YNAAwfPpz4+HhPWxMTSUxMBPCWvZJL/EIIITqCdg9oN23axFtvvcW9995Lz549WbduHc888wz/+Mc/GpTtOVdNTQ0vvfQS/fr1o7y8vO0aLEQLaZpGwRkXxw/VepejDQjSMSDDl5DwtnsLFhcX8/3333Py5EkAEhISuO666+ot8VpTU1NvMYTBgwc3eiwJZIUQQnQk7R7Qfv7554wdO5Zx48YBMG/ePPbs2cPatWu57bbbmnzc//3f/zFy5Eh0Oh3btm1rq+YK0WyqqnHmtJPjh2qpqji7HK0e0vpYSOlpbrPJXlVVVWzevJlDhw552nA2t/XUqVO8//779O/fn2HDhmE0Glm9ejXV1dWEhIScdzUuIYQQoiNp14DW5XKRlZXFzTffXO/+/v37n3fiyfr16ykoKODBBx9k2bJlFzyP0+nE6XR6v1cUxZvj11Yf2HXnkQChc2pJ/6mqxqksB8cP1VJj9QSyegMkpppJ6WnB4tM2y9E6HA62bt3K7t27cbs9I8M9evTwLkbw7bffkpWVxe7duzly5AhRUVHk5OR4F0OwWCxt0s62Iu/Bzk/6sHOT/uv8OnIftmtAW1lZiaqqDdZ3DwoKajKNIC8vj/fff58nnngCvb55M8E/+eQTPvroI+/3SUlJLFq0iIiIiItu+8WKiopq83OK1nOh/isqsPHNV3mUFNUCYLHo6XdVKH0GhGK2tF3lAk3TePvttzl8+DDg+ZmfPHmyNx8WID09naNHj7JixQqKioo4ceIEADNnzqRv375t1ta2Ju/Bzk/6sHOT/uv8OmIftnvKATQe6Td2n6qq/POf/2TmzJnExMQ0+/i33HILU6ZMaXDsoqIiXC5XUw9rVYqiEBUVRX5+vqwj3wldqP/cbo0j+2vJPFyLpnlKcPXsYyEhxYzB4KK0rLBN23v48GEOHz6MXq9n0qRJJCcnoygKeXl59fYLCAjg1ltvZe/evezevZs+ffoQERHRYL+uQN6DnZ/0Yecm/df5tXUfGgyGZg8+tmtAGxgYiE6nazAaW1FR0WDUFsBms5GZmcmJEyd44403AM9IlKZpzJ49m//5n/9pdGTJaDRiNBobbUNbv6nq2is6p8b6r6TIxZ5tNVirPOkFMfFG+l7lg9mi8z6mLVmtVm+VgqFDh5KcnHzeduh0OgYOHMjAgQPPu19XIe/Bzk/6sHOT/uv8OmIftmtAazAYSE5OZu/evQwdOtR7/969exkyZEiD/X18fPjrX/9a7761a9eyf/9+Hn74YSIjIy97m4WoY6tROXawlpOZDsBTT7bfYB+i40zt2q4NGzZgt9sJDw/nqquuate2CCGEEG2h3VMOpkyZwosvvkhycjJpaWmsW7eO4uJiJkyYAMD7779PaWkpv/71r9HpdCQkJNR7fGBgIEajscH9Qlwu1io3xw/bOZ3tQPMMypKQZCJ9oAWTqW0mfDXl2LFjZGZmotPpmDBhQrPzzIUQQojOrN0D2hEjRlBVVcWyZcsoKysjPj6e+fPne3MmysrKKC4ubudWCgGlxbXs+MFK7ikHnL3SEhahJ62vhfDIxlNaLtbp06fZtWsXAwcObPYfazabzZtqMHjw4HaZ9CiEEEK0B0XraEkQbaioqKheOa/LSVEUoqOjycvL63B5J+L83C6N/btsnMpyeO+LjDbQI91CaETr/014/PhxVq9ejaqqKIrC2LFj6dOnzwUft3btWg4fPkxISAhz5szBYGj3v1c7FHkPdn7Sh52b9F/n19Z9aDQaO8ekMCE6OmuVm+2brFSW/zjhKzXdTFDI5XnrHDp0iHXr1qFpGoGBgVRWVvLVV19RVVXFsGHDmqz9l52d7S3RNX78eAlmhRBCXFHkU0+IJuTlONi9tQaXE0xmhQlT4tEbqy7bX6V79+71pgykp6czbtw4tmzZwrZt29i6dSuVlZWMGzeuXl6s3W7nxIkTfP/99wAMGjSI6Ojoy9I+IYQQoqOSgFaIn1BVjcN7a8k8YgcgJFxPxgh/4hL8ycuruizn3LFjhzcoHTBgANdddx2KojB8+HACAwP5+uuvOXz4MNXV1YwbN47c3FyOHz/OqVOnUFXP6HFQUBBXX331ZWmfEEII0ZFJQCvEOey1Kts3WSkt8iwVm5xmJn2ABb2+9asXaJpGeXk5+/btY/fu3QAMGTKEq6++ul5qQZ8+ffD39+eLL74gJyeHt99+u95xQkJC6NGjB/369Wuy3rIQQgjRlUlAK8RZ1io3mzdaqalWMRhgwFBfYuJbr6aspmlUVlaSk5PjvVmtVu/2kSNHMnjw4EYf2717d2bMmMHy5cuxWq2EhYWRmppKamoqYWFhrdZGIYQQojOSgFYIoLzExZZvrTjsGj5+OoZd50dA4IVruObm5mK1WgkODiY4OBiTqX4AXFVVVS+Araqqn7Kg0+mIjo6mb9++9OzZ87znioiI4Pbbb8dutxMYGNjyJymEEEJ0URLQiitewRknOzZZcbshMFjPsOv8sPhcOMXg6NGjrF69ut59vr6+BAcH4+fnR2FhIRUVFfW263Q6unXrRlxcHHFxcURHR7eoIoHZbMZsNjd7fyGEEOJKIAGtuKKdyrKzd7sNTYOIKAMZI/wwGBsvjXWunJwc1q5dC3hyWGtra7HZbNTU1FBTU+PdT1EUIiMj6wWwPx3FFUIIIcSlkYBWXJHcbo2jB2o5fshTySAu0ciAIb7odBcOZktKSli5ciWqqpKSksKkSZPQ6XTY7XbKy8spLy+nurqa0NBQYmJiZERVCCGEuMwkoBVXFE3TOHPayaE9Nmw1nnqyqelmevWzNLlowbmqq6v57LPPsNvtREdHM3HiRHQ6T3qC2WymW7dudOvW7bI+ByGEEELUJwGtuGKUFrs4uNtGWYmnJJfFR6H3AB9iuzcvBaC2tpbPPvuM6upqQkJCmDJliqzIJYToMFwuV72Up47IZrPhcDguvKPosFqzDzVNw2Aw4Ofnd8nHkk9j0eXZalQO7rZx5rQTAL0BUntZSO5pxmCoPyqrqiqHDx/G7XZjsVjq3VauXElxcTG+vr5MmzYNHx+f9ng6QgjRgMvlwmq1EhAQ4L1q1BEZjUacTmd7N0NcgtbuQ6vVit1uv+T0PAloRZeWe8rB3u2e5WsBEpJM9OxnabKKwYEDB1i/fn2TxzMajUydOlXKZgkhOpSampoOH8wK0RhfX1+qqqokoBWiMU6Hxr6dNeSe9ESywaF6+mf4EhRy/tqy+/fvB6Bbt27o9Xpqa2u9N19fX8aPH09kZORlb78QQrSUBLOiM2rO/JXmkIBWdDklRS52bbZ6Jn0p0CPdTFofywUrGBQVFVFUVIROp2Pq1KkNUgqioqIoKChA07TL2XwhhBBCtJAEtKLLUFVPKa5jh+ygga+fjkFX+xIa3rwf8wMHDgCQkpLSIJhVFEVGP4QQQogOSj6hRZdQVeHmu3XVHDvoCWbjEo1cNzGg2cGsy+XiyJEjAPTu3ftyNlUIIYRoNadPnyY2NtabMnelkoBWdGqappF5pJaNa6uoKHNjNCkMHuHLoGF+GJux4ledzMxM7HY7AQEBJCQkXMYWCyGEAJg7dy633npro9u2b99ObGws+/btA2DlypXMnDmT3r17k5KSwrXXXsvDDz/cIIhzOBy88sorTJw4kdTUVHr16sX48eNZtGgR+fn5zWrX22+/zfjx4+nZsyc9e/bkpptu4uuvv663j9Vq5c9//jODBw8mJSWFUaNG8fbbbzf7ucfGxjZYOv1ixcTEsGvXLnr16tUqx+usJOVAdFo1Vje7t9RQUuSpKxsZbWDAEN8mKxicz8GDBwFIT09vtQR1IYQQTZszZw733nsvOTk5xMXF1du2ZMkS+vTpQ79+/Xj66ad59dVXufvuu/n9739PdHQ0ubm5bN26leeee4733nsPALvdzm233cahQ4f43e9+x5AhQwgICODkyZOsXr2aN998k/nz51+wXdHR0cyfP5/ExEQAPvzwQ+6++27WrFlDz549AXj88cfZtGkTL774IvHx8XzzzTf86U9/IioqiokTJ7bK6+N0OjEajRfcT6/Xy2RlLmKEdvPmzaiqejnaIkSz5Zx08M3qKkqK3OgN0D/Dh6HX+l1UMFtRUcHp06cBSTcQQoi2Mn78eMLDw1m6dGm9+202G8uXL2fOnDns2LGDl19+mb/85S88/vjjDBs2jISEBIYPH85DDz3Eu+++633ca6+9xtatW1m6dCn33HMP/fv3JykpidGjR/Pcc8/xxz/+sVntuv766xk3bhwpKSmkpKTwxz/+ET8/P3bu3OndZ8eOHcyYMYMRI0YQHx/P7bffTu/evdmzZ88Fjz9s2DAA7rnnHmJjY73f/+1vf2PChAl88MEHDB8+nKSkJDRNY/369dx8882kp6fTp08f7rzzTrKzs73H+2nKwaZNm4iNjeXbb79l0qRJpKSkMHXqVI4fP96s55+dnc1dd93FgAED6NGjB5MnT2bjxo319rHb7Tz11FNkZGSQlJTEyJEjWbx4sXf7kSNHuOOOO+jZsydpaWnccsst9dp8ObT40/8f//gHDzzwAB9//DEVFRWXo01CnNfpE3Z2ba7B5YKQcD2jJgbQPcV80SOrhw4dAiA+Pl7qywohugRN09Dste1za2YlGIPBwIwZM1i6dGm9x6xYsQKn08ktt9zCZ599hp+fH3Pnzm30GOf+3v/000+57rrr6Nu37wX3bS63281nn31GTU0NgwcP9t4/ZMgQvvzyS/Ly8tA0je+//56srCxGjx59wWN+8cUXAPz9739n165d3u/BE0yuWLGC1157jbVr1wKeGsP3338/K1euZMmSJeh0Ou69994LDi4uWrSIBQsWsGrVKgwGA7/73e+a9ZytVitjx47lgw8+YM2aNYwaNYq77rqL3Nxc7z4PPfQQn332GQsXLmTDhg0899xz+Pr6ApCXl8f06dOxWCwsXbqUVatWMXv2bFwuV7POf7FanHLwl7/8hdWrV/Phhx+ybNkyrr76aiZOnEhaWtrlaJ8Q9eSecrB7mw2AxFQTfQf5oJwtx6VpGidPnsRms+Hj41NvlS+zufGAV1VVb7pBnz592u6JCCHE5eSwo/56VrucWvf/loLZ0qx9Z8+ezSuvvMKmTZsYOXIk4Ek3mDRpEsHBwWRlZZGQkFBvmfFXX32Vv/71r97vd+zYQWBgICdOnGDEiBH1jn/PPfd4RxfT09NZvnx5s9p16NAhpk6dit1ux8/Pj9dff71enLNw4UL+8Ic/kJGRgcFgQKfT8cILLzB06NALHjssLAyAoKCgBqkCTqeTf/7zn959AG688cZ6+/ztb3+jf//+HD169Lx5s48++ijDhw8H4IEHHuDOO++ktrYWi+X8fdOnT596n4ePPvooq1evZu3atdx1111kZmayYsUKFi9ezHXXXQdA9+7dvfu/9dZbBAYG8vLLL3tTJlJSUs57ztbQ4oC2d+/e9O7dm7KyMtauXcvXX3/Nd999R2JiIpMmTWLkyJHNyvkQoqXychzs2lwDGiQkm+h7lY83SFVVlfXr13tLb/2U0Whk2LBhDBo0qF5ge+rUKaqrq7FYLCQnJ7fJ8xBCCOGRmppKRkYGH3zwASNHjiQ7O5stW7bw/vvve/f56WDE7Nmzuf7669m1axcPPvjgeUeEn3nmGWpqanjjjTfYvHlzs9uVkpLC2rVrqays5IsvvuC///u/WbZsmTeofeONN9i5cydvvvkmcXFxbNmyhT/96U9ERkZ6g7yLERsbWy+YBc+o7QsvvMDOnTspLS31jszm5uaeN6A9N4WuW7duAJSUlBAbG3veNtTU1PD3v/+ddevWUVBQgMvlora21jtCu3//fvR6vTdY/qmDBw8ydOjQNo8FL3pSWEhICLfeeiszZszghx9+YOXKlbzyyiu8++67jBs3jkmTJhESEtKabRVXsIIzTnb8UIN2tiRX/4wfg1m3282XX37J0aNHURSF2NhY7Ha7d4Uvp9OJ0+nku+++4/Tp00yYMMF7aaRudLZnz571RgCEEKJTM5k9I6XtdO6WmDNnDn/+85955plnWLJkCXFxcVx77bUAJCUlsXXr1noTpIKCgggKCiIvL6/ecZKSksjMzKx3X10gFxwc3LKnYDKRlJQEwIABA9i9ezevv/46zz//PDabjeeee47XX3+d8ePHA57g8cCBA7z66quXFNDWfTada968ecTExPD8888TFRWFqqqMHTsWp9N53mM19pnWnDlQCxcu5JtvvuGxxx4jMTERi8XC/fffj8PhALjgCO+Ftl8ul1y2q7CwkOPHj5OXl4dOpyMhIYEvvviChx56iO3bt7dGG8UVrqjAyfbvrWgqxMQbGTDE1xvMulwuvvjiC44ePYpOp+OGG25g+vTpzJkzh7vuuotf/vKXPPDAA4wZMwa9Xs/Jkyd5//33OXXqFDU1NWRlZQGSbiCE6FoURUExW9rn1sJc1Ztuugm9Xs8nn3zChx9+yK233uo9xrRp07Barc0qiTVt2jQ2btx4WeqxaprmDehcLhdOp7PBYjs6na7Zk+aNRiNut/uC+5WWlnLs2DEeeughrr32Wnr06HHZ5y9t3bqVmTNnMmnSJNLT04mMjCQnJ8e7PT09HVVV+eGHHxp9fHp6uvePkLZ0UUNSmqaxY8cO1qxZw759+/D39+eGG27g+uuvJzQ0lIqKCl555RXefvttMjIyWrvN4gpSUuRi27dWVBW6xRoYdLWvdwlbh8PB559/Tk5ODnq9nhtvvNFbZuVcer2efv36ERMTw+rVqykpKeHTTz+lW7duqKpKZGQk4eHhbfzMhBBCAPj5+TF16lQWLVpEZWUls2b9mPubkZHBz3/+c5588klycnKYPHkyMTExFBQUsHjx4nqrON5333189dVXzJo1i4cffphhw4YRFBREVlYW69evR6/XN6s9zz77LGPHjiUmJobq6mo+++wzfvjhB/7zn/8AEBAQwPDhw3nqqaewWCzExcXxww8/sGzZMhYsWNCsc8TFxfHdd98xZMgQTCZTkyPIwcHBhISE8N577xEZGUlubi7PPvtss85xsRITE1m1ahUTJkxAURReeOGFeoF6QkICM2fO5He/+x0LFy6kd+/e5OTkUFxczNSpU5k3bx5vvPEGv/rVr/j1r39NQEAAO3fuZODAgaSmpl62drc4oP3000/58ssvKS4upnv37vz85z/nmmuuqZcrERQUxNSpU3niiSdatbHiylJa7GLLxmrcboiIMjB4uJ83mK2trWX58uXk5+djNBq56aabGtQx/KmwsDBuvfVWvv32W/bt20dBQQEgo7NCCNHeZs+ezeLFixk1alSDHM8FCxYwcOBA3nnnHZYsWYLNZiM8PJyrr76a5cuXExAQAHgudS9ZsoTXX3+dJUuW8Oyzz6JpGvHx8YwZM4b77ruvWW0pLi7mN7/5DYWFhQQEBJCens5//vOfeqkEL7/8Ms8++ywPPvgg5eXlxMbG8sgjj3DnnXc26xwLFizgiSee4P333ycqKootW7Y0up9Op+Pll19mwYIFjBs3juTkZBYuXMiMGTOadZ6L8fjjj/Pwww8zbdo0QkNDeeCBB6iurq63z7PPPstzzz3Hn/70J8rKyoiJieE3v/kNAKGhoSxdupSnnnqKn/3sZ+j1evr06cOQIUMuW5sBFK259TXOmjNnDoMHD2by5MnnrdlZWlrKV199xcyZMy+5kZdLUVFRmw2JK4pCdHS0t8SHOL+yEhebN1TjckF4NwNDr/FDb/gxzWDZsmUUFBRgNpuZNm0aUVFRLTp+ZmYm69atw2g08l//9V+YzefP+ZL+6/ykDzs/6cOmVVZWdoqyg0ajsc0vRYvWdTn6sKmfX6PRSERERLOO0eIR2n/+85/NOnhoaGiHDmZFx1Ve4mLzN55gNizSwJBzgllN09iwYQMFBQVYLBamT59+UekCKSkpJCYm4na7MZlMrf0UhBBCCNGGWhzQhoSENFnHrLa2FoPBILPFxUUrL3Wx+RsrLieERugZeq0fBsOPEwz279/PwYMHURSFSZMmXVLuq16vb3ZOlRBCiM4vNzf3vIsfbNiw4YJlrS7k448/5tFHH210W1xcHOvXr7+k41+qMWPG1Jvkda5FixYxffr0Nm5R62hx5Pnqq6/idDr57//+7wbb/u///g+TycQvfvGL1mibuMJUlLnZ/I0Vp1MjJEzPsGv96wWz+fn5fPPNNwAMHz6c+Pj49mqqEEKITqhbt27eFbia2n6prr/+egYNGtToto5Qp//dd99tMmWguZf3O6IWB7QHDhzgtttua3Tb4MGD6xVDFqK5qivdbFpfhtOhEBJmYtgofwzGH4PZmpoaVq5ciaqqpKSk1FuCUAghhGgOg8HgrS97ufj7++Pv739Zz3EpLjSBurNqcUBbUVHR5IIJwcHBlJeXX2qbxBWm1qaycd0ZsnJXggL+ET2pqOjnTSdQVZVVq1ZhtVoJCQlh/PjxF7UmtxBCCCG6phYHtL6+vuTn5zda6ig/Px8fH59WaZi4MjidGls2Wskr2oWqOUCD/Qf2sf/APqKioujbty/FxcXk5uZiNBq58cYbL1iRQAghhBBXlhYHtH369OHTTz9l2LBh9YbUq6ur+fTTT+nbt2+rNlB0XapbY/v3VoqKCrDaswEYO3Ysp06dIisri/z8fPLz8737jx8/ntDQ0HZqrRBCCCE6qhYHtLNmzWL+/Pn85je/YcSIEYSGhlJSUsLmzZtxuVz1VvgQoimaprF7aw1F+U7KrDsB6NWrF3379qVv375YrVYOHTrE/v37qaysJCMjgx49erRzq4UQQgjREbU4oI2JieGJJ57gnXfe4auvvkJVVXQ6Hb179+bOO+8kJibmcrRTdDGH9tSSe8pJrTMPmz0fnU7H1Vdf7d3u5+dHRkYGgwcPprq62rsSjBBCCCHET11UwdjExEQWLFiAw+Gguroaf39/KU4vmu3EUTuZR+xomobNvQuAAQMGNLpKiKIoEswKIYQQ4rx0l/Jgk8lEaGioBLOi2SrKXBzYYwMgKDKXisoSTCYTGRkZ7dwyIYQQonM4ffo0sbGx7N+/v72b0mFc1Aitqqrs2rWL3NxcHA5Hg+0zZsy45IaJrsft1ti1pQZNhchoHYeytgOe+sVSHUMIIa4sc+fOpba2liVLljTYtn37dqZNm8bq1avp168fK1eu5K233uLAgQPY7XZiYmIYMmQId999d73J6A6Hg3//+998+umnZGZmYjAYiIuLY8KECcydO5eoqKgLtuvtt9/m3Xff5fTp0wCkpaXx29/+lrFjx3r3sVqtPPPMM6xevZry8nLi4uK4++67mTt3biu8MuJitDigraqqYsGCBZw5c6bJfVoa0K5Zs4bly5d7fyjmzZtHenp6o/sePnyY//znP+Tm5mK324mIiGD8+PFMmTKlRecUbe/o/lqqKlRMZgW9byaVlZX4+fkxcODA9m6aEEKINjZnzhzuvfdecnJyGhT7X7JkCX369KFfv348/fTTvPrqq9x99938/ve/Jzo6mtzcXLZu3cpzzz3He++9B4Ddbue2227j0KFD/O53v2PIkCEEBARw8uRJVq9ezZtvvsn8+fMv2K7o6Gjmz59PYmIiAB9++CF33303a9asoWfPngA8/vjjbNq0iRdffJH4+Hi++eYb/vSnPxEVFcXEiRNb94USzdLigHbx4sWYTCZeeuklHnjgAZ5++mn8/f358ssv2blzJ4899liLjrdp0ybeeust7r33Xnr27Mm6det45pln+Mc//uEtrH8us9nMxIkT6d69O2azmcOHD/Paa69hsVgYP358S5+OaCOlxS6OH7EDkD5Az+ovtwEwbNiwDrEUoBBCdCWapmF3a+1ybrNeadbiN+PHjyc8PJylS5fy8MMPe++32WwsX76cP/7xj+zYsYOXX36ZJ598knvuuce7T0JCAsOHD0fTfnyOr732Glu3bmXVqlX1Rm2TkpIYPXp0vX3P5/rrr6/3/R//+Efeffdddu7c6Q1od+zYwYwZMxgxYgQAt99+O++99x579uy5YED7q1/9Ck3TeOWVV7z3OZ1OBg0axGOPPcatt97K+vXr+d///V+OHDmCTqdj8ODBPPnkk94guyXcbjePPPII33//PUVFRcTExDB37lzuvffeevt98MEHvPrqq2RnZxMcHMzkyZN5+umnAc+iWk8//TRr1qyhqqqKxMRE5s+fz4QJE1rcnsulxQHt/v37mTFjhrceqE6nIyoqijvuuAOn08k777zDf//3fzf7eJ9//jljx45l3LhxAMybN489e/awdu3aRpfYTUpKqrdsXWRkJFu3buXQoUMS0HZQLpcn1QANusW6OXJ8G7W1tQQHB9O7d+/2bp4QQnQ5drfGrUuOtsu5l9yahsVw4YDWYDAwY8YMli5dym9/+1tvELxixQqcTie33HILf//73/Hz82vyUv65gfOnn37Kdddd12Q9/ItZYdLtdvP5559TU1NTb8n1IUOG8OWXXzJ79myioqLYtGkTWVlZPPnkkxc85i233MIvfvELrFYrfn5+AGzYsAGbzcbkyZMBz3Lv999/P7169aKmpoa//vWv3HvvvaxduxadrmXTn1RVJTo6mn/961+Ehoayfft2HnnkESIjI5k6dSrgSbN48sknmT9/PmPGjKGqqopt27Z5H3/77bdjtVp58cUXSUlJ4eDBg+j1+ha143JrcUBbUlJCZGQkOp0ORVGora31bhs8eDD//Oc/m30sl8tFVlYWN998c737+/fvz5EjR5p1jBMnTnDkyBFmz57d5D5OpxOn0+n9XlEUb85mWy2hWneeK3HJ1kN7bJSXl2K1H+LUnizcbjcAI0eO7HBviKZcyf3XVUgfdn7Sh13P7NmzeeWVV9i0aRMjR44EPOkGkyZNIjg4mKysLBISEjAYfgxXXn31Vf761796v9+xYweBgYGcOHHCO2Ja55577mHjxo0ApKens3z58ma169ChQ0ydOhW73Y6fnx+vv/46aWlp3u0LFy7kD3/4AxkZGRgMBnQ6HS+88AJDhw694LFHjx6Nr68vq1at8qZofvrpp4wfP95b1efGG2+s95i//e1v9O/fn6NHj9KrV69mPYc6RqOR3//+997vExIS2L59OytWrPAGtP/85z+5//77643a1qUDfvvtt+zevZsNGzaQkpKC0WgkNja2RW1ojkt9X7c4oA0MDKSmpgaAkJAQTp8+7R1lq66u9gYrzVFZWYmqqgQFBdW7PygoiPLy8vM+9he/+AWVlZW43W5mzpzpHeFtzCeffMJHH33k/T4pKYlFixYRERHR7La2luYkpHcl323czQ/bvqHWkee9LzY2llGjRtG/f/92bNnFudL6ryuSPuz8pA8bstls9dK3DAaNj/+r4RL1bcFsOH/KwbntTE9PZ8iQISxdupTRo0dz4sQJtmzZwtKlSzEajSiKgk6nq/eYO+64g8mTJ7Nz505+9atfYTAYvNv1en29fV944QWsViuvv/46P/zwQ7NT3Hr16sXXX39NZWUln3/+Ob/97W/59NNPvSkH//d//8euXbt49913iYuLY/PmzfzpT38iJiaGUaNGnffYRqORqVOn8umnnzJnzhysVitr167llVde8bbvxIkTLFq0iO3bt1NaWoqqqgAUFBTQr18/b4B/7nM/n7feeov//Oc/5OTkYLPZcDqd9O3bF6PRSFFREfn5+YwePbrRYx06dIiYmJh6gXRrpwqaTCaio6Mv6RgtDmiTkpI4ffo0V111FYMGDeKjjz7Cx8cHg8HA4sWLL2o1p8Z+8C8UqT/55JPU1tZy9OhR3n//faKiorjmmmsa3feWW26pN2ms7thFRUW4XK4Wt/diKIpCVFQU+fn5zc7j6ex27drDxo0bzn6nkJqawsCBA4mJiUFRFPLy8s738A7lSuy/rkb6sPOTPmyaw+GodyUSoL2uf53vY9VoNDZo5+zZs/nzn//MU089xX/+8x/i4uIYPnw4TqeTxMREtmzZQk1NjTeI8vX1xdfX11uFoO4qbFJSEkePHq13/NDQUEJDQwkMDETTtAbnboqiKMTHxwPQp08fdu7cyb/+9S+ef/55bDYbzzzzDK+//rq38kFaWhp79+7lpZdeajBK3Jibb76Zn/3sZ+Tl5bFx40ZMJhPXXXedt3233347MTExPP/880RFRaGqKmPHjvUGo3Wxi8vluuBzWr58OQsWLOCxxx4jIyMDPz8/XnnlFXbt2oXT6fQGx00dy2Qy1XvtGuvDS+VwOBqNCQwGQ7MHH1sc0N5www0UFBQAnh/CY8eO8dJLLwHQrVs37rrrrmYfKzAwEJ1O12A0tqKiosGo7U9FRkYCnqHziooKPvzwwyYDWqPR2ORfE239S1HTtCviF7HdbmfTph8ACA7owZRpIwgN/bFPO+trcKX0X1cmfdj5SR92LTfddBMLFizgk08+4cMPP+S//uu/vANP06ZN44033uDtt99uMInpp6ZNm8bzzz/P/v37m8yjvViapnnLlNYFfj/NZdXpdN6R1AvJyMggJiaG5cuXs379eqZMmeKt6V9aWsqxY8dYtGgRw4YNA2Dr1q0X3fatW7cyePBg5s2b573v5MmT3q/9/f2Jj4/nu+++86Z9nCs9PZ28vDwyMzNJSUm56HZcyKW+p1sc0J57mTgwMJDnn3/e+1dSbGxsi3IiDQYDycnJ7N27t17eyd69exkyZEizj6NpWpuNtIrm2fjNdlwuO0Z9IJNvHEdoqCy+IYQQoiE/Pz+mTp3KokWLqKysZNasWd5tGRkZ/PznP+fJJ58kJyeHyZMnExMTQ0FBAYsXL/amJADcd999fPXVV8yaNYuHH36YYcOGERQURFZWFuvXr292fPLss88yduxYYmJiqK6u5rPPPuOHH37gP//5DwABAQEMHz6cp556CovFQlxcHD/88APLli1jwYIFzTqHoijcfPPNvPvuu2RlZfHhhx96twUHBxMSEsJ7771HZGQkubm5PPvss819ORtITEzko48+YsOGDcTHx7Ns2TL27NnjHYEGePjhh5k/fz7h4eGMGTMGq9XKtm3buPvuuxk+fDjDhg3j/vvv5y9/+QupqakcPnwYRVEYM2bMRbertbUooHU4HCxcuJCZM2d6A1tFUUhISLjoBkyZMoUXX3yR5ORk0tLSWLduHcXFxd5SEO+//z6lpaX8+te/BmD16tWEh4d7E5IPHz7MihUrmDRp0kW3QbSustIqDh/ZA0B6r6GER0owK4QQommzZ89m8eLFjBo1qsGEowULFjBw4EDeeecdlixZgs1mIzw8nKuvvprly5d7J1JZLBaWLFnC66+/zpIlS3j22WfRNI34+HjGjBnDfffd16y2FBcX85vf/IbCwkICAgJIT0/nP//5D9ddd513n5dffplnn32WBx98kPLycmJjY3nkkUe48847m/2cp0+fzosvvkhcXFy9QTydTsfLL7/MggULGDduHMnJySxcuPCiF6264447OHDgAL/85S9RFIVp06Yxd+5cvv76a+8+s2bNwm6389prr7Fw4UJCQ0PrTUyru/9Xv/oVNpvNW7arI1G0Fo7xzp07l0ceeYQ+fVov2bxuYYWysjLi4+OZO3eud6LZSy+9RFFREY8//jgAq1atYt26dRQWFnpLho0bN47x48e3uJRFUVFRq+eBNEVRFKKjo8nLy+vyl8qWLl5LftFhfCwR3HX3rRgMl7TCcodwJfVfVyV92PlJHzatsrKSwMDA9m7GBV2O/EvRti5HHzb182s0Gi9fDm1aWhrHjx9v1YB24sSJTRYifuCBB+p9P2nSJBmN7cCOHCwkv8hTcu3aa0Z0iWBWCCGEEB1biwPaO+64gxdeeIHg4GCGDRuGxWK5HO0SnZC9Vj07EUwjPDSeXr27t3eThBBCCK/c3FxGjx7d5PYNGzZcco3Vjz/+mEcffbTRbXFxcaxfv/6Sjv9Tjz76KB9//HGj26ZPn86iRYta9XwdVYtTDu68805cLpe33qzZbG5QYuvtt99uvRZeRpJy0LrWr81m32FP0erZs+cQGdn2dX4vlyuh/7o66cPOT/qwaZJy0Dwul8s7kb0x8fHx9RZxuBjV1dUUFRU1us1oNBIXF3dJx/+p4uJiqqqqGt0WEBBAeHh4q56vy6QcDBs2TFZpEQ3knrRzLHMLACnJPbtUMCuEEKJrMBgMJCUlXdZz+Pv74+/vf1nPca7w8PBWD1o7oxYHtD/NaRXCVqOy+ftMap0F6HR6rht14aLSQgghhBCtRWbsiEuiqRo7N1spKt8BeOoU15VQEUIIIYRoCy0eof3mm28uuM+F1jEWXcexQ3ZOnTqOw1WG0WhiyJCM9m6SEEIIIa4wLQ5oX3755QvuIwHtlaGkyMXh/TWUWXcDMHjwVfj4+LRvo4QQQghxxWlxQPv//t//a3BfVVUV27ZtY9OmTfz3f/93a7RLdHAOu8rOzVaqbZm43FVYLBYGDhzY3s0SQgghxBWoxTm0ERERDW7JycnceuutDBs2jC+++OJytFN0IJqmsWebDZvVRUXNXsCz3rbJJEvcCiGEEG3p9OnTxMbGsn///vZuSrtq1Ulhffv2Zfv27a15SNEBZR93kJ/rpLr2GE6XFT8/P/r379/ezRJCCNGJzJ07l1tvvbXRbdu3byc2NpZ9+/YBsHLlSmbOnEnv3r1JSUnh2muv5eGHH24QxDkcDl555RUmTpxIamoqvXr1Yvz48SxatIj8/Pxmt+2tt97i6quvJjk5mRtuuIEtW7bU2261Wvnzn//M4MGDSUlJYdSoUS2qwR8bG8vq1aubvf/5xMTEsGvXLnr16tUqx+usWjWgLS4uRqeTwgldWUWZi4O7baiaiyq75xfJkCFDLrkQtRBCiCvLnDlz+P7778nJyWmwbcmSJfTp04d+/frx9NNP88tf/pI+ffrw5ptvsn79ep5//nm6d+/Oc889532M3W5nzpw5vPjii8yaNYuPP/6YVatW8T//8z+UlZXx5ptvNqtdn332GY8//ji/+c1vWLNmDUOHDuX2228nNzfXu8/jjz/Ohg0bePHFF9mwYQP33Xcfjz32GGvWrLn0F+as5i5eoNfriYyMvOI/h1scfR48eLDBbe/evaxYsYL//Oc/9O3b93K0U3QAmqaxd7sNVQXNcAy7vYbAwED69OnT3k0TQghxDk3TcLna59bcVdzGjx9PeHg4S5curXe/zWZj+fLlzJkzhx07dvDyyy/zl7/8hccff5xhw4aRkJDA8OHDeeihh3j33Xe9j3vttdfYunUrS5cu5Z577qF///4kJSUxevRonnvuOf74xz82q12vvfYas2fP5rbbbqNHjx48+eSTxMTE8M4773j32bFjBzNmzGDEiBHEx8dz++2307t3b/bs2XPB4w8bNgyAe+65h9jYWO/3f/vb35gwYQIffPABw4cPJykpCU3TWL9+PTfffDPp6en06dOHO++8k+zsbO/xfppysGnTJmJjY/n222+ZNGkSKSkpTJ06lePHjzfr+WdnZ3PXXXcxYMAAevToweTJk9m4cWO9fex2O0899RQZGRkkJSUxcuRIFi9e7N1+5MgR7rjjDnr27ElaWhq33HJLvTZfDi0O55944okmt/Xr14+77777khokOq7iAhflpW5QHBSUeHJnhw4dil6vb+eWCSGEOJfbDauWVbTLuSf9LIjmDBYaDAZmzJjB0qVL+e1vf+tdhXTFihU4nU5uueUW/v73v+Pn58fcuXMbPca5K5d++umnXHfddU0OrDVnlVOHw8HevXsbLCI1atSoeimVQ4YM4csvv2T27NlERUWxadMmsrKyePLJJy94ji+++IL+/fvz97//nTFjxtT7DM3OzmbFihW89tpr3iveNTU13H///fTq1Yuamhr++te/cu+997J27drzXhVftGgRCxYsICwsjD/+8Y/87ne/47PPPrtg+6xWK2PHjuWRRx7BbDbz4Ycfctddd7Fx40ZiY2MBeOihh9ixYwcLFy6kd+/enDp1itLSUgDy8vKYPn06I0aMYOnSpfj7+7N9+3ZcLtcFz30pWhzQ/uUvf2lwX91au8HBwa3RJtFBHT1Y6/nCdAy73U5ISMgVn7MjhBDi4s2ePZtXXnmFTZs2MXLkSMCTbjBp0iSCg4PJysoiISGh3uX0V199lb/+9a/e73fs2EFgYCAnTpxgxIj6K1Xec8893tHF9PR0li9fft72lJaW4na7GywlGx4eTmFhoff7hQsX8oc//IGMjAwMBgM6nY4XXniBoUOHXvA5h4WFARAUFERkZGS9bU6nk3/+85/efQBuvPHGevv87W9/o3///hw9evS8n8GPPvoow4cPBzyrvN55553U1tZisVjO274+ffrUu/L66KOPsnr1atauXctdd91FZmYmK1asYPHixVx33XUAdO/e3bv/W2+9RWBgIC+//DJGoxGAlJSU856zNbQ4oO3du/flaIfo4EoKXZQWudGwk5vnSdIfNmyY5EwLIUQHpNd7Rkrb69zNlZqaSkZGBh988AEjR44kOzubLVu28P7773v3+enI6uzZs7n++uvZtWsXDz744HlTHJ555hlqamp444032Lx5c7Pb9dNzappW77433niDnTt38uabbxIXF8eWLVv405/+RGRkpDfIuxixsbH1glnwjNq+8MIL7Ny5k9LSUlRVBSA3N/e8Ae258Vq3bt0AKCkp8Y6yNqWmpoa///3vrFu3joKCAlwuF7W1td4c4v3796PX673B8k8dPHiQoUOHeoPZttLigPbMmTOUl5c3GtgePHiQkJAQoqOjW6VxouM4erAWVXNhU7fjdDoIDw+nR48e7d0sIYQQjVAUpVmX/TuCOXPm8Oc//5lnnnmGJUuWEBcXx7XXXgtAUlISW7duxel0egOkoKAggoKCyMvLq3ecpKQkMjMz691XF8g19wpyaGgoer2eoqKieveXlJQQEREBeHJ8n3vuOV5//XXGjx8PeILHAwcO8Oqrr15SQOvr69vgvnnz5hETE8Pzzz9PVFQUqqoyduzYC04aa2ySWF0wfD4LFy7km2++4bHHHiMxMRGLxcL999+Pw+EAuOAI74W2Xy4tHl5755132LZtW6Pbtm/fXi9pWnQNZSUucnPyOVOyksJizy+LESNGNCsfSQghhDifm266Cb1ezyeffMKHH37Irbfe6v18mTZtGlartVklsaZNm8bGjRsvqR6ryWSif//+DSZBbdy4kYwMz9LuLpcLp9PZ4AqlTqdrVsAInlRNt9t9wf1KS0s5duwYDz30ENdeey09evSgouLy5kZv3bqVmTNnMmnSJNLT04mMjKxXiSI9PR1VVfnhhx8afXx6err3j5C21OKANjMzk/T09Ea39e7du8FfR6JzU1WV9V/9wJnSVTjdFfj5+TF16lQSExPbu2lCCCG6gLrPlUWLFlFQUMCsWbO82zIyMvj5z3/Ok08+yeOPP87WrVvJyclhx44dLF68GEVRvIHlfffdx+DBg5k1axavv/46+/bt49SpU2zYsIH169c3ewLzfffdx+LFi/nggw84duwYf/nLX8jNzeWOO+4AICAggOHDh/PUU0+xadMmTp06xZIlS1i2bBk33HBDs84RFxfHd999R2FhIeXl5U3uFxwcTEhICO+99x4nTpzgu+++O+/k/NaQmJjIqlWr2L9/PwcOHOCBBx6oF6gnJCQwc+ZMfve737F69WpOnTrFpk2bvPnJ8+bNo6qqil/96lfs2bOHrKwsPvroo2ZXWbhYLb4gUVNT0+Rwsslkwmq1XnKjRMdQVlbGqi/WUFziSYRPSkxl/IQx+Pj4tHPLhBBCdCWzZ89m8eLFjBo1qkGO54IFCxg4cCDvvPMOS5YswWazER4eztVXX83y5csJCAgAPJe6lyxZwuuvv86SJUt49tln0TSN+Ph4xowZw3333destkybNo2ysjL+8Y9/UFhYSM+ePXn33XeJi4vz7vPyyy/z7LPP8uCDD1JeXk5sbCyPPPIId955Z7POsWDBAp544gnef/99oqKiGizcUEen0/Hyyy+zYMECxo0bR3JyMgsXLmTGjBnNOs/FePzxx3n44YeZNm0aoaGhPPDAA1RXV9fb59lnn+W5557jT3/6E2VlZcTExPCb3/wG8KRtLF26lKeeeoqf/exn6PV6+vTpw5AhQy5bmwEUrbkF48568MEHGTNmDNOnT2+w7eOPP+arr77ipZdearUGXk5FRUVtNiSuKArR0dHk5eU1u0ZfeyooKGDZsmW4XC50ionUpBFMvLHfFZtm0Nn6TzQkfdj5SR82rbKyksDAwPZuxgUZjcY2vxQtWtfl6MOmfn7rqmg1R4tTDoYMGcJnn33WIEflwIEDfPbZZ80qWSE6trpCzi6XC4uxG7FhNzHimj5XbDArhBBCiI6txSkHM2bMYM+ePSxcuJCYmBhCQ0MpLS3lzJkzxMXFMXPmzMvRTtGGDh48SGFhIXq9kcjg64iNDyQwWBZPEEII0bnl5uYyevToJrdv2LDhgmWtLuTjjz/m0UcfbXRbXFwc69evv6TjX6oxY8Y0utwweBZjaOwKfGfQ4oDW19eXp59+ms8//5w9e/ZQXFxMYGAgs2bN4sYbb2y3cg2iddjtdjZt2gRAkO8A9DofevQ2t3OrhBBCiEvXrVs31q5de97tl+r6669n0KBBjW5r69qsjXn33XebTBlo7uX9juiiqtRZLBZmzJhxWZOSRfvYsmULNpsNX59gAn16ERltIDi0kxQzFEIIIc7DYDCQlJR0Wc/h7++Pv7//ZT3HpTh3cltX0uIc2srKSs6cOdPotjNnzlBZWXnJjRLto6SkhL179wIQ6JOBoujo0VtG3IUQQgjRsbU4oH399debXAv5888/54033rjkRom2p2kaGzduRFVVwkO742OMISzSQGi4jM4KIYQQomNrcUB75MgRBg4c2Oi2AQMGcOTIkUttk2gHWVlZnD59Gr1ej6/+KgDSJHdWCCGEEJ1AiwPaqqqqJnND/Pz8JOWgE3K5XHz77bcAxMf2Q68LICRMT1ikjM4KIYQQouNrcUAbFBTEqVOnGt126tSpDp0ILRq3a9cuKisr8fPzQ+f0LGvco7dF6s4KIYQQolNocUA7cOBAPvnkkwYTw/Ly8vj000+bLFUhOqaamhq2bdsGQHL3oWiqkcBgPZHRMjorhBBCdESnT58mNja2wSJXV7IWRy0zZ85k586d/OEPf6BPnz7ehRUOHDiAv78/s2bNuhztFJfJjh07cLlcREZEYqvwlPLo0dsso7NCCCEuq7lz51JbW8uSJUsabNu+fTvTpk1j9erV9OvXj5UrV/LWW29x4MAB7HY7MTExDBkyhLvvvpu+fft6H+dwOPj3v//Np59+SmZmJgaDgbi4OCZMmMDcuXOJiopqVtveeust/vWvf1FYWEhaWhpPPPEEw4YN8263Wq0888wzrF69mvLycuLi4rj77ruZO3fupb8w4qK0eIQ2NDSUZ599lmuuuYaTJ0/yzTffcPLkSa699lqee+45DAYZ2essrFart0xXQuxg3C4F/0Ad0XHtX/hZCCFE1zZnzhy+//77RletWrJkCX369KFfv348/fTT/PKXv6RPnz68+eabrF+/nueff57u3bvz3HPPeR9jt9uZM2cOL774IrNmzeLjjz9m1apV/M///A9lZWW8+eabzWrXZ599xuOPP85vfvMb1qxZw9ChQ7n99tvJzc317vP444+zYcMGXnzxRTZs2MB9993HY489xpo1ay79hREX5aKiz9DQUH75y196v1dVld27d/Pvf/+bnTt38v7777daA8Xls337dtxuN1FR0VSWeFYH6ZEuubNCCNHZaZqGy+Vql3MbDIZmfY6MHz+e8PBwli5dysMPP+y932azsXz5cv74xz+yY8cOXn75ZZ588knuuece7z4JCQkMHz4cTdO897322mts3bqVVatW1Ru1TUpKYvTo0fX2PZ/XXnuN2bNnc9tttwHw5JNP8s033/DOO+8wf/58wHN1c8aMGYwYMQKA22+/nffee489e/YwceLE8x7/V7/6FZqm8corr3jvczqdDBo0iMcee4xbb72V9evX87//+78cOXIEnU7H4MGDefLJJ0lMTGzWcziX2+3mkUce4fvvv6eoqIiYmBjmzp3LvffeW2+/Dz74gFdffZXs7GyCg4OZPHkyTz/9NAAVFRU8/fTTrFmzhqqqKhITE5k/fz4TJkxocXsul0saTs3Pz2f9+vV88803lJWVYTAY6g3Ji46rqqqKffv2AdA97ioKT4Ovn46YBBmdFUKIzs7lctULmNrSL3/5y2Yt8WowGJgxYwZLly7lt7/9rTcIXrFiBU6nk1tuuYW///3v+Pn5NXkp/9zA+dNPP+W6666rF8w2tW9THA4He/fu5YEHHqh3/6hRo9i+fbv3+yFDhvDll18ye/ZsoqKi2LRpE1lZWTz55JMXPMctt9zCL37xC6xWK35+fgBs2LABm83G5MmTAc/8lvvvv59evXpRU1PDX//6V+69917Wrl2LTteyi+uqqhIdHc2//vUvQkND2b59O4888giRkZFMnToVgLfffpsnn3yS+fPnM2bMGKqqqrzza1RV5fbbb8dqtfLiiy+SkpLCwYMH0ev1LWrH5dbigNbhcLB582a+/vprDh065L1/ypQp3HzzzQQEBLRqA8XlsX37dlRVJSYmhvLCMABS083odDI6K4QQom3Mnj2bV155hU2bNjFy5EjAk24wadIkgoODycrKIiEhoV4646uvvspf//pX7/c7duwgMDCQEydOeEdM69xzzz1s3LgRgPT09CYXhqpTWlqK2+0mPDy83v3h4eEUFhZ6v1+4cCF/+MMfyMjIwGAwoNPpeOGFFxg6dOgFn/Po0aPx9fVl1apVzJgxA/AE4+PHj/fGUDfeeGO9x/ztb3+jf//+HD16lF69el3wHOcyGo38/ve/936fkJDA9u3bWbFihTeg/ec//8n9999fb9S2bs2Bb7/9lt27d7NhwwZSUlIwGo3Exsa2qA1todkB7fHjx/n666/ZtGkTNpsNi8XC6NGjGTZsGIsWLWLw4MESzHYSlZWVHDhwAICU7oPJyQKLj0J8oqmdWyaEEKI1GAyGeqmBbX3u5kpNTSUjI4MPPviAkSNHkp2dzZYtW+qlLv50ZHX27Nlcf/317Nq1iwcffPC8qQTPPPMMNTU1vPHGG2zevLnZ7frpOTVNq3ffG2+8wc6dO3nzzTeJi4tjy5Yt/OlPfyIyMpLrrrvuvMc2Go1MmTKFTz75hBkzZlBTU8OaNWt46aWXvPtkZ2fzwgsvsHPnTkpLS1FVFYDc3NwWB7QA77zzDosXLyYnJ4fa2lqcTid9+vQBoLi4mPz8fK655ppGH3vgwAGio6NJSUlp8XnbUrN+6n7/+99z+vRpANLS0hgzZgwjRozAYrFQU1NzWRsoWt+2bdtQVZW4uDgqSsIAlaQeZnR6GZ0VQoiuQFGUZl327wjmzJnDn//8Z5555hmWLFlCXFwc1157LeDJf926dStOp9P7fIKCgggKCiIvL6/ecZKSksjMzKx3X7du3QAIDg5uVltCQ0PR6/UUFRXVu7+kpISICM9cE5vNxnPPPcfrr7/O+PHjAejduzcHDhzg1VdfvWBACzB9+nR+9rOfUVxczMaNGzGbzYwZM8a7fd68ecTExPD8888TFRWFqqqMHTsWp9PZrOdxruXLl/PEE0/w2GOPkZGRgZ+fH6+88gq7du0CwGKxnPfxF9reUTQrEaMumL3qqqv4+c9/ztixYzvNExT1VVRUeFNFeqZlUFWhojdAQoqMzgohhGh7N910E3q9nk8++YQPP/yQW2+91TsaOm3aNKxWK2+//fYFjzNt2jQ2btx4SbVZTSYT/fv396Yp1Nm4cSMZGRmAJz/Z6XQ2yGXV6XTekdQLycjIICYmhuXLl/PJJ58wZcoUTCbP53BpaSnHjh3joYce4tprr6VHjx5UVFRc9HPaunUrgwcPZt68efTt25ekpCROnjzp3e7v7098fDzfffddo49PT08nLy+vwR8LHU2zRmjnzp3Lhg0b2LlzJzt37iQ1NZWxY8c2yFURHd/WrVtRVZWEhASqSkIBFwlJJkymFldwE0IIIS6Zn58fU6dOZdGiRVRWVtarZ5+RkcHPf/5znnzySXJycpg8eTIxMTEUFBSwePFiFEXxBpb33XcfX331FbNmzeLhhx9m2LBhBAUFkZWVxfr165s9iem+++7joYceYsCAAQwePJj33nuP3Nxc7rjjDgACAgIYPnw4Tz31FBaLhbi4OH744QeWLVvGggULmnUORVG4+eabeffdd8nKyuLDDz/0bgsODiYkJIT33nuPyMhIcnNzefbZZ5v7cjaQmJjIRx99xIYNG4iPj2fZsmXs2bOH+Ph47z4PP/ww8+fPJzw8nDFjxmC1Wtm2bRt33303w4cPZ9iwYdx///385S9/ITU1lcOHD6MoSr1R5fbWrIB28uTJTJ48mczMTG8e7f/93//x1ltvcdVVVwHNmz0o2ld5eTmHDx8GoF/foRzc4QIFktPM7dwyIYQQV7LZs2ezePFiRo0a1WDC0YIFCxg4cCDvvPMOS5YswWazER4eztVXX83y5cu983csFgtLlizh9ddfZ8mSJTz77LNomkZ8fDxjxozhvvvua1Zbpk2bRllZGf/4xz8oLCykZ8+evPvuu8TFxXn3efnll3n22Wd58MEHKS8vJzY2lkceeYQ777yz2c95+vTpvPjii8TFxTFkyBDv/TqdjpdffpkFCxYwbtw4kpOTWbhwoXcCWUvdcccdHDhwgF/+8pcoisK0adOYO3cuX3/9tXefWbNmYbfbee2111i4cCGhoaH1JqbV3f+rX/0Km83mLdvVkShacwuznaOxSgdRUVGMHz+e0aNHt3hy2Jo1a1i+fLl3tY158+aRnp7e6L5btmxh7dq1ZGdn43K5iIuLY+bMmd7ZeC1RVFR0UfkoF0NRFKKjo8nLy2t2LbzWtmbNGo4cOUJiYiIJ3cZzOttBdJyRjJF+7dKezqQj9J+4NNKHnZ/0YdMqKysJDAxs72ZckNFobLPPXXF5XI4+bOrn12g0enOXL+SirjObTCauu+46Hn/8cf73f/+XadOmYbfbee+991o8q3LTpk289dZbTJ8+nUWLFpGens4zzzxDcXFxo/sfOnSI/v37M3/+fJ577jn69OnDokWLOHHixMU8lStGUVERR44cAeCqQUPJOeUAIKWnjM4KIYQQonO75HVqo6KiuO2225g9eza7du1i/fr1LXr8559/ztixYxk3bhzgmdm3Z88e1q5d612l41zz5s2r9/1tt93G9u3b2bFjB0lJSRf9PLq6H374AYAePXpQXR6EptoJCdMTEi5LFQshhLgy5ObmMnr06Ca3b9iw4ZJrrH788cc8+uijjW6Li4trcZx0IY8++igff/xxo9vqBguvBK0WzdQtzTZ48OBmP8blcpGVlcXNN99c7/7+/ft7RxMvRFVVbDYb/v7+Te7jdDrrDY8rioKPj4/367ZQd572yDU+c+YM2dnZKIrC0KFXs23j2dHZXrLMbXO1Z/+J1iF92PlJH4pL1a1bN9auXXve7Zfq+uuvZ9CgQY1uuxyl1P7whz/wi1/8otFtnWl9gEt9X7fr8FxlZSWqqhIUFFTv/qCgIMrLy5t1jM8//xy73c7w4cOb3OeTTz7ho48+8n6flJTEokWLmp2X0ZqioqLa9HyapvHZZ58BnqX6dGo0Tkc+gUFGBmUkyMpgLdTW/Sdan/Rh5yd92JDNZus0dWfbs51Go5G0tLTLeo6QkBBCQkIu6znOFR0dTXR0dJudD1q/D00m0yU/hw5xvbmxqLw5kfp3333Hhx9+yB/+8IcGQfG5brnlFqZMmdLg2EVFRbhcrotoccspikJUVBT5+fltOpnhxIkTZGdno9fr6dOnD9s2epbuS0gxUFCQ32bt6Ozaq/9E65E+7PykD5vmcDg6xWQrmRTW+V2OPnQ4HA0WygDPqnPNHXxs14A2MDAQnU7XYDS2oqLivAEqeCaT/etf/+Lhhx+mf//+593XaDQ2+ddEW/9S1DStzc6paRqbNm0CPGkc1RVmrNU1GI2eZW7lA6Hl2rL/xOUhfdj5SR82TlXVBsX+hejo6t7Ll/qebteffIPBQHJyMnv37q13/969e+nZs2eTj/vuu+946aWX+M1vfuOtgysaOnbsGMXFxZhMJjIyMsg6agege6oJg1FSDYQQoqvw9fWlqqqq2StVCdFR1NTUYDZfesWldk85mDJlCi+++CLJycmkpaWxbt06iouLmTBhAgDvv/8+paWl/PrXvwZ+DGbnzZtHWlqad3TXZDLh6+vbXk+jw3G73d7KBldddRWOWiOlRXYUBRJTpVSXEEJ0JQaDAT8/P6qrq9u7KedlMplwOBzt3QxxCVqzDzVNw2AwdI2AdsSIEVRVVbFs2TLKysqIj49n/vz53pyJsrKyejVp161bh9vt5t///jf//ve/vfePGjWKBx54oM3b31EdPHiQiooKfHx8GDhwIAd2eUZno+ON+PjKJSkhhOhqDAZDh15cQRbG6Pw6ch+2e0ALMHHiRCZOnNjotp8GqY8//ngbtKhzc7lcbN26FfBUNtBUA2dO1QCyzK0QQgghuh4ZquuCjh07htVqxd/fn759+5J93IGqQnConpCwDvE3jBBCCCFEq5GAtgs6duwYAH369EFR9JzM9KQbJMsyt0IIIYTogiSg7WJsNhunTp0CPMvcnjnlxF6rYfFRiI7rHEW3hRBCCCFaQgLaLiYzMxNVVQkPDyckJMRbqisx1SyrggkhhBCiS5KAtos5evQoAGlpaZQWu6ksd6PTQ/cUUzu3TAghhBDi8pCAtguxWq3k5OQAnoD2xNnR2bjuJkxm6WohhBBCdE0S5XQhx48fByAqKgqD3o+8XM9ay0k9ZDKYEEIIIbouCWi7kHPTDbKPOUCD8G4GAoP17dwyIYQQQojLRwLaLqKyspK8vDwAkhJTOJXlWZZOFlIQQgghRFcnAW0XUVd7NjY2lsoyM06nhq+/jshoWUhBCCGEEF2bBLRdRF1Am5aWRu4pz+hsfKIJRZFSXUIIIYTo2iSg7QLKy8spLCxEURTi45IpLnABEJsgCykIIYQQouuTgLYLqJsMFh8fT1mxAU2D4FA9fgEyGUwIIYQQXZ8EtF3AudUNck960g1kdFYIIYQQVwoJaDu5kpISSktL0el0REclUlbiBiAmQVYGE0IIIcSVQQLaTq5udDYxMZHiAk93hkUasPhI1wohhBDiyiBRTyemaVq9dIMzkm4ghBBCiCuQBLSdWFFRERUVFRgMBsJD46msUFF0EB0vAa0QQgghrhwS0HZidbVnExMTKfQsEkZklAGTSbpVCCGEEFcOiXw6KU3TvAFtamoquSedAMR2l8lgQgghhLiySEDbSRUVFVFZWYnBYCA4KJ4aq4reAN1iJN1ACCGEEFcWCWg7qbrR2aSkJApzNQCiYowYDLLUrRBCCCGuLBLQdkL10g1SUjlzWtINhBBCCHHlkoC2EyosLPSmG/j7xmKv1TCaFCK6Gdq7aUIIIYQQbU4C2k7o3HSDgjOe+6LjjOj0km4ghBBCiCuPBLSdzLnpBikpqeTlnF1MobtMBhNCCCHElUkC2k6moKCAqqoqjEYjPqZYXE6w+CqERUi6gRBCCCGuTBLQdjLnphvknVYBiOtuQlEk3UAIIYQQVyYJaDuRc9MNErunUJjnAiAuUaobCCGEEOLKJQFtJ5Kfn091dTVGoxE9MWgaBIfqCQjUt3fThBBCCCHajQS0nUjd6GxycnK9dAMhhBBCiCuZBLSdhKZpHD9+HIDYmGQqytwoCsQkSHUDIYQQQlzZJKDtJM5NN8AVBUBktAGzRbpQCCGEEFc2iYY6iSNHjgA/STeQyWBCCCGEEBLQdgYOh4NDhw4BEBPVg1qbhsEI3WIk3UAIIYQQQgLaTuDo0aM4nU6CgoJw2iIBiIk3oZelboUQQgghJKDt6DRNY9++fQD06dOX/FypPSuEEEIIcS4JaDu4goICioqK0Ov1hAT2wO0CXz8doeFSe1YIIYQQAiSg7fDqRmd79OhBUZ6nu+ISjbLUrRBCCCHEWRLQdmC1tbUcPXoUgJ5pfSkqOJtuIIspCCGEEEJ4SUDbgR08eBC32014eDhOWwhoEBKmxy9A0g2EEEIIIeoY2rsBAGvWrGH58uWUl5cTFxfHvHnzSE9Pb3TfsrIy3nnnHbKyssjPz2fSpEnMmzevbRvcBjRNY//+/QD079+fM6dlMpgQQgghRGPafYR206ZNvPXWW0yfPp1FixaRnp7OM888Q3FxcaP7O51OAgMDmT59Ot27d2/j1rad06dPU15ejtFoJDYmxbvUbXSc1J4VQgghhDhXuwe0n3/+OWPHjmXcuHHe0dnw8HDWrl3b6P6RkZHcddddjBo1Cl9f3zZubdupmwyWnp5O4RnPBLDwbrLUrRBCCCHET7VryoHL5SIrK4ubb7653v39+/f3LvXaGpxOJ06n0/u9oij4+Ph4v24Ldedpzvmqq6vJysoCoF+/fuzZ4gA8k8GkukH7aEn/iY5J+rDzkz7s3KT/Or+O3IftGtBWVlaiqipBQUH17g8KCqK8vLzVzvPJJ5/w0Ucfeb9PSkpi0aJFREREtNo5misqKuqC+6xbtw5N00hMTCQqMpVNVSfQ6xUGZsRjMsmEsPbUnP4THZv0Yecnfdi5Sf91fh2xDzvEpLDGIv3WjP5vueUWpkyZ0uDYRUVFuFyuVjvP+SiKQlRUFPn5+Wia1uR+qqqyefNmAHr16sWenWcAiIwxUFJS2CZtFQ01t/9ExyV92PlJH3Zu0n+dX1v3ocFgaPbgY7sGtIGBgeh0ugajsRUVFQ1GbS+F0WjEaGx8MlVbv6k0TTvvOU+dOkV1dTUWi4Xk5GTWf2EFIDbBKL8AOoAL9Z/o+KQPOz/pw85N+q/z64h92K4zjAwGA8nJyezdu7fe/Xv37qVnz57t1Kr2VZc7m5qaSkUZ1No0DEaIjJbqBkIIIYQQjWn3lIMpU6bw4osvkpycTFpaGuvWraO4uJgJEyYA8P7771NaWsqvf/1r72Oys7MBz0palZWVZGdnYzAYiIuLa4+n0GpUVSUzMxOAlJQUck96JoNFxRrR6zteArYQQgghREfQ7gHtiBEjqKqqYtmyZZSVlREfH8/8+fO9ORNlZWUNatI+8sgj3q+zsrL47rvviIiI4KWXXmrTtre2/Px8ampqMJlMxMTEcnhXXbqBLKYghBBCCNGUdg9oASZOnMjEiRMb3fbAAw80uG/p0qWXu0ntom50NikpibJiDYddw2RWCO/WIbpJCCGEEKJDkir9HYSmad6ANjU1ldxTnnSDmHgjOp2kGwghhBBCNEUC2g6iqKiIyspKDAYDsTHx5Od4FoKQdAMhhBBCiPOTgLaDqKtu0L17d0qLweUCH1+FkHBZSEEIIYQQ4nwkoO0gjh8/DniqG5w55RmdjUmQpW6FEEIIIS5EAtoOoKysjNLSUnQ6HXFxiRScqUs3kNqzQgghhBAXIgFtB1A3GSwuLo6qch2qCn7+OgKDJd1ACCGEEOJCJKDtAM6tblCU7wIgMtog6QZCCCGEEM0gAW07q6qqoqCgAPDUny08G9BGREm6gRBCCCFEc0hA287qqhvExMSAasFmVVF0EBYhiykIIYQQQjSHBLTt7NzqBnXpBqHhBgxGSTcQQgghhGgOCWjbUU1NDWfOnAE8AW1hgae6QUSUjM4KIYQQQjSXBLTt6MSJE2iaRkREBP7+AZQUnM2f7SYBrRBCCCFEc0lA247qqhukpKRQVuLG5QKTWSEoRMp1CSGEEEI0lwS07cThcHDq1CmgLn/2bLpBNynXJYQQQgjREhLQtpOTJ0+iqipBQUGEhoZ6J4RJ/qwQQgghRMtIQNtO6sp1JScn43RolJe5AQjvJvVnhRBCCCFaQgLaduB2u8nOzgY8AW1xoQs0CAjU4eMrXSKEEEII0RISPbWDM2fOYLfbsVgsREdHn5NuIKOzQgghhBAtJQFtOzhx4gTgWepWUZQfJ4RJ/qwQQgghRItJQNvGNE2rlz9rrVKx1WjodBAqy90KIYQQQrSYBLRtrLi4mMrKSvR6PQkJCT8udxthwGCQcl1CCCGEEC0lAW0bqxudTUhIwGg0UlTwY/1ZIYQQQgjRchLQtrFz0w1Ut+apcIDkzwohhBBCXCwJaNtQRUUFhYWFgGdCWGmJG/fZ5W4Dg2W5WyGEEEKIiyEBbRs6ePAgANHR0fj6+tarbiDL3QohhBBCXBwJaNtQXUCbnJyMpmkUnKkLaKX+rBBCCCHExZKAto3Y7fZ6+bMlhS6qKlT0eugWLfmzQgghhBAXSwLaNnLy5EncbjchISGEhISQddQOQFyiCZNZukEIIYQQ4mJJJNVGMjMzAc/obHWVm4IznuoGyWnm9myWEEIIIUSnJwFtG3C73WRnZwOegPbE2dHZyGgD/oFS3UAIIYQQ4lJIQNsGcnNzcTgc+Pv7ExoayekTDgCSe8rorBBCCCHEpZKAtg3UTQbr1asXp0+4cLshMEhHeKRMBhNCCCGEuFQSUbWBq6++mujoaJKTU9mwqhqApDSz1J4VQgghhGgFMkLbBiwWC7169cJZG0itTcNkVojtbmrvZgkhhBBCdAkS0LYRTdPYt7MEgMRUM3q9jM4KIYQQQrQGCWjbSFmJm8L8WnQ6SEyV0VkhhBBCiNYiAW0byTxSC0BcdxNmi7zsQgghhBCtRSaFtYFjeTbyTjsBUCM0TlXYCTDq8FfcaE4H+TVu8mrcnKl2c8bqosDqIjrQzI09Q0gIOn9pL01Vwe0CvR5Fp8fp1jhUVMO+ghr8TXp6hvuQHGrGiAYuF7id4FZBc6O53RRbXZysdKJToFeoCV+jHnQ6z02vB7MPiqHpH5OSGifrMiv4OqsCu0ule4iFpGAziSFmEoPNxAWZMeh+TK/QNA1sVnA4wGLBbTCTWe5gX34Nh4o8bR4c68+gaD8CzPr6j3PYwVpFTUUVxwqrqXZphPlbCA30JTQ0AIOff5NtdasaRVYnZ6ocZ29O8iod+Jp0jEsOYmC0H7oWTNJTNY0ah0qVw41JrxDqY2jxJD/N6fS8FjVWMFsgKBgUHSfK7Gw6VUVmaS39uvkyNiWIYEvjz8vhVtl0qorvT1URaNaTEePPgGhfTz8K4OzPjr0WbFZcBgXN6QCDsf3a43ICynnfVx2J53eMG1Q3aBqggcbZrwGzBUXfOX7eNFWF6gpAAZMZTCYUXedo+8XQVNXTT6rquWnuH7+uuwEYTZ73hNGIorvwgIumqp7fx45asNs9ny11FO8/nuNafMDi0+BnRNM0cDqgtgZsNs/XjTGawGwGsw+YzQ36S3O7PY91Os/+jKrn/HzW/Yz6gI9Pk32tud1grfLcnE5QlJ/cdKDXgd7o+Vw0GEBv8DxNh93zGjgcntfDYfc8xuj5+cJk9jwHo8nTNvWcPnCfba+qnfO/2/P/Oa8dZssF+8X7GWmv9dwcDs/neF1bjUbP/3rDj5/xitKs/u4sFE2r+6105SkqKsLpdF7283z6SRZ6Ryi5qp1Valm9bYqmoilN/0ANrD7JjdZDDNKVobP4eN74NdVn33zVYLNSZvRjZ2gvdoSlsyekBzaDpd4xDKqLxOozpFWeIramiDO+EWT7R3PSL5pqo693P53mJqUqh35lmfQtzyS9Ihuz6vQEWz5+4OcPvn64ff3Z45fIWlMi2wlDpelAzqCphLmthDmrCLOVEVpTQpitDJfOwP7gZA4FJTVor6ctKmk1ZxhcmUl65SnO6Hw56hfH0cAETvt1a/CaKZpKkKOaMGcVOp0Ou8GMw2DCoTPiUPTYND3u87QzEhvja7MYW7qP0IoC0FRUnY4cSwRHfaI56hNFjjmMSsVEld6MVWdGPacNFtVJtKuSaLWaaK2GaKUWX7cdk8uO2VWLyWXH5KjF7KjBVFOJ2VqJyW7FoLkByAyI44eI/vzQbQD55pAGr+FQZy4Tqw7Tp/IEOrebHJ8I1gams8EvlWqducH+6ZQzmBIGKeXEYkWv/uSD7Owveic6jinB7NOHcVQJwhc3MUoN0diIUWqJUWqxoJKr+JKNPyfx8/yv+WJEJc1dRpqziLSafBKteRjtNs8vyrpfngaD54NSUcDl9HzwuZyeDw23y/Oh4/3lqvvxa6fT8yFVt6/L4fklb7GAyeL5may7wY8fEnWB17l/LNisnvvPZfaBgEAICAL/QBSLj6edJtOPHz6KAtYqtOpKqK6Cuv8d9obBgQb4+oFfgOe4/oEofgFgMKJVV0BlBVRVQGW5pz3gOZ+P79kPrLMfXEaj5369AcX7AaTzPHe0s8GJ52vN7Tr7R6rL8/xcTk9bFOXs63jOH6eqBk77j6+r4+zX537oa+f87z2uq+Fr1xiT+eyHr6/nOZnNP/bnuf2q16MYzv3ZMHi2O+zgsKPV2s75QLZ7zn1uO9wuFO1sQFX3eqCBoofAIAgMhqAQlMAQzx+IqgolRWglhVBaBKXFnmOdS2/w9LvZ4uk/vwDwD/D0n3+Ap332Wqitqd8+5ewf/YazQY5ej6LoPH+w1P2c131d93N+boCkUzx9pNefDTL0KHo9GhrUnae2Fuxnv9bpPa+z2Xw2GDd7zn22bdTafrw5nZ4A6WLUBT91wV/dH+rK2R8V59ngraWMntdY7+OL22b1fJb9tC+aw2QCg8nzWKfjx6C8OSw+nvepj5/ntaup9ryn696THZnJ/OPvu5/+Yel2ed4vFxvOKboff1cbjWd/B3p+FykDhqK7+fYfd1UUoqOjycvLoy3CR6PRSERERLP2lYC2DQLaDZ99T3ZZKLmuCk5rLqqMPlgNPt6gzOKyE20rJsZWRHRNMRH2cnaF9mRreB9v0BRTU8T1ZzajoFFiDqp3K7KE1jtfkKOKgaVHsRnMHAnsToUpoMm26TQ3sbZiHDojBT85zv/f3p0HN3GefwD/anXZsuT7xAdggw0GDDY0UGAC4UxjCiElTIYyjjnaTIGSpOmkJFyF0lBoh7RDm2lnQoCB4QhXTEhrjCH5lSvQOAFjIBBiHAOGGBnLli3JOnZ/f8gSCBkwBCwtfD8zGlvvvrv77j6W/Oy77+4qRRf0Tgu0Lgc04s2XURsJY8jNpCvbVInRNceQZDXiO30SqvRJqArrhO/0ibCoQu+5f/QOC3qZvkUvUyXqteEoi+6Ban3SXeeJczQixtmMeiEUdWo9nMK9e7vUogOJ1jokWVr3tbUO1WGJ+CwhD82tib0guZBXdw52pRoXDCn3bH+IqwV2Qe2T3N4PQRKhklywCzd7DDUuB3JvfI3Mxmp8HtcH34SneaclWYyIcJjxdURXb1msrR4jrn0BizIEZTE9cFXn++FXii4k2G4gyWpEksWIJKsRzaoQVERm4OuILrAr7z6mW5BcEBX37sVSiw50abqKUKetfRuvUMCpUKJFUMOuVMMuqNEiqOG4QywVkHz+Fj2/hzmt0DutMDiaYXBYoHdaEepqQbMyBGa1DmZ1GJpaf9oFVZtf+jpXC/QOCwxOi3sZDgt0LhuE2+pKAGxKjXt5Kl3rcnWwKEMQ4rLD4HTPa3BYYHA2Qy260KQKhVkdBrM6FE0qd31nO/anh0pytW6XBQaHezv1TivU4gMkA3QzMSNvR+oP2h8qlTspv31hEtp3QKSAuzdTqbyZPHtIknt+h719ydqtvcMKxc3fxXYclAHugwWl6ua6vQd5rb2noudMxW3rVKl9X5J486DG1frTZx7FzYM9z0GOp6fU897ldB84PEiKplK74wK0Hgi62r8PbhPXozsyX552S9OZ0N7V3r17sXv3bphMJqSkpKCwsBA9e/a8Y/0zZ85g/fr1uHz5MqKiojB+/HiMGTPmvtfbUQmtVFsDXL2CmE7JuGGxQNKGwKUNcffyKdWI0AhQoPW0kOf0UIsV39eZ8cl3NpReV8Ai3v10dvdINfLi1BgQq0ZGmAhBFAGFAEmpRK1DiXONLpxvcOFaswudwjXoHBWC9KgQpERooFG6P0i1TQ6c+r4Zp753D1kwWu78D1OvcOIZpRGjndVItV6HZHEf4SpCw4BQd0+NpA1FnTYcRk0E6lR61AkhqJM0MDqVEKFAzxgN+kQo0EXjgNBic/cstPZkXHcIKGtQoMwEXGiSkKxXIStOh8wEPbJidYgKvZn0iJKEBosddfVm1JncPXJaaxM0lkZomhugMddD29yAaNHiTlAk6eZpKbUa9vBoHAntihIpEV87fBPYEEFCN52ILJ0LObE6qOxN0KsAg1oBg1oJtUqAw+lCbZMdNRYRV6wSrtqA7x1KWKGEHQLskgC7pECLJMAuAXZRgdv7FLRKBfrHaTDY0IL+ijqEmIzu3jy1BhdVkSixx+L/LGGwSu5YCZAwQO/AGH0T+mktUDod3i+tGruAshYdvrQbcMalh/0eQ+XDFU70UVuQrW5Gi6hAjUuDqy4Nrooa3JDcyW4oXOgsWNBFYUEXwYLOaEaLUoPzigicE/U47wiFWXx8Tl0RERHwTIKA10Zlet8zob2LI0eOYPXq1Zg5cyaysrJQWlqK/fv3491330VsbKxf/draWrzxxhsYOXIkRo0ahXPnzuH999/Hq6++ikGDBt3XujsqoQV+2B+BxeHCp5WNOH6lCXqNgFidGjE6FWJ0KsTq1EjSqxF+hzGWD0qSJBgtTjTbXWhxSbC7RLQ43T/VgoC+STpvIvw4+c7Ugs8vmRER4h5/nBahhVJQPNQPsSRJcIpS636V0OIUER2qglZ19/1pdYg4Ut2IZoeIIWkGxOjuPQ5UlCTUWZzuccONdlxtHT+sEhTok6BDnwQdUiM0dxz/a3WIaHa4EB2quusYY0mScK3Jgcp6Gxyu9u8ftaCARilAq7r5U926v2/nkiTYW/8GPfutxSWh2e6C2e6CucX9arK7YHWICNMoYdAqoW/9adAqkRATjYYGk08MJQmwONzjoZtal2G2u2BxtH0qU6tU+Cw3XKuETi3A5pS883ra4hCl1noCDBol9FolDBol1Pdx2z6HS/Ius8mzbLsIlxjwvoiA0Gg0sD/IKW8KCoyfvOR1CsPk3jdzsWBOaAN+VcKePXswYsQIjBw5EgBQWFiIkydPoqSkBFOmTPGrX1JSgtjYWBQWFgIAUlJS8O233+Ljjz++74RWLnRqJfKzopCfFXXvyg+JQqFAXJgacWGBu3gmEDpHatE58u4X4v1QCoUCaqUC93vdVqhawMiMyPuaR7gljn0Tw+5vha3rDFXf+8BFoVAgyaBBkiF4b0nn/iJOxNWrUod8EdPD19H/TOnhYvzoUQpoQut0OlFZWYnnn3/epzwnJwfnzp1rc55vvvkGOTk5PmX9+vXDp59+CqfTCVUbVw47HA6fnliFQoHQ0FDv7x3Bsx4+7laeGD/5YwzljzGUN8ZP/oI5hgFNaBsbGyGKIiIiInzKIyIiYDKZ2pzHZDK1Wd/lcsFsNiMqyr8Xc9euXdi+fbv3fdeuXbFixYp2d2M/TImJiR2+Tnp4GD/5YwzljzGUN8ZP/oIxhgEfcgC0nenfLfu/fZrn1MWd5pk4cSLGjRvnN//169fhdHbMlcIKhQKJiYm4du0aT7XIEOMnf4yh/DGG8sb4yV9Hx1ClUsljDG14eDgEQfDrjW1oaPDrhfWIjIz0q9/Y2AilUgm9Xt/mPGq1Gmp122NBO/pDJUkcvydnjJ/8MYbyxxjKG+Mnf8EYw4Bepq5SqZCeno7y8nKf8vLycmRlZbU5T/fu3f3qnzx5Eunp6W2OnyUiIiKix1vA77s0btw47N+/HwcOHMDly5exbt06GI1GjB49GgCwadMm/P3vf/fWHzNmDIxGo/c+tAcOHMCBAwfw05/+NFCbQEREREQBFPAuzcGDB8NsNmPHjh2or69Hamoq3nrrLe+Yifr6ehiNRm/9+Ph4vPXWW1i/fj327t2LqKgoTJs27bG9ZRcRERER3V3AH6wQSHJ5sAIFHuMnf4yh/DGG8sb4yV8wP1gh4EMOiIiIiIh+CCa0RERERCRrTGiJiIiISNYCflFYIAXiNl+8tZi8MX7yxxjKH2Mob4yf/HVUDO9nPU/0RWFEREREJH8cctBBrFYrfve738FqtQa6KfQAGD/5YwzljzGUN8ZP/oI5hkxoO4gkSbh48SJvVSJTjJ/8MYbyxxjKG+Mnf8EcQya0RERERCRrTGiJiIiISNaY0HYQtVqNSZMmQa1WB7op9AAYP/ljDOWPMZQ3xk/+gjmGvMsBEREREckae2iJiIiISNaY0BIRERGRrDGhJSIiIiJZY0JLRERERLLGByp3gL1792L37t0wmUxISUlBYWEhevbsGehm0W127dqF48eP48qVK9BoNMjMzMTUqVPRqVMnbx1JkrBt2zbs378fTU1N6N69O2bMmIHU1NQAtpzuZNeuXdi8eTOee+45FBYWAmAM5eDGjRvYuHEjTpw4AbvdjqSkJPzqV79Ceno6AMYw2LlcLmzbtg0HDx6EyWRCVFQUhg8fjhdeeAGC4O5HYwyDx5kzZ7B7925cvHgR9fX1+O1vf4unnnrKO709sXI4HNiwYQMOHz4Mu92O3r17Y+bMmYiJiemw7WAP7SN25MgRrFu3Di+88AJWrFiBnj174p133oHRaAx00+g2Z86cwdixY/HHP/4RCxYsgCiKWLZsGWw2m7dOUVERPvnkE0yfPh3Lly9HZGQkli1bFpSPAXzSXbhwAaWlpejcubNPOWMY3JqamrBw4UKoVCq8/fbbWLVqFQoKCqDT6bx1GMPgVlRUhH379mHGjBl49913MXXqVOzevRvFxcU+dRjD4NDS0oIuXbpg+vTpbU5vT6zWrVuH48eP49VXX8XSpUths9nwpz/9CaIodtRmMKF91Pbs2YMRI0Zg5MiR3t7Z2NhYlJSUBLppdJv58+dj+PDhSE1NRZcuXTBr1iwYjUZUVlYCcB+l/vvf/8bEiRMxcOBApKWlYfbs2WhpacGhQ4cC3Hq6lc1mw+rVq/HKK68gLCzMW84YBr+ioiLExMRg1qxZ6NatG+Lj49GnTx8kJiYCYAzl4Pz58xgwYADy8vIQHx+PQYMGIScnB99++y0AxjDY5Obm4qWXXsLAgQP9prUnVhaLBQcOHEBBQQFycnLQtWtX/PrXv0Z1dTXKy8s7bDuY0D5CTqcTlZWV6Nu3r095Tk4Ozp07F6BWUXtZLBYAgF6vBwDU1tbCZDL5xFOtViM7O5vxDDLvv/8+cnNzkZOT41POGAa/L774Aunp6Vi1ahVmzpyJN998E6Wlpd7pjGHw69GjByoqKlBTUwMAqKqqwrlz55CbmwuAMZST9sSqsrISLpfL5/s2OjoaaWlpOH/+fIe1lWNoH6HGxkaIooiIiAif8oiICJhMpsA0itpFkiSsX78ePXr0QFpaGgB4Y9ZWPDmEJHgcPnwYFy9exPLly/2mMYbBr7a2Fvv27UN+fj4mTpyICxcuYO3atVCr1Rg2bBhjKAMTJkyAxWLB66+/DkEQIIoiXnrpJQwdOhQAP4dy0p5YmUwmqFQqb+fPrXU6MtdhQtsBFApFu8ooeKxZswbV1dVYunSp37TbY8eH7QUPo9GIdevWYf78+dBoNHesxxgGL1EUkZGRgSlTpgAAunbtikuXLqGkpATDhg3z1mMMg9eRI0dw8OBBzJ07F6mpqaiqqsK6deu8F4d5MIby8SCx6uh4MqF9hMLDwyEIgt8RSkNDg9/RDgWPDz74AGVlZViyZInPFZqRkZEA4L1q16OxsZHxDBKVlZVoaGjAvHnzvGWiKOLs2bMoLi7GX//6VwCMYTCLiopCSkqKT1lKSgqOHTsGgJ9DOdi4cSMmTJiAIUOGAADS0tJw/fp1fPTRRxg+fDhjKCPtiVVkZCScTieampp8emkbGxuRlZXVYW3lGNpHSKVSIT093W9QdHl5eYcGmdpHkiSsWbMGx44dw6JFixAfH+8zPT4+HpGRkT7xdDqdOHPmDOMZJPr06YO//OUvWLlypfeVkZGBoUOHYuXKlUhISGAMg1xWVpZ37KVHTU0N4uLiAPBzKActLS3e23N5CILg7bFjDOWjPbFKT0+HUqn0qVNfX4/q6mpkZmZ2WFvZQ/uIjRs3DqtXr0Z6ejoyMzNRWloKo9GI0aNHB7ppdJs1a9bg0KFDePPNNxEaGurtWdfpdNBoNFAoFHjuueewa9cuJCUlITExEbt27YJWq/WODaPACg0N9Y559tBqtTAYDN5yxjC45efnY+HChdi5cycGDx6MCxcuYP/+/fjlL38JAPwcykD//v2xc+dOxMbGIiUlBVVVVdizZw+eeeYZAIxhsLHZbLh27Zr3fW1tLaqqqqDX6xEbG3vPWOl0OowYMQIbNmyAwWCAXq/Hhg0bkJaW5ndh7qOkkDho5ZHzPFihvr4eqampePnll5GdnR3oZtFtJk+e3Gb5rFmzvOO+PDeYLi0tRXNzM7p164YZM2b4JVEUPH7/+9+jS5cufg9WYAyDV1lZGTZt2oRr164hPj4e+fn5GDVqlHc6YxjcrFYrtm7diuPHj6OhoQHR0dEYMmQIJk2aBJXK3Y/GGAaP06dPY8mSJX7lw4YNw+zZs9sVK7vdjo0bN+LQoUM+D1aIjY3tsO1gQktEREREssYxtEREREQka0xoiYiIiEjWmNASERERkawxoSUiIiIiWWNCS0RERESyxoSWiIiIiGSNCS0RERERyRqfFEZEj7XPPvsM77333h2nL168GL169erAFvmqra3FnDlzMHXqVIwfPz5g7XiYHsdtIqLgxoSWiJ4Is2bNQqdOnfzKU1JSAtAaIiJ6mJjQEtETITU1FRkZGYFuBj1ETqcTCoUCSqUy0E0hogBjQktE1Gry5MkYO3Ys0tLSsGfPHly/fh0JCQmYNGkShgwZ4lO3uroaW7ZswdmzZ2G329GpUyfk5+dj+PDhPvWam5uxY8cOHD9+HDdu3IBOp0NGRgYKCgqQnJzsU3fPnj34z3/+g8bGRqSlpeHll19GZmbmXdvsGVKxaNEiHD16FJ9//jkkSUJ2djamT5+O6Ohon+2bNGkSJk+e7LOM2bNnIzs7G7Nnz/Zb5qFDh3D8+HG4XC786Ec/wsyZM2Gz2fDBBx+gvLwcGo0GQ4cOxZQpU6BS+f5LkSQJO3fuxL59+9DY2IjU1FT8/Oc/R58+fXzqXb16FR9++CFOnToFi8WChIQEjB07Fs8++6y3jud583PmzEFVVRUOHz4Mk8mEVatW+e1HInryMKEloieCKIpwuVw+ZQqFAoLge23sF198gdOnT2Py5MnQarUoKSnB3/72NyiVSgwaNAgAUFNTg4ULFyI8PBzTpk2DXq/HwYMH8d5776GhoQETJkwAAFitVixatAi1tbWYMGECunfvDpvNhrNnz6K+vt4nEdu7dy+Sk5NRWFgIANi6dSuWL1+Of/zjH9DpdPfcvn/961/Izc3F3LlzUVdXhw0bNmD16tVYvHjxA++zf/7zn3jqqafw2muv4eLFi9i8eTNcLhdqamowcOBAjBo1CqdOnUJRURGio6Mxbtw4n/mLi4sRFxeHwsJCSJKEoqIivPPOO1iyZIk3Ub98+TIWLFiA2NhYFBQUIDIyEidOnMDatWthNpvx4osv+ixz06ZNyMzMxC9+8QsIgoCIiIgH3j4ienwwoSWiJ8L8+fP9ygRBwJYtW3zKzGYzli9fjsjISABAXl4e3njjDWzatMmb0H744YdwOp1YvHgxYmNjvfUsFgu2b9+O0aNHQ6fT4ZNPPsGlS5ewYMEC5OTkeNcxcOBAv7aEhoZi3rx53gQ7KioKb7/9Nr766iu/3uG29O3bF9OnT/e+b2pqwsaNG2Eymbzbcr/y8vJQUFAAAMjJycH58+dx+PBhFBQUeJPXnJwcnDx5EgcPHvRLaEVRxIIFC6DRaLxtnD17NrZu3YqFCxcCANavX4/Q0FAsXbrUm7jn5OTA6XTio48+wk9+8hPo9XrvMhMSEvCb3/zmgbaHiB5fTGiJ6IkwZ84cv1PTCoXCr17v3r19EkBBEPDjH/8Y27dvR11dHWJiYnD69Gn07t3bm8x6DBs2DF999RXOnz+Pfv364cSJE0hKSvJJZu8kLy/Pp7e4c+fOAIDr16+3a/sGDBjg8z4tLc07/4MmtP379/d5n5ycjP/973/Iy8vzKy8vL/ebf+DAgd5kFnAn7f3798fhw4chiiKcTicqKiowevRoaLVanx703NxcFBcX45tvvkFubq7PMomIbseEloieCMnJye26KKyt5M9TZjabERMTA7PZjKioKL96nvGqZrMZANDY2OiX9N7Jrb2QAKBWqwEAdru9XfMbDIYfNH972uQZI9tWeVvrudO+dDqdsNlssNlscLlcKC4uRnFxcZtt8OxLj7b2OxERE1oioluYTKY7lnmSRoPBgPr6er96N27c8KkXHh6Ourq6R9PQB6BWq+F0Ov3Kb08aH5Y77UuVSoWQkBAolUoIgoCnn34aY8eObXMZ8fHxPu/b6lUnIuKTwoiIblFRUeGTiImiiKNHjyIhIQExMTEA3MMSKioqvAmsx3//+19otVrvBU/9+vXD1atXUVFR0WHtv5u4uDh89913PmUVFRWw2WyPZH3Hjh3z6bm1Wq0oKytDz549IQgCtFotevXqhYsXL6Jz587IyMjwe93e80xE1Bb20BLRE+HSpUt+dzkAgMTERISHh3vfGwwGLF26FD/72c+8dzm4cuUKXnvtNW+dF198EV9++SWWLFmCSZMmee9y8OWXX2Lq1Knei5vy8/Nx9OhRrFy5Es8//zy6desGu92OM2fOIC8vD717937k232rp59+Glu3bsXWrVuRnZ2Ny5cvo7i4uF13UXgQgiBg2bJlGDduHERRRFFREaxWq8+dC6ZNm4aFCxdi0aJFGDNmDOLi4mC1WnHt2jWUlZX9oLs0ENGTgwktET0R7vT421deeQUjR470vh8wYABSU1OxZcsWGI1GJCYmYu7cuRg8eLC3TqdOnfCHP/wBmzdvxpo1a2C325GcnIxZs2b53IfWc/X+tm3bUFpaim3btkGv1yMjIwOjRo16ZNt6J+PHj4fFYsFnn32Gjz/+GN26dcPrr7+OP//5z49kfc8++ywcDgfWrl2LhoYGpKamYt68eejRo4e3TkpKClasWIEdO3Zgy5YtaGhoQFhYGJKSknwuBiMiuhuFJElSoBtBRBQMPA9WmDFjRqCbQkRE94FjaImIiIhI1pjQEhEREZGsccgBEREREckae2iJiIiISNaY0BIRERGRrDGhJSIiIiJZY0JLRERERLLGhJaIiIiIZI0JLRERERHJGhNaIiIiIpI1JrREREREJGtMaImIiIhI1v4fmgarGuVTfzgAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -170,15 +158,831 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/plain": [ + "{'VGG_08': {'train_acc': [0.010694736842105264,\n", + " 0.03562105263157895,\n", + " 0.0757684210526316,\n", + " 0.10734736842105265,\n", + " 0.13741052631578948,\n", + " 0.16888421052631578,\n", + " 0.1941263157894737,\n", + " 0.21861052631578948,\n", + " 0.24134736842105264,\n", + " 0.26399999999999996,\n", + " 0.27898947368421056,\n", + " 0.29532631578947366,\n", + " 0.31138947368421044,\n", + " 0.3236842105263158,\n", + " 0.33486315789473686,\n", + " 0.3462526315789474,\n", + " 0.35381052631578946,\n", + " 0.36157894736842106,\n", + " 0.36774736842105266,\n", + " 0.37753684210526317,\n", + " 0.38597894736842114,\n", + " 0.3912421052631579,\n", + " 0.39840000000000003,\n", + " 0.4036,\n", + " 0.4105263157894737,\n", + " 0.41501052631578944,\n", + " 0.4193263157894737,\n", + " 0.4211578947368421,\n", + " 0.4260842105263159,\n", + " 0.4313684210526315,\n", + " 0.4370526315789474,\n", + " 0.439642105263158,\n", + " 0.4440842105263158,\n", + " 0.44696842105263157,\n", + " 0.4518105263157895,\n", + " 0.45298947368421055,\n", + " 0.4602105263157895,\n", + " 0.46023157894736844,\n", + " 0.46101052631578954,\n", + " 0.46774736842105263,\n", + " 0.4671157894736842,\n", + " 0.4698105263157895,\n", + " 0.4738736842105264,\n", + " 0.47541052631578945,\n", + " 0.48,\n", + " 0.48456842105263154,\n", + " 0.4857263157894737,\n", + " 0.4887578947368421,\n", + " 0.49035789473684216,\n", + " 0.4908421052631579,\n", + " 0.4939368421052632,\n", + " 0.49924210526315793,\n", + " 0.49677894736842104,\n", + " 0.5008842105263157,\n", + " 0.5,\n", + " 0.5030736842105263,\n", + " 0.505578947368421,\n", + " 0.5090315789473684,\n", + " 0.512042105263158,\n", + " 0.5142736842105263,\n", + " 0.5128421052631579,\n", + " 0.518042105263158,\n", + " 0.5182315789473684,\n", + " 0.5192842105263158,\n", + " 0.5217894736842105,\n", + " 0.5229684210526316,\n", + " 0.5227578947368421,\n", + " 0.5245894736842105,\n", + " 0.5262315789473684,\n", + " 0.5278526315789474,\n", + " 0.527157894736842,\n", + " 0.5299578947368421,\n", + " 0.5313052631578947,\n", + " 0.5338315789473685,\n", + " 0.5336000000000001,\n", + " 0.5354736842105263,\n", + " 0.5397894736842105,\n", + " 0.5386526315789474,\n", + " 0.5376631578947368,\n", + " 0.5384842105263159,\n", + " 0.5380842105263157,\n", + " 0.5393473684210528,\n", + " 0.5415157894736843,\n", + " 0.5394947368421052,\n", + " 0.5429052631578948,\n", + " 0.5452421052631579,\n", + " 0.5436210526315789,\n", + " 0.5437684210526316,\n", + " 0.546357894736842,\n", + " 0.5485052631578946,\n", + " 0.5466736842105263,\n", + " 0.547621052631579,\n", + " 0.5480421052631579,\n", + " 0.5468421052631579,\n", + " 0.5493894736842105,\n", + " 0.5490736842105263,\n", + " 0.5514736842105264,\n", + " 0.5489263157894737,\n", + " 0.5494947368421053,\n", + " 0.5516842105263158,\n", + " 0.552442105263158],\n", + " 'train_loss': [4.827323,\n", + " 4.3888855,\n", + " 3.998175,\n", + " 3.784943,\n", + " 3.6023798,\n", + " 3.4196754,\n", + " 3.2674048,\n", + " 3.139925,\n", + " 3.0145736,\n", + " 2.9004965,\n", + " 2.815607,\n", + " 2.7256868,\n", + " 2.6567938,\n", + " 2.595405,\n", + " 2.5434496,\n", + " 2.5021079,\n", + " 2.4609485,\n", + " 2.4152951,\n", + " 2.382958,\n", + " 2.3510027,\n", + " 2.319616,\n", + " 2.294115,\n", + " 2.2598042,\n", + " 2.2318766,\n", + " 2.2035582,\n", + " 2.1830406,\n", + " 2.158597,\n", + " 2.148888,\n", + " 2.1250536,\n", + " 2.107519,\n", + " 2.0837262,\n", + " 2.0691078,\n", + " 2.046351,\n", + " 2.0330904,\n", + " 2.0200553,\n", + " 2.0069249,\n", + " 1.9896894,\n", + " 1.9788533,\n", + " 1.9693571,\n", + " 1.9547894,\n", + " 1.9390026,\n", + " 1.924038,\n", + " 1.9161719,\n", + " 1.9033127,\n", + " 1.8961077,\n", + " 1.8838875,\n", + " 1.8711865,\n", + " 1.8590263,\n", + " 1.8479114,\n", + " 1.845268,\n", + " 1.8336699,\n", + " 1.8237538,\n", + " 1.8111013,\n", + " 1.8031327,\n", + " 1.8026625,\n", + " 1.792004,\n", + " 1.7810374,\n", + " 1.7691813,\n", + " 1.7633294,\n", + " 1.7549652,\n", + " 1.7518128,\n", + " 1.7420768,\n", + " 1.7321203,\n", + " 1.7264535,\n", + " 1.7245325,\n", + " 1.7184331,\n", + " 1.7116771,\n", + " 1.7009526,\n", + " 1.6991171,\n", + " 1.6958193,\n", + " 1.6907407,\n", + " 1.6808176,\n", + " 1.676356,\n", + " 1.6731659,\n", + " 1.662152,\n", + " 1.6638054,\n", + " 1.6575475,\n", + " 1.6595734,\n", + " 1.6536722,\n", + " 1.6495628,\n", + " 1.6488388,\n", + " 1.6408547,\n", + " 1.632917,\n", + " 1.6340653,\n", + " 1.6340532,\n", + " 1.6246406,\n", + " 1.6288266,\n", + " 1.6240481,\n", + " 1.6208181,\n", + " 1.6164333,\n", + " 1.6169226,\n", + " 1.6159856,\n", + " 1.6175526,\n", + " 1.6149833,\n", + " 1.6063902,\n", + " 1.6096952,\n", + " 1.6084315,\n", + " 1.6069487,\n", + " 1.6030664,\n", + " 1.6043342,\n", + " 1.6039867],\n", + " 'val_acc': [0.024800000000000003,\n", + " 0.0604,\n", + " 0.09480000000000001,\n", + " 0.12159999999999999,\n", + " 0.15439999999999998,\n", + " 0.1864,\n", + " 0.20720000000000002,\n", + " 0.22880000000000003,\n", + " 0.24760000000000001,\n", + " 0.2552,\n", + " 0.2764,\n", + " 0.2968,\n", + " 0.3016,\n", + " 0.322,\n", + " 0.3176,\n", + " 0.33159999999999995,\n", + " 0.342,\n", + " 0.34119999999999995,\n", + " 0.3332,\n", + " 0.36160000000000003,\n", + " 0.3608,\n", + " 0.3732,\n", + " 0.3716,\n", + " 0.37439999999999996,\n", + " 0.3772,\n", + " 0.3876,\n", + " 0.37800000000000006,\n", + " 0.38160000000000005,\n", + " 0.39840000000000003,\n", + " 0.4044,\n", + " 0.398,\n", + " 0.41200000000000003,\n", + " 0.4096,\n", + " 0.4104,\n", + " 0.4244,\n", + " 0.42719999999999997,\n", + " 0.4204,\n", + " 0.4244,\n", + " 0.4128,\n", + " 0.4204,\n", + " 0.4244,\n", + " 0.424,\n", + " 0.43,\n", + " 0.4463999999999999,\n", + " 0.44439999999999996,\n", + " 0.43079999999999996,\n", + " 0.44920000000000004,\n", + " 0.44799999999999995,\n", + " 0.4428,\n", + " 0.4436,\n", + " 0.4548,\n", + " 0.4548,\n", + " 0.44240000000000007,\n", + " 0.4548,\n", + " 0.458,\n", + " 0.4596,\n", + " 0.45679999999999993,\n", + " 0.4444000000000001,\n", + " 0.4616,\n", + " 0.4464,\n", + " 0.4656,\n", + " 0.46,\n", + " 0.45960000000000006,\n", + " 0.46279999999999993,\n", + " 0.46399999999999997,\n", + " 0.46679999999999994,\n", + " 0.4604,\n", + " 0.4692,\n", + " 0.4700000000000001,\n", + " 0.4708,\n", + " 0.4736,\n", + " 0.4715999999999999,\n", + " 0.47239999999999993,\n", + " 0.47839999999999994,\n", + " 0.4672,\n", + " 0.4692,\n", + " 0.4768,\n", + " 0.4824,\n", + " 0.4816,\n", + " 0.47600000000000003,\n", + " 0.478,\n", + " 0.48,\n", + " 0.4828,\n", + " 0.4776,\n", + " 0.47759999999999997,\n", + " 0.48119999999999996,\n", + " 0.4864,\n", + " 0.48279999999999995,\n", + " 0.4804,\n", + " 0.47839999999999994,\n", + " 0.47800000000000004,\n", + " 0.4828,\n", + " 0.48560000000000003,\n", + " 0.48119999999999996,\n", + " 0.4835999999999999,\n", + " 