Add support for retrieving best epoch and val score when reloading a model
This commit is contained in:
parent
f707b10ef0
commit
8ac193d906
@ -5,7 +5,7 @@ import tqdm
|
||||
from data_providers import CIFAR100DataProvider
|
||||
from network_builder import ClassifierNetworkGraph
|
||||
from utils.parser_utils import ParserClass
|
||||
from utils.storage import build_experiment_folder, save_statistics
|
||||
from utils.storage import build_experiment_folder, save_statistics, get_best_validation_model_statistics
|
||||
|
||||
tf.reset_default_graph() # resets any previous graphs to clear memory
|
||||
parser = argparse.ArgumentParser(description='Welcome to CNN experiments script') # generates an argument parser
|
||||
@ -64,8 +64,6 @@ total_train_batches = train_data.num_batches
|
||||
total_val_batches = val_data.num_batches
|
||||
total_test_batches = test_data.num_batches
|
||||
|
||||
best_epoch = 0
|
||||
|
||||
if tensorboard_enable:
|
||||
print("saved tensorboard file at", logs_filepath)
|
||||
writer = tf.summary.FileWriter(logs_filepath, graph=tf.get_default_graph())
|
||||
@ -76,13 +74,16 @@ with tf.Session() as sess:
|
||||
sess.run(init) # actually running the initialization op
|
||||
train_saver = tf.train.Saver() # saver object that will save our graph so we can reload it later for continuation of
|
||||
val_saver = tf.train.Saver()
|
||||
best_val_accuracy = 0.
|
||||
best_epoch = 0
|
||||
# training or inference
|
||||
|
||||
if continue_from_epoch != -1:
|
||||
train_saver.restore(sess, "{}/{}_{}.ckpt".format(saved_models_filepath, experiment_name,
|
||||
continue_from_epoch)) # restore previous graph to continue operations
|
||||
continue_from_epoch)) # restore previous graph to continue operations
|
||||
best_val_accuracy, best_epoch = get_best_validation_model_statistics(logs_filepath, "result_summary_statistics")
|
||||
print(best_val_accuracy, best_epoch)
|
||||
|
||||
best_val_accuracy = 0.
|
||||
with tqdm.tqdm(total=epochs - start_epoch) as epoch_pbar:
|
||||
for e in range(start_epoch, epochs):
|
||||
total_c_loss = 0.
|
||||
|
@ -5,7 +5,7 @@ import tqdm
|
||||
from data_providers import CIFAR10DataProvider
|
||||
from network_builder import ClassifierNetworkGraph
|
||||
from utils.parser_utils import ParserClass
|
||||
from utils.storage import build_experiment_folder, save_statistics
|
||||
from utils.storage import build_experiment_folder, save_statistics, get_best_validation_model_statistics
|
||||
|
||||
tf.reset_default_graph() # resets any previous graphs to clear memory
|
||||
parser = argparse.ArgumentParser(description='Welcome to CNN experiments script') # generates an argument parser
|
||||
@ -64,7 +64,7 @@ total_train_batches = train_data.num_batches
|
||||
total_val_batches = val_data.num_batches
|
||||
total_test_batches = test_data.num_batches
|
||||
|
||||
best_epoch = 0
|
||||
|
||||
|
||||
if tensorboard_enable:
|
||||
print("saved tensorboard file at", logs_filepath)
|
||||
@ -76,13 +76,16 @@ with tf.Session() as sess:
|
||||
sess.run(init) # actually running the initialization op
|
||||
train_saver = tf.train.Saver() # saver object that will save our graph so we can reload it later for continuation of
|
||||
val_saver = tf.train.Saver()
|
||||
best_val_accuracy = 0.
|
||||
best_epoch = 0
|
||||
# training or inference
|
||||
|
||||
if continue_from_epoch != -1:
|
||||
train_saver.restore(sess, "{}/{}_{}.ckpt".format(saved_models_filepath, experiment_name,
|
||||
continue_from_epoch)) # restore previous graph to continue operations
|
||||
best_val_accuracy, best_epoch = get_best_validation_model_statistics(logs_filepath, "result_summary_statistics")
|
||||
print(best_val_accuracy, best_epoch)
|
||||
|
||||
best_val_accuracy = 0.
