diff --git a/scripts/generate_conv_test.py b/scripts/generate_conv_test.py index 82d6e79..4fe6120 100644 --- a/scripts/generate_conv_test.py +++ b/scripts/generate_conv_test.py @@ -19,8 +19,6 @@ def generate_inputs(student_id): tests[0, 1, :, :] = float(student_number[7]) / 10 - 5 return tests - - test_inputs = generate_inputs(student_id) test_grads_wrt_outputs = np.arange(-20, 16).reshape((2, 2, 3, 3)) inputs = np.arange(96).reshape((2, 3, 4, 4)) @@ -36,11 +34,26 @@ conv_bprop = activation_layer.bprop( test_inputs, conv_fprop, test_grads_wrt_outputs) conv_grads_wrt_params = activation_layer.grads_wrt_params(test_inputs, test_grads_wrt_outputs) - test_output = "ConvolutionalLayer:\nFprop: {}\nBprop: {}\n" \ "Grads_wrt_params: {}\n".format(conv_fprop, conv_bprop, conv_grads_wrt_params) +cross_correlation_kernels = kernels[:, :, ::-1, ::-1] +activation_layer = ConvolutionalLayer(num_input_channels=3, num_output_channels=2, input_dim_1=4, input_dim_2=4, + kernel_dim_1=2, kernel_dim_2=2) +activation_layer.params = [cross_correlation_kernels, biases] +conv_fprop = activation_layer.fprop(test_inputs) +conv_bprop = activation_layer.bprop( + test_inputs, conv_fprop, test_grads_wrt_outputs) +conv_grads_wrt_params = activation_layer.grads_wrt_params(test_inputs, + test_grads_wrt_outputs) + +test_cross_correlation_output = "Cross_Correlation_ConvolutionalLayer:\nFprop: {}\nBprop: {}\n" \ + "Grads_wrt_params: {}\n".format(conv_fprop, + conv_bprop, + conv_grads_wrt_params) + +test_output = test_output + "\n" + test_cross_correlation_output with open("{}_conv_test_file.txt".format(student_id), "w+") as out_file: out_file.write(test_output) \ No newline at end of file