0.48120000000000007,\n", + " 0.4867999999999999,\n", + " 0.4831999999999999,\n", + " 0.49079999999999996,\n", + " 0.486,\n", + " 0.48480000000000006],\n", + " 'val_loss': [4.5659676,\n", + " 4.136276,\n", + " 3.8678854,\n", + " 3.6687074,\n", + " 3.4829779,\n", + " 3.3093607,\n", + " 3.2223148,\n", + " 3.1171055,\n", + " 3.0554724,\n", + " 2.9390912,\n", + " 2.9205213,\n", + " 2.7410471,\n", + " 2.7083752,\n", + " 2.665904,\n", + " 2.688214,\n", + " 2.648656,\n", + " 2.5658453,\n", + " 2.5403407,\n", + " 2.6936982,\n", + " 2.4663532,\n", + " 2.4559999,\n", + " 2.3644555,\n", + " 2.4516551,\n", + " 2.4189563,\n", + " 2.3899698,\n", + " 2.3215945,\n", + " 2.3831298,\n", + " 2.3436418,\n", + " 2.3471045,\n", + " 2.2744477,\n", + " 2.245617,\n", + " 2.216309,\n", + " 2.2329648,\n", + " 2.1841388,\n", + " 2.1780539,\n", + " 2.1625984,\n", + " 2.2195568,\n", + " 2.1803434,\n", + " 2.1858895,\n", + " 2.1908271,\n", + " 2.1841395,\n", + " 2.1843896,\n", + " 2.154806,\n", + " 2.1130056,\n", + " 2.113019,\n", + " 2.1191697,\n", + " 2.1213412,\n", + " 2.1077166,\n", + " 2.0737479,\n", + " 2.07655,\n", + " 2.0769904,\n", + " 2.061769,\n", + " 2.0676718,\n", + " 2.0859065,\n", + " 2.0704215,\n", + " 2.1113508,\n", + " 2.0382714,\n", + " 2.0911386,\n", + " 2.0458508,\n", + " 2.0786576,\n", + " 2.026332,\n", + " 2.0141299,\n", + " 2.0226884,\n", + " 2.0182638,\n", + " 2.0110855,\n", + " 2.0191038,\n", + " 2.0334535,\n", + " 2.0072439,\n", + " 2.0296187,\n", + " 1.9912667,\n", + " 2.006095,\n", + " 2.012164,\n", + " 1.9955354,\n", + " 2.005768,\n", + " 2.015392,\n", + " 1.9890119,\n", + " 2.0090258,\n", + " 1.9728817,\n", + " 1.9769167,\n", + " 1.9980135,\n", + " 1.9884782,\n", + " 1.9772192,\n", + " 1.9732709,\n", + " 1.9623082,\n", + " 1.9812362,\n", + " 1.9846246,\n", + " 1.9822198,\n", + " 1.9768158,\n", + " 1.9625885,\n", + " 1.9738724,\n", + " 1.9842362,\n", + " 1.9709526,\n", + " 1.967775,\n", + " 1.9626708,\n", + " 1.96621,\n", + " 1.9742922,\n", + " 1.9604725,\n", + " 1.9733659,\n", + " 1.9693874,\n", + " 1.9647765,\n", + " 1.9649359]},\n", + " 'VGG_38': {'train_acc': [0.009263157894736843,\n", + " 0.009810526315789474,\n", + " 0.009705263157894738,\n", + " 0.008989473684210525,\n", + " 0.009747368421052633,\n", + " 0.00951578947368421,\n", + " 0.009789473684210525,\n", + " 0.009936842105263159,\n", + " 0.009810526315789474,\n", + " 0.009094736842105263,\n", + " 0.008421052631578947,\n", + " 0.009010526315789472,\n", + " 0.009894736842105263,\n", + " 0.00934736842105263,\n", + " 0.009473684210526316,\n", + " 0.010252631578947369,\n", + " 0.009536842105263158,\n", + " 0.00848421052631579,\n", + " 0.008421052631578947,\n", + " 0.009410526315789473,\n", + " 0.009263157894736843,\n", + " 0.009389473684210526,\n", + " 0.008989473684210528,\n", + " 0.009326315789473686,\n", + " 0.01,\n", + " 0.008778947368421053,\n", + " 0.009326315789473684,\n", + " 0.009031578947368422,\n", + " 0.008842105263157896,\n", + " 0.008968421052631579,\n", + " 0.008947368421052631,\n", + " 0.008842105263157896,\n", + " 0.008799999999999999,\n", + " 0.009326315789473686,\n", + " 0.00905263157894737,\n", + " 0.00934736842105263,\n", + " 0.009221052631578948,\n", + " 0.009557894736842105,\n", + " 0.009073684210526317,\n", + " 0.009242105263157895,\n", + " 0.009957894736842107,\n", + " 0.009052631578947368,\n", + " 0.008694736842105264,\n", + " 0.009536842105263158,\n", + " 0.009663157894736842,\n", + " 0.008821052631578948,\n", + " 0.009768421052631579,\n", + " 0.0092,\n", + " 0.008926315789473685,\n", + " 0.008989473684210525,\n", + " 0.009242105263157895,\n", + " 0.009094736842105263,\n", + " 0.009473684210526316,\n", + " 0.009494736842105262,\n", + " 0.009747368421052631,\n", + " 0.009789473684210527,\n", + " 0.009199999999999998,\n", + " 0.009073684210526317,\n", + " 0.008821052631578948,\n", + " 0.009326315789473684,\n", + " 0.009557894736842105,\n", + " 0.009600000000000001,\n", + " 0.00856842105263158,\n", + " 0.009894736842105263,\n", + " 0.009494736842105262,\n", + " 0.008673684210526314,\n", + " 0.009221052631578948,\n", + " 0.008989473684210528,\n", + " 0.00928421052631579,\n", + " 0.0092,\n", + " 0.008989473684210525,\n", + " 0.009515789473684212,\n", + " 0.009073684210526317,\n", + " 0.009642105263157895,\n", + " 0.009747368421052633,\n", + " 0.009873684210526316,\n", + " 0.009536842105263156,\n", + " 0.009515789473684212,\n", + " 0.009978947368421053,\n", + " 0.009957894736842107,\n", + " 0.009410526315789475,\n", + " 0.01002105263157895,\n", + " 0.01002105263157895,\n", + " 0.00951578947368421,\n", + " 0.009852631578947368,\n", + " 0.009894736842105265,\n", + " 0.00922105263157895,\n", + " 0.010042105263157896,\n", + " 0.009978947368421053,\n", + " 0.009747368421052633,\n", + " 0.010189473684210526,\n", + " 0.009789473684210527,\n", + " 0.009936842105263159,\n", + " 0.010042105263157894,\n", + " 0.009494736842105262,\n", + " 0.009536842105263158,\n", + " 0.010021052631578946,\n", + " 0.009747368421052631,\n", + " 0.009642105263157895,\n", + " 0.009305263157894737],\n", + " 'train_loss': [4.8649125,\n", + " 4.6264124,\n", + " 4.621914,\n", + " 4.619472,\n", + " 4.6168556,\n", + " 4.6156826,\n", + " 4.614809,\n", + " 4.613147,\n", + " 4.612325,\n", + " 4.6117926,\n", + " 4.611283,\n", + " 4.6105323,\n", + " 4.6103206,\n", + " 4.6095214,\n", + " 4.6095295,\n", + " 4.609189,\n", + " 4.6087623,\n", + " 4.6086617,\n", + " 4.6083455,\n", + " 4.608145,\n", + " 4.6078997,\n", + " 4.607453,\n", + " 4.6075597,\n", + " 4.607266,\n", + " 4.607154,\n", + " 4.607089,\n", + " 4.606807,\n", + " 4.6068263,\n", + " 4.6066294,\n", + " 4.606647,\n", + " 4.6065364,\n", + " 4.6064167,\n", + " 4.606425,\n", + " 4.606305,\n", + " 4.606274,\n", + " 4.6062336,\n", + " 4.606221,\n", + " 4.60607,\n", + " 4.6061006,\n", + " 4.606005,\n", + " 4.605986,\n", + " 4.605935,\n", + " 4.6059127,\n", + " 4.605874,\n", + " 4.605872,\n", + " 4.6057997,\n", + " 4.605778,\n", + " 4.6057644,\n", + " 4.6057386,\n", + " 4.6057277,\n", + " 4.6057053,\n", + " 4.605692,\n", + " 4.60566,\n", + " 4.605613,\n", + " 4.6056285,\n", + " 4.605578,\n", + " 4.6055675,\n", + " 4.6055593,\n", + " 4.6055293,\n", + " 4.6055255,\n", + " 4.6055083,\n", + " 4.605491,\n", + " 4.605466,\n", + " 4.605463,\n", + " 4.605441,\n", + " 4.6054277,\n", + " 4.6054296,\n", + " 4.605404,\n", + " 4.6053905,\n", + " 4.6053743,\n", + " 4.605368,\n", + " 4.605355,\n", + " 4.605352,\n", + " 4.6053243,\n", + " 4.6053176,\n", + " 4.6053023,\n", + " 4.605297,\n", + " 4.6052866,\n", + " 4.605265,\n", + " 4.605259,\n", + " 4.6052504,\n", + " 4.6052403,\n", + " 4.6052313,\n", + " 4.605224,\n", + " 4.605219,\n", + " 4.605209,\n", + " 4.605204,\n", + " 4.605193,\n", + " 4.6051874,\n", + " 4.605183,\n", + " 4.605178,\n", + " 4.605173,\n", + " 4.605169,\n", + " 4.605166,\n", + " 4.6051593,\n", + " 4.6051593,\n", + " 4.6051564,\n", + " 4.605154,\n", + " 4.605153,\n", + " 4.6051517],\n", + " 'val_acc': [0.0104,\n", + " 0.009600000000000001,\n", + " 0.011200000000000002,\n", + " 0.0064,\n", + " 0.0076,\n", + " 0.0108,\n", + " 0.008400000000000001,\n", + " 0.0104,\n", + " 0.0076,\n", + " 0.007200000000000001,\n", + " 0.011600000000000001,\n", + " 0.009600000000000001,\n", + " 0.008400000000000001,\n", + " 0.011200000000000002,\n", + " 0.008,\n", + " 0.0104,\n", + " 0.0092,\n", + " 0.009600000000000001,\n", + " 0.011200000000000002,\n", + " 0.0068000000000000005,\n", + " 0.0092,\n", + " 0.01,\n", + " 0.008400000000000001,\n", + " 0.008,\n", + " 0.0076,\n", + " 0.011200000000000002,\n", + " 0.0068,\n", + " 0.011200000000000002,\n", + " 0.008,\n", + " 0.006400000000000001,\n", + " 0.0092,\n", + " 0.0076,\n", + " 0.0096,\n", + " 0.0072,\n", + " 0.0072,\n", + " 0.007200000000000001,\n", + " 