|
||||
with tqdm.tqdm(total=epochs-start_epoch) as epoch_pbar:
|
||||
for e in range(start_epoch, epochs):
|
||||
total_c_loss = 0.
|
||||
|
@ -5,7 +5,7 @@ import tqdm
|
||||
from data_providers import EMNISTDataProvider
|
||||
from network_builder import ClassifierNetworkGraph
|
||||
from utils.parser_utils import ParserClass
|
||||
from utils.storage import build_experiment_folder, save_statistics
|
||||
from utils.storage import build_experiment_folder, save_statistics, get_best_validation_model_statistics
|
||||
|
||||
tf.reset_default_graph() # resets any previous graphs to clear memory
|
||||
parser = argparse.ArgumentParser(description='Welcome to CNN experiments script') # generates an argument parser
|
||||
@ -64,8 +64,6 @@ total_train_batches = train_data.num_batches
|
||||
total_val_batches = val_data.num_batches
|
||||
total_test_batches = test_data.num_batches
|
||||
|
||||
best_epoch = 0
|
||||
|
||||
if tensorboard_enable:
|
||||
print("saved tensorboard file at", logs_filepath)
|
||||
writer = tf.summary.FileWriter(logs_filepath, graph=tf.get_default_graph())
|
||||
@ -76,13 +74,16 @@ with tf.Session() as sess:
|
||||
sess.run(init) # actually running the initialization op
|
||||
train_saver = tf.train.Saver() # saver object that will save our graph so we can reload it later for continuation of
|
||||
val_saver = tf.train.Saver()
|
||||
best_val_accuracy = 0.
|
||||
best_epoch = 0
|
||||
# training or inference
|
||||
|
||||
if continue_from_epoch != -1:
|
||||
train_saver.restore(sess, "{}/{}_{}.ckpt".format(saved_models_filepath, experiment_name,
|
||||
continue_from_epoch)) # restore previous graph to continue operations
|
||||
continue_from_epoch)) # restore previous graph to continue operations
|
||||
best_val_accuracy, best_epoch = get_best_validation_model_statistics(logs_filepath, "result_summary_statistics")
|
||||
print(best_val_accuracy, best_epoch)
|
||||
|
||||
best_val_accuracy = 0.
|
||||
with tqdm.tqdm(total=epochs - start_epoch) as epoch_pbar:
|
||||
for e in range(start_epoch, epochs):
|
||||
total_c_loss = 0.
|
||||
|
@ -5,7 +5,7 @@ import tqdm
|
||||
from data_providers import MSD10GenreDataProvider
|
||||
from network_builder import ClassifierNetworkGraph
|
||||
from utils.parser_utils import ParserClass
|
||||
from utils.storage import build_experiment_folder, save_statistics
|
||||
from utils.storage import build_experiment_folder, save_statistics, get_best_validation_model_statistics
|
||||
|
||||
tf.reset_default_graph() # resets any previous graphs to clear memory
|
||||
parser = argparse.ArgumentParser(description='Welcome to CNN experiments script') # generates an argument parser
|
||||
@ -64,8 +64,6 @@ total_train_batches = train_data.num_batches
|
||||
total_val_batches = val_data.num_batches
|
||||
total_test_batches = test_data.num_batches
|
||||
|
||||
best_epoch = 0
|
||||
|
||||
if tensorboard_enable:
|
||||
print("saved tensorboard file at", logs_filepath)
|
||||
writer = tf.summary.FileWriter(logs_filepath, graph=tf.get_default_graph())
|
||||
@ -76,14 +74,16 @@ with tf.Session() as sess:
|
||||
sess.run(init) # actually running the initialization op
|
||||
train_saver = tf.train.Saver() # saver object that will save our graph so we can reload it later for continuation of
|
||||
val_saver = tf.train.Saver()
|
||||
best_val_accuracy = 0.
|
||||
best_epoch = 0
|
||||
# training or inference
|
||||
|
||||
|
||||
if continue_from_epoch != -1:
|
||||
train_saver.restore(sess, "{}/{}_{}.ckpt".format(saved_models_filepath, experiment_name,
|
||||
continue_from_epoch)) # restore previous graph to continue operations
|
||||
continue_from_epoch)) # restore previous graph to continue operations
|
||||
best_val_accuracy, best_epoch = get_best_validation_model_statistics(logs_filepath, "result_summary_statistics")
|
||||
print(best_val_accuracy, best_epoch)
|
||||
|
||||
best_val_accuracy = 0.
