Update gpu-cluster-quick-start.md

This commit is contained in:
Antreas Antoniou 2018-02-01 14:22:29 +00:00 committed by GitHub
parent adb028b83c
commit 71ec5c77df
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -54,7 +54,7 @@ git config --global user.name "[your name]"
git config --global user.email "[matric-number]@sms.ed.ac.uk"
```
9. Now clone the mlpractical repo using ```git clone https://github.com/CSTR-Edinburgh/mlpractical.git```.
10. Checkout the mlp_tf_tutorial branch using ```git checkout mlp2017-8/mlp_tf_tutorial```.
10. Checkout the mlp_tf_tutorial branch using ```git checkout mlp2017-8/semester_2_materials```.
11. ```cd mlpractical``` and then install the required packages using ```pip install -r requirements_gpu.txt```.
12. Once this is done you will need to setup the MLP_DATA path using the following block of commands:
```bash
@ -86,7 +86,7 @@ To submit a job one needs to use ```sbatch script.sh``` which will automatically
#SBATCH --mem=16000 # memory in Mb
#SBATCH -o outfile # send stdout to outfile
#SBATCH -e errfile # send stderr to errfile
#SBATCH -t 0:01:00 # time requested in hour:minute:seconds
#SBATCH -t 1:00:00 # time requested in hour:minute:seconds
# Setup CUDA and CUDNN related paths
export CUDA_HOME=/opt/cuda-8.0.44
@ -163,4 +163,4 @@ This should directly copy the files to AFS. Furthermore one can use rsync as sho
##Additional Help
If you require additional help as usual please post on piazza or ask in the tech support helpdesk.
If you require additional help as usual please post on piazza or ask in the tech support helpdesk.