diff --git a/01_Linear_Models.ipynb b/01_Linear_Models.ipynb
index b860b0f..004f3cd 100644
--- a/01_Linear_Models.ipynb
+++ b/01_Linear_Models.ipynb
@@ -97,7 +97,7 @@
"\\end{equation}\n",
"$\n",
"\n",
- "where both $\\mathbf{X}\\in\\mathbb{R}^{B\\times D}$ and $\\mathbf{Y}\\in\\mathbb{R}^{B\\times K}$ are matrices, and $\\mathbf{b}$ needs to be broadcasted $B$ times (numpy will do this by default). However, we will not make an explicit distinction between a special case for $B=1$ and $B>1$ and simply use equation (3) instead, although $\\mathbf{x}$ and hence $\\mathbf{y}$ could be matrices. From an implementation point of view, it does not matter.\n",
+ "where $\\mathbf{W} \\in \\mathbb{R}^{D\\times K}$ and both $\\mathbf{X}\\in\\mathbb{R}^{B\\times D}$ and $\\mathbf{Y}\\in\\mathbb{R}^{B\\times K}$ are matrices, and $\\mathbf{b}\\in\\mathbb{R}^{1\\times K}$ needs to be broadcasted $B$ times (numpy will do this by default). However, we will not make an explicit distinction between a special case for $B=1$ and $B>1$ and simply use equation (3) instead, although $\\mathbf{x}$ and hence $\\mathbf{y}$ could be matrices. From an implementation point of view, it does not matter.\n",
"\n",
"The desired functionality for matrix multiplication in numpy is provided by numpy.dot function. If you haven't use it so far, get familiar with it as we will use it extensively."
]
@@ -132,9 +132,16 @@
"source": [
"## Exercise 1 \n",
"\n",
- "Using `numpy.dot`, implement **forward** propagation through the linear transform defined by equations (3) and (4) for $B=1$ and $B>1$. As data ($\\mathbf{x}$) use `MNISTDataProvider` introduced last week. For the case when $B=1$, write a function to compute the 1st output ($y_1$) using equations (1) and (2). Check if the output is the same as the corresponding one obtained with numpy. \n",
+ "Using `numpy.dot`, implement **forward** propagation through the linear transform defined by equations (3) and (4) for $B=1$ and $B>1$ i.e. use parameters $\\mathbf{W}$ and $\\mathbf{b}$ with data $\\mathbf{X}$ to determine $\\mathbf{Y}$. Use `MNISTDataProvider` (introduced last week) to generate $\\mathbf{X}$. We are going to write a function for each equation:\n",
+ "1. `y1_equation_1`: Return the value of the $1^{st}$ dimension of $\\mathbf{y}$ (the output of the first output node) given a single training data point $\\mathbf{x}$ using a sum\n",
+ "1. `y1_equation_2`: Repeat above using vector multiplication (use `numpy.dot()`)\n",
+ "1. `y_equation_3`: Return the value of $\\mathbf{y}$ (the whole output layer) given a single training data point $\\mathbf{x}$\n",
+ "1. `Y_equation_4`: Return the value of $\\mathbf{Y}$ given $\\mathbf{X}$\n",
"\n",
- "Tip: To generate random data you can use `random_generator.uniform(-0.1, 0.1, (D, 10))` from above."
+ "We have initialised $\\mathbf{b}$ to zeros and randomly generated $\\mathbf{W}$ for you. The constants introduced above are:\n",
+ "* The number of data points $B = 3$\n",
+ "* The dimensionality of the input $D = 784$\n",
+ "* The dimensionality of the output $K = 10$"
]
},
{
@@ -148,9 +155,11 @@
"from mlp.dataset import MNISTDataProvider\n",
"\n",
"mnist_dp = MNISTDataProvider(dset='valid', batch_size=3, max_num_batches=1, randomize=False)\n",
- "\n",
+ "B = 3\n",
+ "D = 784\n",
+ "K = 10\n",
"irange = 0.1\n",
- "W = random_generator.uniform(-irange, irange, (784,10)) \n",
+ "W = random_generator.uniform(-irange, irange, (D, K)) \n",
"b = numpy.zeros((10,))\n"
]
},
@@ -176,20 +185,21 @@
" #use numpy.dot\n",
" raise NotImplementedError()\n",
"\n",
- "def y_equation_4(x, W, b):\n",
+ "def Y_equation_4(x, W, b):\n",
" #use numpy.dot\n",