|
||||
with tqdm.tqdm(total=epochs - start_epoch) as epoch_pbar:
|
||||
for e in range(start_epoch, epochs):
|
||||
total_c_loss = 0.
|
||||
|
@ -5,7 +5,7 @@ import tqdm
|
||||
from data_providers import MSD10GenreDataProvider
|
||||
from network_builder import ClassifierNetworkGraph
|
||||
from utils.parser_utils import ParserClass
|
||||
from utils.storage import build_experiment_folder, save_statistics
|
||||
from utils.storage import build_experiment_folder, save_statistics, get_best_validation_model_statistics
|
||||
|
||||
tf.reset_default_graph() # resets any previous graphs to clear memory
|
||||
parser = argparse.ArgumentParser(description='Welcome to CNN experiments script') # generates an argument parser
|
||||
@ -64,8 +64,6 @@ total_train_batches = train_data.num_batches
|
||||
total_val_batches = val_data.num_batches
|
||||
total_test_batches = test_data.num_batches
|
||||
|
||||
best_epoch = 0
|
||||
|
||||
if tensorboard_enable:
|
||||
print("saved tensorboard file at", logs_filepath)
|
||||
writer = tf.summary.FileWriter(logs_filepath, graph=tf.get_default_graph())
|
||||
@ -76,13 +74,16 @@ with tf.Session() as sess:
|
||||
sess.run(init) # actually running the initialization op
|
||||
train_saver = tf.train.Saver() # saver object that will save our graph so we can reload it later for continuation of
|
||||
val_saver = tf.train.Saver()
|
||||
best_val_accuracy = 0.
|
||||
best_epoch = 0
|
||||
# training or inference
|
||||
|
||||
if continue_from_epoch != -1:
|
||||
train_saver.restore(sess, "{}/{}_{}.ckpt".format(saved_models_filepath, experiment_name,
|
||||
continue_from_epoch)) # restore previous graph to continue operations
|
||||
continue_from_epoch)) # restore previous graph to continue operations
|
||||
best_val_accuracy, best_epoch = get_best_validation_model_statistics(logs_filepath, "result_summary_statistics")
|
||||
print(best_val_accuracy, best_epoch)
|
||||
|
||||
best_val_accuracy = 0.
|
||||
with tqdm.tqdm(total=epochs - start_epoch) as epoch_pbar:
|
||||
for e in range(start_epoch, epochs):
|
||||
total_c_loss = 0.
|
||||
|
@ -1,5 +1,5 @@
|
||||
import csv
|
||||
|
||||
import numpy as np
|
||||
|
||||
def save_statistics(log_dir, statistics_file_name, list_of_statistics, create=False):
|
||||
"""
|
||||
@ -42,6 +42,20 @@ def load_statistics(log_dir, statistics_file_name):
|
||||
data_dict[key].append(item)
|
||||
return data_dict
|
||||
|
||||
def get_best_validation_model_statistics(log_dir, statistics_file_name):
|
||||
"""
|
||||
Returns the best val epoch and val accuracy from a log csv file
|
||||
:param log_dir: The log directory the file is saved in
|
||||
:param statistics_file_name: The log file name
|
||||
:return: The best validation accuracy and the epoch at which it is produced
|
||||
"""
|
||||
log_file_dict = load_statistics(statistics_file_name=statistics_file_name, log_dir=log_dir)
|
||||
val_acc = np.array(log_file_dict['val_c_accuracy'], dtype=np.float32)
|
||||
best_val_acc = np.max(val_acc)
|
||||
best_val_epoch = np.argmax(val_acc)
|
||||
|
||||
return best_val_acc, best_val_epoch
|
||||
|
||||
|
||||
def build_experiment_folder(experiment_name, log_path):
|
||||
saved_models_filepath = "{}/{}/{}".format(log_path, experiment_name.replace("%.%", "/"), "saved_models")
|
||||
|
Loading…
Reference in New Issue
Block a user