diff --git a/README.md b/README.md new file mode 100644 index 0000000..9ceee7e --- /dev/null +++ b/README.md @@ -0,0 +1,14 @@ +# Machine Learning Practical + +This repository contains the code for the University of Edinburgh [School of Informatics](http://www.inf.ed.ac.uk) course [Machine Learning Practical](http://www.inf.ed.ac.uk/teaching/courses/mlp/). + +This assignment-based course is focused on the implementation and evaluation of machine learning systems. Students who do this course will have experience in the design, implementation, training, and evaluation of machine learning systems. + +The code in this repository is split into: + + * a Python package `mlp`, a [NumPy](http://www.numpy.org/) based neural network package designed specifically for the course that students will implement parts of and extend during the course labs and assignments, + * a series of [Jupyter](http://jupyter.org/) notebooks in the `notebooks` directory containing explanatory material and coding exercises to be completed during the course labs. + +## Getting set up + +Detailed instructions for setting up a development environment for the course are given in [this file](notes/environment-set-up.md). Students doing the course will spend part of the first lab getting their own environment set up. diff --git a/data/HadSSP_daily_qc.txt b/data/HadSSP_daily_qc.txt new file mode 100644 index 0000000..d7badf5 --- /dev/null +++ b/data/HadSSP_daily_qc.txt @@ -0,0 +1,1023 @@ +Daily Southern Scotland precipitation (mm). Values may change after QC. +Alexander & Jones (2001, Atmospheric Science Letters). +Format=Year, Month, 1-31 daily precipitation values. + 1931 1 1.40 2.10 2.50 0.10 0.00 0.00 0.90 6.20 1.90 4.90 7.30 0.80 0.30 2.90 7.50 18.79 1.30 10.29 2.90 0.60 6.70 15.39 11.29 5.00 3.60 1.00 4.20 7.89 1.10 6.50 17.19 + 1931 2 0.90 0.60 0.40 1.10 6.69 3.00 7.59 7.79 7.99 9.59 24.17 1.90 0.20 4.69 10.58 0.80 0.80 0.90 7.59 12.88 4.19 5.89 1.20 8.59 5.69 0.90 1.80 2.20 -99.99 -99.99 -99.99 + 1931 3 0.00 1.30 0.00 0.00 0.00 0.50 0.40 0.60 1.00 0.00 0.10 7.30 6.20 0.20 0.90 0.00 0.00 0.20 5.80 4.60 1.40 0.40 0.40 0.00 0.00 0.00 0.00 0.30 1.80 0.20 0.00 + 1931 4 3.99 3.49 0.00 2.70 0.00 0.00 1.80 1.80 0.00 0.20 3.39 2.40 1.40 1.60 3.59 7.99 2.20 0.20 0.00 0.20 0.30 3.49 5.09 6.79 4.79 3.20 1.90 0.70 0.00 2.10 -99.99 + 1931 5 1.70 0.00 0.70 0.00 5.62 0.70 13.14 0.80 11.13 11.23 0.60 1.70 10.83 8.12 2.21 0.60 0.20 0.70 0.00 0.00 0.00 1.91 2.31 4.31 3.91 0.20 0.00 12.03 1.60 9.23 3.11 + 1931 6 1.40 16.40 3.70 0.10 5.80 12.90 4.30 4.50 10.40 13.20 0.30 0.10 9.30 29.60 23.40 2.30 9.80 8.90 0.40 2.90 6.70 2.40 2.80 0.00 0.40 1.90 2.30 0.30 0.00 0.90 -99.99 + 1931 7 9.49 1.70 8.69 4.10 2.50 13.29 2.70 5.60 3.10 1.30 7.59 3.90 2.30 7.69 1.60 3.60 7.09 1.50 1.10 0.30 2.20 10.69 1.30 3.50 3.70 0.80 13.19 1.60 9.29 1.20 1.80 + 1931 8 0.20 0.00 0.00 0.00 0.00 0.60 2.00 0.60 6.60 0.60 0.90 1.20 0.50 4.80 2.80 6.60 4.10 0.00 17.20 3.50 1.10 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 + 1931 9 9.86 4.33 1.01 0.10 0.30 1.01 0.80 1.31 0.00 0.30 4.23 0.00 1.01 1.01 0.91 14.69 0.40 0.40 0.10 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 2.62 4.33 -99.99 + 1931 10 23.18 5.30 4.20 6.89 4.10 11.29 10.09 5.80 11.99 1.80 2.00 5.10 0.30 0.00 0.00 0.10 0.10 0.00 0.50 0.00 0.00 0.00 3.20 0.00 0.40 2.40 19.59 1.00 11.09 0.20 4.30 + 1931 11 6.60 20.40 24.80 3.30 3.30 2.60 5.20 4.20 8.00 13.60 3.50 0.90 8.50 15.30 0.10 0.10 13.50 10.20 5.10 6.40 0.10 6.70 28.20 7.30 10.20 7.40 5.70 6.40 1.20 0.60 -99.99 + 1931 12 3.20 21.60 16.00 5.80 8.40 0.70 6.90 4.80 2.80 1.10 1.10 0.90 2.50 3.20 0.00 0.60 0.10 3.50 1.50 0.90 0.50 10.60 16.40 4.60 2.20 1.70 5.70 3.00 0.10 0.00 17.40 + 