0.0076,\n", + " 0.0076,\n", + " 0.0072,\n", + " 0.0064,\n", + " 0.0072,\n", + " 0.0072,\n", + " 0.0064,\n", + " 0.006400000000000001,\n", + " 0.0072,\n", + " 0.0064,\n", + " 0.0072,\n", + " 0.007200000000000001,\n", + " 0.0072,\n", + " 0.0064,\n", + " 0.0064,\n", + " 0.006400000000000001,\n", + " 0.0064,\n", + " 0.0064,\n", + " 0.0064,\n", + " 0.006400000000000001,\n", + " 0.0064,\n", + " 0.0064,\n", + " 0.006400000000000001,\n", + " 0.0064,\n", + " 0.006400000000000001,\n", + " 0.0064,\n", + " 0.0064,\n", + " 0.006400000000000001,\n", + " 0.0064,\n", + " 0.0064,\n", + " 0.0063999999999999994,\n", + " 0.0064,\n", + " 0.006400000000000001,\n", + " 0.0064,\n", + " 0.0064,\n", + " 0.0064,\n", + " 0.0064,\n", + " 0.0064,\n", + " 0.0064,\n", + " 0.0064,\n", + " 0.0064,\n", + " 0.0064,\n", + " 0.006400000000000001,\n", + " 0.0064,\n", + " 0.0064,\n", + " 0.006400000000000001,\n", + " 0.0064,\n", + " 0.0064,\n", + " 0.006400000000000001,\n", + " 0.0064,\n", + " 0.0064,\n", + " 0.0064,\n", + " 0.006400000000000001,\n", + " 0.0064,\n", + " 0.0064,\n", + " 0.0064,\n", + " 0.0064,\n", + " 0.0064,\n", + " 0.0064,\n", + " 0.0063999999999999994,\n", + " 0.006400000000000001,\n", + " 0.0064,\n", + " 0.0064,\n", + " 0.0064],\n", + " 'val_loss': [4.630689,\n", + " 4.618983,\n", + " 4.6184525,\n", + " 4.6164784,\n", + " 4.6138463,\n", + " 4.6139345,\n", + " 4.6116896,\n", + " 4.6148276,\n", + " 4.6123877,\n", + " 4.6149993,\n", + " 4.6114736,\n", + " 4.607559,\n", + " 4.6086206,\n", + " 4.6091933,\n", + " 4.6095695,\n", + " 4.610459,\n", + " 4.6091356,\n", + " 4.609126,\n", + " 4.6088147,\n", + " 4.608519,\n", + " 4.6085033,\n", + " 4.6083508,\n", + " 4.6073136,\n", + " 4.6069093,\n", + " 4.6069508,\n", + " 4.60659,\n", + " 4.6072598,\n", + " 4.607257,\n", + " 4.606883,\n", + " 4.607275,\n", + " 4.606976,\n", + " 4.607016,\n", + " 4.607184,\n", + " 4.6068683,\n", + " 4.606982,\n", + " 4.607209,\n", + " 4.607369,\n", + " 4.6074376,\n", + " 4.607068,\n", + " 4.6067224,\n", + " 4.6068263,\n", + " 4.6067867,\n", + " 4.6070905,\n", + " 4.606976,\n", + " 4.6068897,\n", + " 4.607028,\n", + " 4.6069264,\n", + " 4.607018,\n", + " 4.60698,\n", + " 4.6070237,\n", + " 4.6069183,\n", + " 4.6068764,\n", + " 4.606909,\n", + " 4.606978,\n", + " 4.606753,\n", + " 4.6068797,\n", + " 4.606888,\n", + " 4.606874,\n", + " 4.606851,\n", + " 4.606871,\n", + " 4.606851,\n", + " 4.6068635,\n", + " 4.606862,\n", + " 4.6068873,\n", + " 4.6068926,\n", + " 4.6068554,\n", + " 4.6068907,\n", + " 4.6068807,\n", + " 4.6068707,\n", + " 4.606894,\n", + " 4.606845,\n", + " 4.6068635,\n", + " 4.6068773,\n", + " 4.606883,\n", + " 4.6069,\n", + " 4.6068873,\n", + " 4.6068654,\n", + " 4.6068883,\n", + " 4.606894,\n", + " 4.6068826,\n", + " 4.6068697,\n", + " 4.6068807,\n", + " 4.606872,\n", + " 4.6068883,\n", + " 4.606871,\n", + " 4.606871,\n", + " 4.6068654,\n", + " 4.6068764,\n", + " 4.6068697,\n", + " 4.6068673,\n", + " 4.606873,\n", + " 4.6068773,\n", + " 4.606874,\n", + " 4.606877,\n", + " 4.606874,\n", + " 4.606874,\n", + " 4.6068716,\n", + " 4.6068726,\n", + " 4.606872,\n", + " 4.6068726]}}" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "result_dict" + ] } ], "metadata": { "kernelspec": { - "display_name": "mlp", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -192,9 +996,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.5" + "version": "3.11.10" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } diff --git a/report/.gitignore b/report/.gitignore new file mode 100644 index 0000000..cdee849 --- /dev/null +++ b/report/.gitignore @@ -0,0 +1,2 @@ +*.fls +*.fdb_latexmk diff --git a/report/epoch99.pdf b/report/epoch99.pdf new file mode 100644 index 0000000..98383ff Binary files /dev/null and b/report/epoch99.pdf differ diff --git a/report/mlp-cw2-questions.tex b/report/mlp-cw2-questions.tex index c300793..861299b 100644 --- a/report/mlp-cw2-questions.tex +++ b/report/mlp-cw2-questions.tex @@ -1,5 +1,5 @@ %% REPLACE sXXXXXXX with your student number -\def\studentNumber{sXXXXXXX} +\def\studentNumber{s2759177} %% START of YOUR ANSWERS @@ -23,18 +23,24 @@ %% - - - - - - - - - - - - TEXT QUESTIONS - - - - - - - - - - - - %% Question 1: -\newcommand{\questionOne} { -\youranswer{Question 1 - Use Figures 1, 2, and 3 to identify the Vanishing Gradient Problem (which of these model suffers from it, and what are the consequences depicted?). +% Use Figures 1, 2, and 3 to identify the Vanishing Gradient Problem (which of these model suffers from it, and what are the consequences depicted?). +% The average length for an answer to this question is approximately 1/5 of the columns in a 2-column page} -The average length for an answer to this question is approximately 1/5 of the columns in a 2-column page} +\newcommand{\questionOne} { +\youranswer{ +We can observe the 8 layer network learning (even though it does not achieve high accuracy), but the 38-layer network fails to learn, as its gradients vanish almost entirely in the earlier layers. This is evident in Figure 3, where the gradients in VGG38 are close to zero for all but the last few layers, preventing effective weight updates during backpropagation. Consequently, the deeper network is unable to extract meaningful features or minimize its loss, leading to stagnation in both training and validation performance. + +We conclude that VGG08 performs nominally during training, while VGG38 suffers from the vanishing gradient problem, as its gradients diminish to near-zero in early layers, impeding effective weight updates and preventing the network from learning meaningful features. This limitation nullifies the advantages of its deeper architecture, as reflected in its stagnant loss and accuracy throughout training. This is in stark contrast to VGG08 which maintains a healthy gradient flow across layers, allowing effective weight updates and enabling the network to learn features, reduce loss, and improve accuracy despite its smaller depth. +} } %% Question 2: +% Consider these results (including Figure 1 from \cite{he2016deep}). Discuss the relation between network capacity and overfitting, and whether, and how, this is reflected on these results. What other factors may have lead to this difference in performance? +% The average length for an answer to this question is approximately 1/5 of the columns in a 2-column page \newcommand{\questionTwo} { -\youranswer{Question 2 - Consider these results (including Figure 1 from \cite{he2016deep}). Discuss the relation between network capacity and overfitting, and whether, and how, this is reflected on these results. What other factors may have lead to this difference in performance? +\youranswer{Our results thus corroborate that increasing network depth can lead to higher training and testing errors, as seen in the comparison between VGG08 and VGG38. While deeper networks, like VGG38, have a larger capacity to learn complex features, they may struggle to generalize effectively, resulting in overfitting and poor performance on unseen data. This is consistent with the behaviour observed in Figure 1 from \cite{he2016deep}, where the 56-layer network exhibits higher training error and, consequently, higher test error compared to the 20-layer network. -The average length for an answer to this question is -approximately 1/5 of the columns in a 2-column page} +Our results suggest that the increased capacity of VGG38 does not translate into better generalization, likely due to the vanishing gradient problem, which hinders learning in deeper networks. Other factors, such as inadequate regularization or insufficient data augmentation, could also contribute to the observed performance difference, leading to overfitting in deeper architectures.} } %% Question 3: