Adding regularisation penalties module.
This commit is contained in:
parent
057a25ed07
commit
6f4aa5fd5f
95
mlp/penalties.py
Normal file
95
mlp/penalties.py
Normal file
@ -0,0 +1,95 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""Parameter penalties.
|
||||
|
||||
This module defines parameter penalty functions which can be used to regularise
|
||||
training by adding an additional term to the objective function being
|
||||
minimised which aims to restrict 'model complexity' by some measure.
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
class L1Penalty(object):
|
||||
"""L1 parameter penalty.
|
||||
|
||||
Term to add to the objective function penalising parameters
|
||||
based on their L1 norm.
|
||||
"""
|
||||
|
||||
def __init__(self, coefficient):
|
||||
"""Create a new L1 penalty object.
|
||||
|
||||
Args:
|
||||
coefficient: Positive constant to scale penalty term by.
|
||||
"""
|
||||
assert coefficient > 0., 'Penalty coefficient must be positive.'
|
||||
self.coefficient = coefficient
|
||||
|
||||
def __call__(self, parameter):
|
||||
"""Calculate L1 penalty value for a parameter.
|
||||
|
||||
Args:
|
||||
parameter: Array corresponding to a model parameter.
|
||||
|
||||
Returns:
|
||||
Value of penalty term.
|
||||
"""
|
||||
return self.coefficient * abs(parameter).sum()
|
||||
|
||||
def grad(self, parameter):
|
||||
"""Calculate the penalty gradient with respect to the parameter.
|
||||
|
||||
Args:
|
||||
parameter: Array corresponding to a model parameter.
|
||||
|
||||
Returns:
|
||||
Value of penalty gradient with respect to parameter. This
|
||||
should be an array of the same shape as the parameter.
|
||||
"""
|
||||
return self.coefficient * np.sign(parameter)
|
||||
|
||||
def __repr__(self):
|
||||
return 'L1Penalty({0})'.format(self.coefficient)
|
||||
|
||||
|
||||
class L2Penalty(object):
|
||||
"""L1 parameter penalty.
|
||||
|
||||
Term to add to the objective function penalising parameters
|
||||
based on their L2 norm.
|
||||
"""
|
||||
|
||||
def __init__(self, coefficient):
|
||||
"""Create a new L2 penalty object.
|
||||
|
||||
Args:
|
||||
coefficient: Positive constant to scale penalty term by.
|
||||
"""
|
||||
assert coefficient > 0., 'Penalty coefficient must be positive.'
|
||||
self.coefficient = coefficient
|
||||
|
||||
def __call__(self, parameter):
|
||||
"""Calculate L2 penalty value for a parameter.
|
||||
|
||||
Args:
|
||||
parameter: Array corresponding to a model parameter.
|
||||
|
||||
Returns:
|
||||
Value of penalty term.
|
||||
"""
|
||||
return 0.5 * self.coefficient * (parameter**2).sum()
|
||||
|
||||
def grad(self, parameter):
|
||||
"""Calculate the penalty gradient with respect to the parameter.
|
||||
|
||||
Args:
|
||||
parameter: Array corresponding to a model parameter.
|
||||
|
||||
Returns:
|
||||
Value of penalty gradient with respect to parameter. This
|
||||
should be an array of the same shape as the parameter.
|
||||
"""
|
||||
return self.coefficient * parameter
|
||||
|
||||
def __repr__(self):
|
||||
return 'L2Penalty({0})'.format(self.coefficient)
|
Loading…
Reference in New Issue
Block a user