1932 1 12.71 41.12 22.51 7.20 12.41 5.70 1.70 1.80 24.41 3.80 0.80 13.71 4.30 17.21 20.71 8.50 1.50 1.00 11.20 5.20 6.50 0.40 0.40 4.00 0.10 0.00 0.00 1.00 0.30 0.10 1.50 + 1932 2 0.00 0.22 0.00 0.54 0.33 0.11 0.00 0.00 0.22 0.11 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.22 0.11 0.11 0.11 0.00 0.11 0.00 0.00 -99.99 -99.99 + 1932 3 0.10 0.00 0.00 1.60 8.30 4.10 10.00 1.10 0.00 0.00 0.00 0.60 0.50 0.00 0.00 0.00 0.00 0.00 1.90 9.60 12.50 3.40 0.70 2.70 2.40 0.70 5.50 0.50 7.20 4.70 0.90 + 1932 4 7.41 4.61 1.10 0.10 9.41 8.61 2.10 13.62 17.63 4.71 0.70 0.30 10.02 3.61 1.10 0.00 0.00 1.00 6.21 1.90 1.10 11.02 1.70 0.20 0.00 0.00 4.71 10.12 2.90 1.10 -99.99 + 1932 5 0.10 0.20 0.00 0.10 0.70 0.10 0.80 1.00 0.30 0.00 10.51 17.42 4.11 1.00 13.62 0.30 0.10 8.21 4.41 3.70 1.90 0.00 0.90 0.20 3.60 0.70 1.00 1.80 1.00 0.60 0.00 + 1932 6 0.00 0.00 0.00 0.20 0.00 0.00 0.60 0.20 0.50 0.00 0.00 0.10 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.20 1.81 4.02 13.25 1.61 6.63 19.38 -99.99 + 1932 7 2.41 7.62 13.94 7.42 1.30 1.30 1.80 3.81 2.61 4.01 1.00 4.81 9.93 0.00 1.20 0.50 0.40 0.10 2.11 0.80 0.40 1.60 5.01 6.32 3.51 3.01 14.34 0.90 9.52 2.71 1.00 + 1932 8 0.00 1.70 0.30 1.00 2.70 4.61 3.40 2.60 0.50 1.30 9.61 1.80 3.81 0.40 0.70 2.90 0.70 0.00 0.00 2.70 0.90 0.00 0.00 0.00 0.00 3.10 0.40 2.60 3.91 3.91 14.52 + 1932 9 19.37 7.39 9.69 2.70 3.50 3.79 16.68 5.29 4.69 16.88 3.50 1.00 14.08 2.00 0.40 0.10 0.80 0.80 0.20 0.00 0.00 0.90 1.20 8.99 8.69 1.70 0.10 1.20 0.00 8.59 -99.99 + 1932 10 4.40 0.50 0.10 1.80 6.40 8.20 14.69 18.39 4.30 2.80 0.10 16.19 2.20 0.80 2.40 4.80 20.69 0.60 10.29 6.20 9.30 7.50 4.70 1.30 8.80 9.50 1.10 2.70 19.39 5.20 2.40 + 1932 11 11.37 8.08 5.79 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.10 0.30 0.00 0.10 1.30 0.40 0.10 0.20 2.99 8.48 12.27 18.76 8.58 2.29 13.57 6.68 0.80 1.80 22.85 5.39 -99.99 + 1932 12 20.23 19.93 3.81 2.40 0.00 0.00 0.00 0.10 0.40 0.40 0.10 0.70 2.30 13.22 20.43 44.17 27.24 28.95 22.04 4.91 5.51 8.91 5.61 1.30 0.00 3.10 0.20 3.71 4.91 0.10 5.91 + 1933 1 3.40 28.50 2.80 18.80 5.30 4.50 14.60 8.80 0.60 3.50 0.00 3.10 0.50 19.20 1.10 0.90 0.40 0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.30 5.80 36.00 + 1933 2 6.10 2.60 14.80 33.10 8.00 9.00 3.10 4.70 7.00 0.10 0.10 0.90 0.10 0.00 0.20 1.70 0.50 0.00 1.40 1.40 0.20 0.00 0.30 2.30 11.30 10.30 4.90 2.70 -99.99 -99.99 -99.99 + 1933 3 2.59 5.29 3.99 5.99 7.19 7.09 0.30 29.54 5.19 0.00 0.00 0.00 1.10 3.89 5.49 2.49 2.89 3.59 0.10 0.00 1.90 0.00 0.00 0.00 0.00 0.10 0.10 0.00 2.20 3.49 1.80 + 1933 4 0.40 14.98 3.20 0.50 0.00 0.00 0.00 11.98 1.70 0.10 4.69 0.20 0.00 0.40 6.09 1.60 0.80 0.10 0.10 0.20 0.00 0.00 0.10 12.68 0.90 5.09 3.79 0.20 3.70 0.90 -99.99 + 1933 5 0.00 0.00 4.71 9.92 2.21 13.73 3.81 5.71 1.80 0.10 0.80 0.20 0.00 0.40 1.10 3.61 1.10 4.91 1.50 3.91 0.00 10.23 1.30 3.81 0.90 3.51 0.20 0.70 0.00 0.00 0.00 + 1933 6 6.82 7.93 0.00 0.00 0.00 0.00 0.00 1.00 0.10 1.20 0.10 0.10 0.00 0.00 2.11 13.14 14.25 6.12 2.41 0.20 1.61 0.60 1.30 0.90 0.30 0.00 0.00 0.00 0.00 0.40 -99.99 + 1933 7 0.00 0.00 0.00 0.00 0.10 0.00 6.00 1.70 8.40 9.90 8.30 4.00 10.00 0.80 1.90 0.20 1.20 1.10 1.60 1.50 0.00 0.90 0.90 16.60 2.70 0.10 14.10 4.70 3.40 21.30 0.40 + 1933 8 2.09 2.29 0.20 0.00 0.00 0.00 1.89 6.87 0.30 0.20 1.39 0.00 1.59 2.89 7.07 4.18 9.36 3.98 3.98 2.19 3.68 2.79 0.20 3.19 0.60 2.39 17.23 2.19 0.80 0.30 13.94 + 1933 9 0.90 0.70 0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.18 2.19 12.36 3.99 1.00 0.10 0.40 1.20 0.20 0.10 0.00 0.10 0.00 0.00 -99.99 + 1933 10 0.00 0.00 0.30 0.20 0.00 0.00 13.80 1.90 13.20 1.00 1.70 2.10 6.80 1.40 18.80 2.50 0.60 0.70 3.60 1.00 1.30 4.00 3.00 0.30 0.20 4.00 1.40 4.30 0.60 3.10 3.50 + 1933 11 5.90 0.10 0.10 0.80 0.60 0.20 0.20 1.50 7.80 0.10 1.50 2.60 8.40 19.10 1.90 0.70 0.70 4.50 12.90 0.80 0.40 0.10 0.50 0.00 0.00 0.20 0.10 0.00 0.00 0.00 -99.99 + 1933 12 3.91 0.10 0.00 0.20 0.00 0.50 0.20 0.00 0.70 0.10 5.31 0.60 0.00 0.00 0.90 0.30 0.20 1.70 0.50 0.20 0.30 0.60 0.00 6.71 6.41 0.30 0.00 0.30 6.71 4.21 7.01 + 1934 1 12.11 2.20 17.41 13.91 2.80 15.91 14.91 3.30 19.91 8.80 9.10 10.31 6.80 3.50 3.70 24.21 7.10 1.10 0.00 2.10 3.10 5.00 1.70 0.00 5.30 6.30 0.00 0.10 0.70 4.10 0.40 + 1934 2 0.20 0.30 0.10 0.00 0.49 1.18 6.31 0.99 1.38 0.59 0.49 0.00 0.00 0.00 0.10 0.00 0.00 0.39 0.59 1.09 1.18 0.30 0.00 5.72 0.39 0.10 0.00 0.20 -99.99 -99.99 -99.99 + 1934 3 11.57 4.99 3.89 5.29 9.78 4.39 3.59 4.09 0.60 2.79 2.99 2.99 0.20 6.39 1.80 7.38 3.59 2.69 0.00 0.10 1.70 0.30 2.79 0.30 3.49 0.70 0.00 0.00 0.20 0.00 0.00 + 1934 4 0.10 0.10 0.00 0.40 0.00 1.40 6.59 0.90 2.20 6.39 12.79 26.47 9.49 3.70 1.10 0.40 4.70 1.60 1.10 8.39 3.10 2.70 7.59 1.30 1.30 1.00 0.30 0.10 0.20 0.10 -99.99 + 1934 5 3.10 0.00 0.00 0.00 6.99 15.08 2.70 4.50 0.20 0.00 4.10 1.60 3.40 1.20 15.48 2.50 2.00 6.49 18.08 6.99 2.20 0.70 0.40 1.60 0.00 0.00 0.50 0.10 0.00 0.00 0.00 + 1934 6 0.00 0.00 0.00 0.00 0.00 0.40 1.00 5.00 0.40 0.00 0.00 0.00 1.10 3.40 0.70 0.90 0.30 10.10 1.20 1.90 21.70 14.90 0.00 0.90 0.10 5.20 3.50 0.60 0.30 0.10 -99.99 + 1934 7 0.10 0.00 0.00 0.00 0.00 0.30 0.00 0.00 0.00 0.00 0.20 9.60 6.50 2.10 4.30 4.00 8.40 3.10 2.20 3.70 8.20 1.60 1.80 1.40 5.20 3.00 3.90 0.90 6.50 2.50 1.80 + 1934 8 10.59 11.79 2.20 4.20 0.20 8.89 0.10 3.60 6.60 3.30 4.00 0.50 0.00 1.20 1.90 0.10 0.00 3.60 3.60 15.69 12.89 2.60 0.70 0.10 0.10 0.70 6.30 17.69 5.80 1.90 2.30 + 1934 9 2.60 8.00 7.30 6.00 0.10 9.30 7.70 4.70 1.70 2.70 0.00 0.00 0.00 0.10 8.20 1.60 3.50 4.80 5.10 1.80 8.50 11.90 2.80 4.50 24.50 10.20 5.20 7.50 1.70 8.50 -99.99 + 1934 10 0.50 0.60 14.09 9.30 4.30 16.09 1.50 10.50 7.30 0.90 3.80 2.20 8.20 6.40 0.30 1.20 0.90 1.10 12.69 5.40 7.90 9.00 5.10 17.49 28.79 20.19 12.99 4.30 18.69 3.80 2.30 + 1934 11 1.60 6.31 13.32 0.40 0.00 0.00 0.60 0.00 3.21 1.70 0.30 0.30 0.30 0.00 0.10 0.30 0.10 1.30 2.91 0.50 3.11 3.11 0.70 0.00 8.62 0.80 0.40 1.70 0.10 2.91 -99.99 + 1934 12 11.69 7.89 12.59 5.39 0.10 1.90 7.59 13.49 13.49 4.10 3.70 5.49 2.90 8.29 0.90 2.20 14.09 5.69 3.60 0.30 0.60 0.20 2.40 0.00 12.99 16.98 12.39 2.60 5.29 13.69 8.69 + 1935 1 10.83 0.40 1.60 0.40 0.00 0.60 0.30 1.80 3.01 3.41 11.03 0.60 5.72 0.10 0.10 0.10 0.00 0.00 0.00 0.00 0.00 0.10 4.51 10.23 3.61 0.10 0.30 1.20 0.60 1.20 12.53 + 1935 2 17.00 4.30 3.10 3.80 7.40 0.20 0.00 0.00 0.30 6.80 9.20 6.70 5.40 2.50 23.60 13.00 4.40 14.10 20.30 6.30 3.20 2.20 1.10 3.20 0.00 3.60 5.60 5.60 -99.99 -99.99 -99.99 + 1935 3 0.10 3.50 4.90 4.80 3.20 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.20 0.10 0.00 0.90 1.60 0.10 7.80 8.60 2.60 7.80 2.00 1.50 0.20 0.70 6.40 1.60 0.80 + 1935 4 0.10 0.00 1.00 0.10 0.00 0.00 6.40 7.70 17.10 18.40 7.10 0.00 1.70 2.90 6.40 15.60 5.20 0.80 5.50 6.20 1.30 1.70 1.50 0.10 0.00 0.00 0.00 0.00 0.00 0.60 -99.99 + 1935 5 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.60 0.00 3.82 0.90 4.02 7.43 0.20 3.21 1.81 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 + 1935 6 0.00 4.01 7.21 4.41 1.10 7.41 7.91 3.81 0.90 10.52 9.02 4.81 3.71 2.00 0.60 2.00 1.70 0.10 6.61 2.70 2.70 0.10 18.13 0.80 0.00 5.51 1.90 0.00 0.80 1.00 -99.99 + 1935 7 1.10 1.20 6.11 8.31 0.40 0.00 0.00 0.00 1.60 1.90 0.00 0.00 3.01 0.60 0.20 1.90 2.50 3.91 9.52 0.20 0.60 0.00 1.70 0.00 0.20 9.12 4.81 0.40 0.00 0.00 0.00 + 1935 8 0.00 0.00 0.10 1.40 0.00 0.00 1.20 0.40 0.00 8.68 3.99 0.00 0.50 0.50 4.99 5.09 4.39 1.20 0.40 0.00 2.29 0.00 0.40 0.60 9.68 8.78 1.00 8.08 5.89 8.98 0.30 + 1935 9 16.41 5.80 2.20 0.60 0.10 0.00 0.00 0.00 0.00 1.80 0.30 4.80 9.20 9.30 16.21 14.21 11.71 27.61 10.51 1.30 1.20 2.00 0.10 0.10 0.00 16.11 7.50 7.70 13.61 10.51 -99.99 + 1935 10 1.60 28.77 5.09 1.70 0.90 0.90 22.08 6.99 9.79 19.28 3.60 4.50 9.99 4.69 11.89 4.89 10.39 20.88 4.50 1.30 6.79 1.50 12.49 1.80 1.30 13.29 16.68 15.08 14.28 17.08 1.50 + 1935 11 2.80 4.49 8.99 1.50 4.09 2.80 1.50 1.20 3.89 0.50 12.08 3.50 4.19 6.69 10.29 2.70 14.98 0.60 3.30 0.40 0.10 0.50 1.00 1.50 8.29 12.08 11.49 5.59 11.78 12.68 -99.99 + 1935 12 8.40 2.50 2.80 1.70 1.30 0.90 8.90 6.60 0.00 0.00 0.30 1.10 0.70 16.10 6.90 0.00 0.00 0.00 0.00 0.00 1.50 0.10 0.00 6.20 7.00 5.70 2.00 1.40 6.20 1.40 5.40 + 1936 1 14.78 0.20 0.10 5.39 13.78 4.69 0.10 6.09 32.35 5.39 1.40 2.40 0.10 0.00 0.00 0.10 3.79 0.00 1.60 9.79 2.10 4.99 2.30 1.70 10.68 4.49 4.49 1.40 1.10 2.50 4.09 + 1936 2 4.79 0.20 0.10 0.40 0.60 1.80 2.40 0.00 0.00 0.00 0.00 0.00 0.70 2.70 0.30 0.00 6.39 8.89 7.59 2.60 9.49 2.40 5.09 0.20 2.00 8.19 4.69 1.80 0.70 -99.99 -99.99 + 1936 3 0.40 1.00 1.70 10.90 10.30 0.80 9.40 3.30 2.30 0.00 0.00 0.00 0.00 0.50 0.10 1.40 0.40 0.00 2.50 2.50 3.10 2.30 1.90 0.00 0.20 3.70 3.30 3.40 14.70 5.10 3.10 + 1936 4 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.50 0.40 1.29 0.10 0.30 0.10 2.69 0.90 0.00 0.30 0.40 0.00 10.44 8.46 5.17 1.69 2.69 2.19 0.20 0.00 -99.99 + 1936 5 0.00 0.00 0.00 0.00 0.10 1.10 0.00 0.00 0.00 0.00 0.70 1.51 3.61 1.91 6.42 18.97 5.72 0.50 0.00 0.00 0.00 0.60 0.00 1.20 0.00 0.10 0.00 0.30 8.13 1.41 2.21 + 1936 6 1.30 2.21 0.10 0.00 1.30 0.00 0.00 0.20 2.41 0.10 1.71 0.90 0.50 5.72 3.71 11.34 2.31 0.00 1.10 0.10 0.00 3.21 0.80 0.00 0.00 0.00 2.51 0.20 15.85 2.81 -99.99 + 1936 7 13.71 4.70 0.40 3.30 2.50 2.90 0.90 0.00 0.90 2.70 4.40 9.01 1.10 1.70 0.60 0.30 10.21 12.91 2.30 2.80 1.50 4.20 18.31 24.52 9.81 1.20 0.10 2.30 0.70 15.31 1.60 + 1936 8 16.70 4.20 1.00 2.10 1.70 1.60 0.10 8.10 0.40 0.10 10.60 0.40 7.20 5.00 4.60 1.50 7.00 1.60 1.60 0.70 0.40 0.40 7.70 2.00 0.00 0.00 0.00 0.10 0.30 0.70 0.10 + 1936 9 13.79 12.59 4.40 9.99 4.20 17.28 6.99 0.00 4.20 0.40 6.49 4.10 3.20 1.50 0.00 0.00 0.70 0.00 0.00 0.00 0.10 0.00 0.00 17.58 0.70 1.70 0.20 0.00 0.00 0.00 -99.99 + 1936 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.20 0.10 2.10 10.20 1.10 2.70 17.10 9.20 18.50 1.90 1.10 2.10 5.20 3.40 39.70 8.20 17.10 4.90 2.90 8.50 0.80 0.70 + 1936 11 7.89 4.30 1.90 3.30 7.79 5.80 9.19 11.59 5.10 0.80 3.20 0.90 3.40 14.19 10.49 8.59 2.80 0.10 0.00 0.00 0.10 0.00 0.60 0.30 0.40 0.20 1.40 4.30 4.80 4.90 -99.99 + 1936 12 5.30 3.10 6.10 14.09 6.70 0.20 9.79 0.40 0.20 3.20 8.90 1.50 32.68 2.60 9.40 8.30 9.20 5.70 12.39 11.39 14.09 1.50 0.70 1.90 1.20 0.10 0.00 1.30 3.60 11.59 7.90 + 1937 1 8.30 11.60 7.80 18.30 17.80 8.70 0.60 1.20 8.60 0.70 6.60 20.40 0.40 0.00 10.40 2.60 17.80 0.50 0.50 12.80 7.60 3.90 1.80 8.60 1.40 0.40 0.30 0.20 0.50 3.90 2.40 + 1937 2 1.30 16.72 8.51 5.41 1.80 2.80 7.01 7.11 3.10 3.30 0.20 7.71 4.81 2.90 10.92 4.91 5.51 11.82 9.41 2.80 0.60 0.10 0.00 3.61 8.71 4.11 5.11 0.40 -99.99 -99.99 -99.99 + 1937 3 0.50 0.00 1.50 0.60 0.90 0.50 0.10 0.00 0.10 0.10 2.10 2.60 0.30 0.00 0.00 15.50 6.80 7.40 2.80 1.80 0.30 0.70 2.10 1.00 0.10 0.00 0.00 0.00 0.00 0.50 1.60 + 1937 4 0.00 0.30 1.60 1.90 1.50 2.80 7.90 6.10 11.30 0.40 0.00 0.00 0.20 2.10 11.40 4.20 1.30 0.40 10.40 1.90 4.00 0.70 0.50 0.00 0.00 1.50 0.50 0.10 0.00 0.00 -99.99 + 1937 5 0.00 0.00 0.10 5.29 0.30 2.50 0.20 0.30 0.40 0.40 0.00 0.00 0.00 0.00 0.10 0.10 0.00 0.50 1.80 10.48 11.18 4.29 0.80 5.49 0.60 3.19 0.50 0.40 0.00 1.30 1.50 + 1937 6 0.70 9.09 12.89 16.18 9.29 10.49 0.90 1.60 0.10 0.00 2.20 0.40 1.20 0.20 0.30 0.00 0.00 1.70 0.80 1.10 0.80 0.10 0.00 0.00 