" raise NotImplementedError()\n",
"\n",
- "for x, t in mnist_dp:\n",
- " y1e1 = y1_equation_1(x[0], W, b)\n",
- " y1e2 = y1_equation_2(x[0], W, b)\n",
- " ye3 = y_equation_3(x, W, b)\n",
- " ye4 = y_equation_4(x, W, b)\n",
+ "for X, t in mnist_dp:\n",
+ " n = 0\n",
+ " y1e1 = y1_equation_1(x[n], W, b)\n",
+ " y1e2 = y1_equation_2(x[n], W, b)\n",
+ " ye3 = y_equation_3(x[n], W, b)\n",
+ " Ye4 = Y_equation_4(x, W, b)\n",
"\n",
"print 'y1e1', y1e1\n",
"print 'y1e1', y1e1\n",
"print 'ye3', ye3\n",
- "print 'ye4', ye4\n",
+ "print 'Ye4', ye4\n",
" "
]
},
@@ -632,7 +642,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
- "version": "2.7.9"
+ "version": "2.7.10"
}
},
"nbformat": 4,
diff --git a/01_Linear_Models_solution.ipynb b/01_Linear_Models_solution.ipynb
index 2087bc0..b5f7a4a 100644
--- a/01_Linear_Models_solution.ipynb
+++ b/01_Linear_Models_solution.ipynb
@@ -136,7 +136,7 @@
"\\end{equation}\n",
"$\n",
"\n",
- "where both $\\mathbf{X}\\in\\mathbb{R}^{B\\times D}$ and $\\mathbf{Y}\\in\\mathbb{R}^{B\\times K}$ are matrices, and $\\mathbf{b}$ needs to be broadcasted $B$ times (numpy will do this by default). However, we will not make an explicit distinction between a special case for $B=1$ and $B>1$ and simply use equation (3) instead, although $\\mathbf{x}$ and hence $\\mathbf{y}$ could be matrices. From an implementation point of view, it does not matter.\n",
+ "where $\\mathbf{W} \\in \\mathbb{R}^{D\\times K}$ and both $\\mathbf{X}\\in\\mathbb{R}^{B\\times D}$ and $\\mathbf{Y}\\in\\mathbb{R}^{B\\times K}$ are matrices, and $\\mathbf{b}\\in\\mathbb{R}^{1\\times K}$ needs to be broadcasted $B$ times (numpy will do this by default). However, we will not make an explicit distinction between a special case for $B=1$ and $B>1$ and simply use equation (3) instead, although $\\mathbf{x}$ and hence $\\mathbf{y}$ could be matrices. From an implementation point of view, it does not matter.\n",
"\n",
"The desired functionality for matrix multiplication in numpy is provided by numpy.dot function. If you haven't use it so far, get familiar with it as we will use it extensively."
]
@@ -152,7 +152,7 @@
},
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": 2,
"metadata": {
"collapsed": false
},
@@ -172,14 +172,21 @@
"source": [
"## Exercise 1 \n",
"\n",
- "Using numpy.dot, implement **forward** propagation through the linear transform defined by equations (3) and (4) for $B=1$ and $B>1$. As data ($\\mathbf{x}$) use `MNISTDataProvider` from previous laboratories. For case when $B=1$ write a function to compute the 1st output ($y_1$) using equations (1) and (2). Check if the output is the same as the corresponding one obtained with numpy. \n",
+ "Using `numpy.dot`, implement **forward** propagation through the linear transform defined by equations (3) and (4) for $B=1$ and $B>1$ i.e. use parameters $\\mathbf{W}$ and $\\mathbf{b}$ with data $\\mathbf{X}$ to determine $\\mathbf{Y}$. Use `MNISTDataProvider` (introduced last week) to generate $\\mathbf{X}$. We are going to write a function for each equation:\n",
+ "1. `y1_equation_1`: Return the value of the $1^{st}$ dimension of $\\mathbf{y}$ (the output of the first output node) given a single training data point $\\mathbf{x}$ using a sum\n",
+ "1. `y1_equation_2`: Repeat above using vector multiplication (use `numpy.dot()`)\n",
+ "1. `y_equation_3`: Return the value of $\\mathbf{y}$ (the whole output layer) given a single training data point $\\mathbf{x}$\n",
+ "1. `Y_equation_4`: Return the value of $\\mathbf{Y}$ given $\\mathbf{X}$\n",
"\n",
- "Tip: To generate random data you can use `random_generator.uniform(-0.1, 0.1, (D, 10))` from the preceeding cell."