0.10 0.50 7.59 7.49 3.50 5.29 -99.99 + 1937 7 4.60 18.61 8.21 12.41 14.31 3.60 1.70 6.71 1.90 0.10 0.00 2.90 9.21 8.91 0.10 0.00 0.00 5.40 0.20 11.21 8.41 1.70 1.90 2.30 0.10 0.00 0.00 0.00 0.00 0.00 0.00 + 1937 8 0.00 0.00 0.00 1.90 0.30 10.40 0.00 1.80 2.40 0.00 0.00 3.90 10.90 10.90 0.90 13.00 0.50 9.10 0.10 0.40 0.00 2.60 0.00 0.50 0.20 0.00 0.00 3.60 9.20 3.30 16.70 + 1937 9 9.02 3.51 3.21 12.83 2.61 4.31 12.83 2.00 0.10 0.50 1.70 3.31 0.20 6.01 5.91 0.20 0.90 0.00 1.00 0.00 0.50 0.00 4.51 1.40 0.00 0.30 1.90 0.00 2.81 16.13 -99.99 + 1937 10 18.03 5.61 0.70 0.00 0.00 0.00 0.40 0.00 0.00 0.00 0.00 0.20 1.50 1.30 0.90 1.80 0.00 0.00 1.40 5.31 9.52 8.42 4.01 2.91 15.93 6.91 4.21 1.40 5.21 7.21 0.20 + 1937 11 0.90 0.40 1.20 1.00 0.00 0.50 1.00 0.00 0.00 0.10 0.50 0.30 0.30 0.40 0.20 0.10 0.00 3.10 1.80 5.30 6.00 0.00 0.10 0.80 0.50 0.00 0.00 2.50 5.20 3.80 -99.99 + 1937 12 0.20 0.20 2.90 7.81 4.10 0.00 1.40 0.40 1.20 10.41 1.30 3.30 3.20 0.80 0.20 0.00 0.00 0.90 0.10 1.90 10.11 14.62 14.12 3.60 0.60 0.90 0.20 0.00 0.20 0.10 0.00 + 1938 1 0.00 0.00 0.40 0.40 1.00 7.20 0.70 3.50 17.09 3.10 7.40 10.99 4.50 17.59 8.10 10.89 1.00 12.89 5.80 9.90 2.00 0.50 4.20 13.59 6.40 7.30 10.79 13.79 3.50 11.39 18.89 + 1938 2 6.51 5.41 3.50 3.30 1.80 0.80 0.50 11.41 6.71 1.10 0.70 0.00 0.00 0.10 0.00 0.20 0.00 0.00 0.10 0.00 0.00 0.10 0.00 3.00 13.22 7.21 7.51 8.51 -99.99 -99.99 -99.99 + 1938 3 1.00 0.20 0.40 0.00 0.90 0.40 0.00 2.60 3.40 0.70 0.00 0.00 0.00 6.40 18.50 3.50 6.40 10.70 11.50 6.80 0.20 2.00 2.90 8.40 1.80 4.90 0.40 7.50 2.20 2.40 3.20 + 1938 4 4.20 7.50 0.10 2.40 0.30 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.20 0.10 0.10 0.20 0.00 0.10 0.40 1.10 0.00 0.00 0.00 -99.99 + 1938 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.60 1.20 0.90 11.68 4.59 14.07 9.98 8.38 1.70 3.89 0.20 0.00 0.00 4.69 3.29 4.39 0.30 8.68 13.18 2.79 6.89 0.60 0.70 6.09 + 1938 6 9.60 3.40 2.20 5.10 5.80 20.40 1.30 4.20 1.10 0.20 2.00 0.00 0.00 0.00 0.00 0.00 0.00 5.10 2.60 2.90 1.40 0.00 13.80 8.10 1.20 31.80 19.70 20.20 3.10 3.10 -99.99 + 1938 7 0.30 0.50 2.40 2.00 4.80 2.30 25.18 3.40 2.00 7.00 1.20 0.10 17.69 0.70 0.10 0.20 0.90 1.30 0.80 0.00 0.00 0.00 0.10 1.80 3.30 4.30 15.59 3.60 33.88 9.39 0.90 + 1938 8 0.00 0.00 0.00 0.00 6.49 0.60 2.50 0.20 0.10 0.00 4.69 0.20 0.10 0.00 9.09 7.09 9.39 14.38 5.59 3.90 0.80 0.00 3.10 0.90 0.10 0.50 1.90 1.30 4.69 0.70 2.20 + 1938 9 0.80 5.21 3.11 0.10 5.81 2.60 0.20 0.00 0.00 0.50 0.70 1.00 6.81 0.20 5.81 29.65 11.12 4.51 6.71 5.91 4.71 1.10 10.42 2.30 0.00 0.00 0.10 2.70 4.61 3.71 -99.99 + 1938 10 0.80 15.81 33.81 16.61 8.30 11.90 9.60 20.71 10.20 8.20 10.10 12.40 10.70 1.40 11.10 10.10 2.10 5.40 1.90 1.60 9.80 4.40 0.70 7.20 2.80 4.20 2.80 0.70 10.30 4.00 16.11 + 1938 11 14.80 4.50 22.70 4.20 0.60 1.80 11.70 16.50 1.00 3.40 5.60 20.40 8.60 0.20 0.60 5.10 2.10 22.40 4.60 1.50 3.80 11.40 10.40 11.50 8.10 2.60 14.70 6.20 13.50 15.50 -99.99 + 1938 12 6.00 9.29 0.70 14.09 4.20 15.09 6.69 2.80 8.89 3.90 8.09 3.80 4.00 0.70 5.90 2.20 0.60 0.00 1.00 0.70 0.20 0.00 0.30 1.80 6.19 0.80 0.30 4.90 5.20 1.80 3.10 + 1939 1 1.30 1.30 0.00 0.00 0.30 9.08 15.37 14.48 3.69 0.50 0.10 1.20 4.69 18.27 11.88 10.38 2.30 2.50 7.49 0.70 1.10 3.59 0.80 4.89 0.70 0.90 0.10 0.20 0.00 0.10 0.00 + 1939 2 0.00 0.40 2.20 3.30 6.39 19.58 5.59 23.37 6.69 1.30 9.29 5.19 0.20 0.80 4.89 6.29 3.20 4.99 2.80 5.59 11.59 3.60 3.50 9.59 7.59 9.29 10.89 2.00 -99.99 -99.99 -99.99 + 1939 3 11.42 9.02 3.21 9.12 5.31 4.81 18.84 5.81 1.20 1.50 5.61 0.70 0.20 1.20 1.30 0.10 2.60 0.80 0.70 1.50 10.12 5.11 1.50 1.10 0.40 1.00 1.00 0.90 0.80 0.00 0.00 + 1939 4 1.40 0.30 0.40 0.00 0.00 0.00 2.00 4.00 0.00 0.00 1.00 3.00 12.70 7.30 10.10 6.60 0.90 0.10 0.00 1.10 7.00 1.20 2.10 2.70 0.70 4.30 0.30 0.30 0.20 0.00 -99.99 + 1939 5 0.00 0.00 0.10 3.01 3.21 0.70 2.91 2.11 0.20 0.00 0.00 0.00 3.91 4.71 0.70 0.00 0.00 0.00 0.30 0.90 6.32 0.10 0.60 0.30 0.00 1.30 0.20 0.00 0.00 0.00 0.00 + 1939 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.49 2.30 2.40 0.30 1.20 15.88 4.79 0.20 5.19 2.60 0.50 0.50 0.00 0.00 0.00 0.10 0.30 0.00 11.98 11.38 1.40 2.30 -99.99 + 1939 7 3.10 3.00 0.80 4.70 13.60 9.50 6.50 3.50 2.40 0.00 2.00 11.40 17.80 10.90 11.70 4.20 0.10 0.80 0.20 0.70 1.40 5.50 2.50 0.00 0.20 0.10 4.90 20.00 1.20 4.10 2.80 + 1939 8 3.80 4.30 0.70 0.00 0.00 1.00 1.30 0.00 11.80 4.90 1.70 0.00 0.40 0.30 0.00 0.00 0.00 0.00 10.20 0.30 1.30 0.00 0.00 0.00 1.50 2.50 4.80 0.70 0.00 0.30 2.40 + 1939 9 3.80 7.51 26.23 0.60 1.50 4.81 10.01 3.10 12.41 11.41 0.50 2.00 0.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90 -99.99 + 1939 10 0.70 0.30 0.00 0.20 4.19 0.50 0.00 4.09 18.84 19.24 4.69 2.49 1.40 0.40 0.00 0.00 0.50 0.00 0.00 0.00 0.80 1.79 1.69 0.10 0.00 0.40 0.80 0.10 1.20 0.70 0.80 + 1939 11 0.10 1.50 3.00 1.40 11.10 6.30 19.89 22.09 5.10 4.40 9.00 4.80 11.00 19.79 5.60 1.60 2.40 2.10 0.70 0.40 2.10 11.69 2.20 6.70 20.29 10.10 7.00 11.59 6.20 18.19 -99.99 + 1939 12 14.08 6.89 15.58 2.20 0.50 0.20 3.90 3.50 13.48 5.79 0.30 0.00 1.70 4.29 0.90 0.40 0.00 0.10 0.30 0.00 0.00 0.30 1.20 0.20 0.70 0.10 0.30 0.70 0.20 0.00 0.10 + 1940 1 0.10 0.00 0.10 0.00 0.00 4.11 6.51 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.50 7.91 6.51 5.21 0.40 0.00 0.00 7.71 11.01 0.60 7.21 6.11 7.41 0.00 0.10 3.00 + 1940 2 2.30 0.00 2.20 4.61 1.30 6.51 2.70 0.50 0.00 0.00 0.20 0.00 0.10 0.90 2.80 0.00 0.00 0.00 2.20 2.90 0.60 4.51 7.21 2.00 0.20 3.91 6.61 4.21 0.00 -99.99 -99.99 + 1940 3 0.00 0.00 0.10 0.10 0.00 0.00 0.90 6.49 8.29 3.00 14.78 12.78 0.40 2.90 1.50 2.70 5.69 4.79 9.58 7.29 5.59 4.59 2.60 2.80 0.10 0.30 0.00 1.30 7.69 6.39 12.88 + 1940 4 3.31 3.01 7.33 1.91 0.70 5.12 4.42 0.50 0.30 0.00 1.20 0.10 0.80 9.23 1.81 0.80 0.80 0.90 2.71 5.02 11.64 2.01 7.63 5.02 0.20 0.00 0.00 0.40 2.71 0.80 -99.99 + 1940 5 0.70 0.00 0.00 0.00 3.88 0.70 2.59 0.50 0.00 0.00 0.00 0.00 0.00 2.19 6.56 3.58 0.80 0.00 0.00 1.19 0.80 0.70 1.29 0.60 3.78 2.79 0.40 0.50 0.40 2.09 1.19 + 1940 6 0.80 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.80 0.70 0.00 0.00 5.20 0.90 0.00 0.00 0.00 0.00 6.40 6.80 0.30 1.40 3.90 1.40 0.40 0.50 2.60 0.10 -99.99 + 1940 7 1.50 7.71 2.50 2.00 5.90 3.10 1.80 3.20 7.21 11.91 18.32 0.00 4.30 9.31 0.40 5.50 11.31 2.10 3.60 3.00 0.10 0.20 1.80 3.80 0.50 3.30 0.10 0.10 3.00 1.60 0.10 + 1940 8 0.00 0.00 0.00 1.60 0.60 0.00 3.31 6.01 10.02 2.50 0.10 0.50 2.10 2.00 0.10 0.10 1.20 0.80 4.81 11.52 0.90 0.20 0.30 0.40 3.31 4.91 0.60 2.20 0.50 0.30 0.80 + 1940 9 0.10 0.00 0.20 2.70 2.00 3.00 1.20 0.50 3.60 1.20 7.41 7.61 5.60 0.90 0.80 32.03 10.91 7.41 12.31 2.50 1.10 12.21 2.90 0.10 0.20 1.70 1.20 0.00 0.00 0.20 -99.99 + 1940 10 0.10 0.30 0.00 12.01 22.21 3.30 7.60 22.41 17.01 6.60 1.20 0.20 0.00 0.40 3.80 4.00 1.10 0.30 3.90 17.81 11.71 0.80 0.30 0.10 0.30 0.00 0.00 0.10 4.90 18.71 3.90 + 1940 11 5.80 21.90 3.80 3.10 13.90 5.30 3.40 14.20 9.30 7.30 19.70 1.00 0.70 0.50 2.90 0.90 4.10 0.30 20.50 14.70 1.40 4.80 4.50 3.10 3.20 6.70 2.00 0.30 0.70 2.20 -99.99 + 1940 12 8.99 3.70 2.40 8.19 23.67 13.48 0.50 7.99 7.79 4.59 0.80 1.10 7.09 14.58 13.78 8.99 11.19 9.19 0.80 0.10 0.00 0.00 0.00 0.20 0.20 0.40 0.00 3.60 9.39 11.19 2.00 + 1941 1 1.11 0.00 0.00 0.00 0.00 0.00 0.10 0.10 0.00 0.00 0.20 0.30 1.72 0.50 0.00 0.00 0.00 0.71 0.71 0.40 4.85 5.15 1.82 2.02 1.01 0.30 2.83 3.74 0.40 0.40 1.92 + 1941 2 1.30 0.40 0.00 3.00 14.01 10.01 4.50 8.51 3.50 2.30 0.70 16.22 3.60 5.91 5.20 1.10 0.30 0.70 