+ "We have initialised $\\mathbf{b}$ to zeros and randomly generated $\\mathbf{W}$ for you. The constants introduced above are:\n",
+ "* The number of data points $B = 3$\n",
+ "* The dimensionality of the input $D = 10$\n",
+ "* The dimensionality of the output $K = 10$"
]
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": 3,
"metadata": {
"collapsed": false
},
@@ -188,15 +195,17 @@
"from mlp.dataset import MNISTDataProvider\n",
"\n",
"mnist_dp = MNISTDataProvider(dset='valid', batch_size=3, max_num_batches=1, randomize=False)\n",
- "\n",
+ "B = 3\n",
+ "D = 784\n",
+ "K = 10\n",
"irange = 0.1\n",
- "W = random_generator.uniform(-irange, irange, (784,10)) \n",
+ "W = random_generator.uniform(-irange, irange, (D, K)) \n",
"b = numpy.zeros((10,))\n"
]
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": 4,
"metadata": {
"collapsed": false
},
@@ -207,13 +216,9 @@
"text": [
"y1e1 0.55861474982\n",
"y1e2 0.55861474982\n",
- "ye3 [[ 0.55861475 0.79450077 0.17439693 0.00265688 0.66272539 -0.09985686\n",
- " 0.56468591 0.58105588 -0.18613727 0.08151257]\n",
- " [-0.43965864 0.59573972 -0.22691119 0.26767124 -0.31343979 0.07224664\n",
- " -0.19616183 0.0851733 -0.24088286 -0.19305162]\n",
- " [-0.20176359 0.42394166 -1.03984446 0.15492101 0.15694745 -0.53741022\n",
- " 0.05887668 -0.21124527 -0.07870156 -0.00506471]]\n",
- "ye4 [[ 0.55861475 0.79450077 0.17439693 0.00265688 0.66272539 -0.09985686\n",
+ "ye3 [ 0.55861475 0.79450077 0.17439693 0.00265688 0.66272539 -0.09985686\n",
+ " 0.56468591 0.58105588 -0.18613727 0.08151257]\n",
+ "Ye4 [[ 0.55861475 0.79450077 0.17439693 0.00265688 0.66272539 -0.09985686\n",
" 0.56468591 0.58105588 -0.18613727 0.08151257]\n",
" [-0.43965864 0.59573972 -0.22691119 0.26767124 -0.31343979 0.07224664\n",
" -0.19616183 0.0851733 -0.24088286 -0.19305162]\n",
@@ -223,36 +228,37 @@
}
],
"source": [
- "\n",
"mnist_dp.reset()\n",
"\n",
"#implement following functions, then run the cell\n",
"def y1_equation_1(x, W, b):\n",
- " y1=0\n",
- " for j in xrange(0, x.shape[0]):\n",
- " y1 += x[j]*W[j,0]\n",
- " return y1 + b[0]\n",
+ " k = 0\n",
+ " s = 0\n",
+ " for j in xrange(len(x)):\n",
+ " s += x[j] * W[j,k]\n",
+ " return b[k] + s\n",
" \n",
"def y1_equation_2(x, W, b):\n",
- " return numpy.dot(x, W[:,0].T) + b[0]\n",
+ " k = 0\n",
+ " return numpy.dot(x, W[:,k]) + b[k]\n",
"\n",
"def y_equation_3(x, W, b):\n",
- " return numpy.dot(x,W) + b\n",
+ " return numpy.dot(x, W) + b\n",
"\n",
"def y_equation_4(x, W, b):\n",
- " return numpy.dot(x,W) + b\n",
+ " return numpy.dot(x, W) + b\n",
"\n",
- "for x, t in mnist_dp:\n",
- " y1e1 = y1_equation_1(x[0], W, b)\n",
- " y1e2 = y1_equation_2(x[0], W, b)\n",
- " ye3 = y_equation_3(x, W, b)\n",
- " ye4 = y_equation_4(x, W, b)\n",
+ "for X, t in mnist_dp:\n",
+ " n = 0\n",
+ " y1e1 = y1_equation_1(X[n], W, b)\n",
+ " y1e2 = y1_equation_2(X[n], W, b)\n",
+ " ye3 = y_equation_3(X[n], W, b)\n",
+ " Ye4 = y_equation_4(X, W, b)\n",
"\n",
"print 'y1e1', y1e1\n",
"print 'y1e2', y1e2\n",
"print 'ye3', ye3\n",
- "print 'ye4', ye4\n",
- " "
+ "print 'Ye4', Ye4"
]
},
{
@@ -882,7 +888,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
- "version": "2.7.9"
+ "version": "2.7.10"
}
},
"nbformat": 4,
diff --git a/02_MNIST_SLN.ipynb b/02_MNIST_SLN.ipynb
index d90fcbf..d5230ac 100644
--- a/02_MNIST_SLN.ipynb
+++ b/02_MNIST_SLN.ipynb
@@ -72,15 +72,14 @@
]
},
{
- "cell_type": "code",
- "execution_count": null,
+ "cell_type": "markdown",
"metadata": {
"collapsed": false
},
- "outputs": [],
"source": [
+ "Example code for the above\n",
+ "```python\n",
"# %load -s Linear mlp/layers.py\n",
- "# DO NOT RUN THIS CELL (AS YOU WILL GET ERRORS), IT WAS JUST LOADED TO VISUALISE ABOVE COMMENTS\n",
"class Linear(Layer):\n",
"\n",
" def __init__(self, idim, odim,\n",
@@ -193,7 +192,8 @@
" self.b = params[1]\n",
"\n",
" def get_name(self):\n",
- " return 'linear'\n"
+ " return 'linear'\n",
+ "```"
]
},
{
@@ -295,7 +295,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
- "version": "2.7.9"
+ "version": "2.7.10"
}
},
"nbformat": 4,