1.20 0.10 0.00 0.30 1.10 0.20 0.00 8.11 12.31 2.50 -99.99 -99.99 -99.99 + 1941 3 3.70 3.50 4.01 7.01 5.61 1.30 0.60 0.60 0.10 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.70 0.00 2.10 0.30 0.40 0.30 2.20 11.32 9.81 4.51 0.40 1.40 9.61 5.61 + 1941 4 2.71 1.40 2.01 0.80 0.10 0.00 0.00 0.10 0.20 2.51 1.91 1.30 2.31 2.01 2.01 17.16 9.83 1.40 3.91 3.21 1.10 0.40 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 -99.99 + 1941 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.10 0.30 2.00 2.70 0.90 0.90 1.60 1.70 0.20 2.60 4.70 19.60 21.70 1.90 0.60 6.70 3.00 0.30 0.60 0.00 0.00 + 1941 6 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.40 6.20 0.90 3.00 4.50 0.40 0.00 0.10 2.10 4.80 0.60 0.60 4.80 0.90 0.40 0.40 0.00 0.00 -99.99 + 1941 7 0.00 10.20 3.50 0.20 2.90 11.40 8.00 0.10 0.00 0.00 1.10 1.30 1.90 4.10 4.00 0.50 9.10 2.20 0.30 9.50 2.70 0.80 0.00 1.50 10.10 0.50 0.20 1.00 2.90 1.90 0.00 + 1941 8 0.00 0.00 1.50 6.01 1.70 0.40 0.10 0.00 3.50 9.61 7.91 8.11 8.31 4.01 22.43 7.01 9.21 3.40 4.31 4.01 0.30 0.40 1.40 0.40 7.71 5.31 14.42 11.82 4.01 0.30 1.00 + 1941 9 4.50 0.80 0.10 0.00 0.00 0.00 0.20 0.70 0.50 1.10 0.60 0.10 0.20 0.50 0.10 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.40 5.00 8.60 6.70 9.50 7.80 4.70 -99.99 + 1941 10 1.50 0.60 0.00 0.00 5.50 2.10 5.70 3.00 26.72 1.00 0.00 0.40 7.81 2.30 19.91 6.50 22.92 7.71 14.31 3.80 1.00 0.00 0.00 0.00 0.10 0.10 0.90 0.10 1.60 1.50 0.00 + 1941 11 0.20 0.30 1.00 0.10 3.69 3.69 1.20 1.00 4.79 12.48 6.79 0.80 12.98 0.10 0.50 4.99 2.90 0.20 0.30 8.09 5.19 3.79 9.38 8.99 2.80 14.28 9.88 0.10 0.50 0.50 -99.99 + 1941 12 0.40 0.10 0.30 0.60 6.18 10.17 0.20 1.40 0.70 7.87 7.57 4.68 9.77 14.05 7.87 2.39 0.40 1.79 0.80 1.59 1.59 1.00 2.29 1.30 0.20 3.09 0.20 0.10 0.00 0.00 0.00 + 1942 1 5.20 16.80 18.70 6.00 0.00 0.10 0.30 0.20 0.10 0.10 1.10 9.00 1.70 0.40 0.10 1.70 4.70 0.40 12.90 1.00 14.30 15.10 15.00 16.70 3.30 1.20 16.20 13.40 1.10 2.60 10.60 + 1942 2 7.94 24.33 3.32 0.20 1.41 0.40 0.30 0.90 0.90 2.31 3.62 0.40 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.10 0.20 0.00 0.40 0.00 0.00 1.01 7.54 1.31 -99.99 -99.99 -99.99 + 1942 3 0.00 0.10 7.00 9.80 3.90 4.80 7.20 3.30 0.00 0.00 0.10 0.40 1.80 4.20 3.70 14.10 2.30 0.50 1.30 2.20 0.00 0.00 0.00 0.30 0.00 1.50 0.30 0.10 2.70 7.50 11.90 + 1942 4 0.40 4.30 10.90 9.80 8.80 10.50 10.90 5.60 8.00 0.20 0.10 1.70 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.20 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -99.99 + 1942 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.10 0.00 0.00 0.00 7.61 2.00 15.12 2.60 1.50 0.00 1.50 1.20 10.91 6.21 7.01 11.71 12.41 6.01 1.40 0.50 2.60 + 1942 6 11.58 0.20 0.00 0.00 0.20 0.30 1.50 0.20 0.00 0.00 1.50 8.98 3.29 1.10 0.00 0.00 0.20 0.00 0.00 15.77 5.99 0.60 0.00 0.00 0.00 0.10 1.60 0.20 0.00 0.00 -99.99 + 1942 7 0.00 1.20 13.11 0.60 2.50 4.40 3.80 4.80 0.60 3.20 0.20 4.30 1.20 1.60 4.70 2.30 0.60 0.00 0.30 0.20 7.11 11.41 11.91 5.71 4.10 2.50 0.10 8.51 0.20 0.10 0.10 + 1942 8 0.00 1.60 0.00 0.00 0.00 5.11 17.92 10.91 8.31 15.82 4.01 1.50 1.00 2.40 11.42 7.91 4.51 3.10 2.10 5.11 11.02 1.90 0.00 7.71 11.02 0.00 0.00 0.00 2.80 3.91 4.81 + 1942 9 3.60 17.71 7.70 25.21 5.10 2.60 17.41 4.20 0.20 0.10 0.00 0.00 1.20 8.51 4.40 4.40 3.40 1.90 3.50 30.02 2.50 6.70 4.10 2.30 0.40 0.00 5.60 4.20 0.20 1.40 -99.99 + 1942 10 0.40 0.40 13.40 5.20 0.50 0.00 6.00 6.10 22.60 6.80 1.10 6.40 8.60 8.90 13.10 4.40 6.30 2.90 5.30 1.40 5.90 1.40 10.00 19.70 7.80 3.70 2.30 0.40 0.10 0.00 0.00 + 1942 11 0.00 0.60 0.10 0.20 0.90 13.06 3.59 0.40 0.90 1.10 2.69 0.20 0.50 0.50 0.10 0.00 0.00 0.00 1.00 0.90 0.00 0.20 0.30 0.00 0.00 0.10 0.00 0.80 0.40 6.28 -99.99 + 1942 12 0.00 0.10 0.00 22.09 3.20 8.70 7.50 11.59 13.19 26.49 0.60 4.00 1.40 1.70 4.10 11.69 3.90 2.00 8.60 17.89 7.40 1.80 2.20 1.70 1.90 3.70 3.60 3.80 0.30 9.40 11.89 + 1943 1 5.61 1.30 0.00 0.60 1.30 1.10 0.20 0.80 12.72 0.50 7.01 6.21 2.80 7.81 2.90 17.22 2.80 0.10 0.90 13.42 2.00 0.50 0.10 15.52 6.71 4.41 11.51 9.41 7.41 3.10 8.01 + 1943 2 3.80 5.30 3.80 14.40 23.10 3.30 1.60 21.20 2.70 5.00 22.70 5.80 4.10 7.90 2.60 0.90 1.00 0.30 0.80 0.50 0.00 1.10 1.80 5.70 4.30 0.20 0.40 0.20 -99.99 -99.99 -99.99 + 1943 3 0.50 0.10 0.00 0.10 0.00 0.00 0.90 3.40 2.60 3.50 1.60 1.30 0.00 2.10 4.71 0.70 1.50 0.00 0.20 0.00 0.00 0.00 0.00 0.70 3.40 1.90 2.80 1.40 12.82 23.53 3.40 + 1943 4 1.00 0.10 0.00 0.00 7.40 3.00 0.30 0.60 1.50 3.50 3.90 15.40 5.00 3.40 2.60 0.30 1.90 4.50 1.20 0.00 0.70 0.40 5.60 10.80 16.70 4.50 7.40 0.00 4.50 0.20 -99.99 + 1943 5 0.00 1.10 0.00 0.00 0.50 3.10 6.49 9.29 0.70 0.90 4.50 17.28 10.49 0.20 0.00 0.00 0.00 0.00 0.10 0.00 1.20 19.08 2.90 0.00 3.50 8.59 0.00 0.00 9.99 1.00 9.19 + 1943 6 8.71 3.21 0.90 13.42 4.51 1.30 7.11 0.10 1.50 1.70 1.80 5.81 7.71 3.61 2.00 8.11 3.11 13.82 11.22 5.11 2.70 8.31 0.90 3.21 0.30 0.00 0.00 0.00 0.00 0.00 -99.99 + 1943 7 0.00 0.00 1.00 0.80 13.46 6.88 1.70 2.99 0.60 5.98 3.09 14.56 3.29 6.08 0.30 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.20 2.39 1.10 1.10 0.10 1.10 5.68 + 1943 8 16.11 4.00 1.60 12.11 4.30 1.30 21.21 1.70 1.20 6.40 0.80 10.11 1.10 3.20 3.50 0.70 1.80 0.90 13.71 4.00 2.80 4.80 0.80 5.80 7.80 5.70 1.60 12.61 14.61 0.50 15.81 + 1943 9 6.09 1.50 0.10 19.78 3.20 4.10 9.49 0.00 0.00 3.20 1.50 3.70 7.09 0.50 7.99 3.50 0.00 0.70 4.20 1.30 0.30 1.90 4.50 2.20 0.40 0.60 17.58 2.60 0.50 3.10 -99.99 + 1943 10 9.81 8.31 29.23 11.71 29.83 1.50 0.10 5.00 1.20 14.01 0.40 6.21 0.20 0.00 0.00 11.11 19.52 0.50 10.71 15.01 7.71 1.10 0.50 0.10 4.10 25.52 4.80 0.10 0.00 5.50 9.21 + 1943 11 2.00 0.80 0.00 6.41 7.82 0.30 2.30 1.80 2.30 6.21 3.01 3.41 2.71 0.30 0.20 1.00 0.00 0.30 0.90 0.50 1.20 3.31 23.55 2.61 0.90 1.50 6.51 5.51 6.81 0.30 -99.99 + 1943 12 11.51 0.60 0.10 0.10 0.30 1.20 7.41 0.20 0.10 0.00 0.00 0.00 0.10 0.10 0.10 0.30 6.91 9.71 11.81 10.71 8.01 2.20 0.60 1.70 1.60 0.90 1.70 2.60 0.50 0.50 3.40 + 1944 1 1.30 6.80 0.50 0.60 7.00 5.00 9.29 7.70 0.00 0.00 0.70 12.29 9.89 0.20 0.10 3.30 1.40 4.30 2.10 11.79 10.79 9.59 6.40 19.09 1.60 14.89 4.20 2.40 4.30 1.10 6.70 + 1944 2 6.61 12.92 2.50 0.30 0.50 7.51 3.61 0.80 2.40 0.00 0.00 0.40 4.81 0.00 6.01 0.10 0.10 0.00 0.40 0.30 0.70 0.70 0.30 0.10 1.00 2.60 0.30 0.70 1.90 -99.99 -99.99 + 1944 3 6.75 0.60 0.20 0.40 0.10 0.00 0.00 0.10 0.79 0.30 2.08 4.37 0.10 0.00 0.20 0.69 0.40 3.37 1.98 0.60 0.50 0.10 0.00 0.20 0.00 0.00 0.00 0.30 0.10 0.89 0.00 + 1944 4 3.40 12.39 7.69 2.60 2.40 0.00 0.10 0.10 0.90 1.00 0.80 0.50 0.70 0.70 0.40 0.70 1.30 10.09 23.07 6.59 4.40 2.30 6.39 0.80 0.00 0.00 0.00 0.00 0.00 0.60 -99.99 + 1944 5 8.58 7.98 2.00 14.97 0.30 0.00 0.40 0.90 12.87 0.10 0.00 0.00 0.30 0.00 0.80 2.00 1.70 6.79 3.59 0.00 0.00 0.00 0.00 10.88 4.99 7.09 6.09 0.50 0.00 0.00 2.39 + 1944 6 2.70 2.90 15.69 15.49 0.70 0.40 0.90 1.00 1.10 1.80 3.40 4.70 6.59 0.80 5.89 0.20 0.00 0.00 0.00 0.00 0.00 0.20 0.00 1.30 2.50 8.49 19.48 4.20 7.19 5.79 -99.99 + 1944 7 3.90 30.77 2.70 2.00 1.80 3.60 11.39 1.50 4.99 0.70 0.20 5.59 0.70 6.19 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.29 3.30 2.70 0.90 0.20 3.10 0.10 + 1944 8 0.00 0.00 0.00 1.10 0.00 0.40 0.80 2.30 4.19 6.99 6.19 0.70 0.10 0.30 0.80 3.69 2.89 4.39 0.10 0.00 0.00 0.00 4.89 7.58 0.00 2.00 24.85 2.79 3.19 11.38 3.39 + 1944 9 1.10 1.10 22.10 20.10 2.10 2.10 4.00 2.20 0.00 0.00 0.00 0.00 4.10 13.90 13.00 0.20 0.00 1.30 2.30 0.10 0.10 11.90 10.20 0.20 5.30 6.70 0.70 15.90 5.00 1.50 -99.99 + 1944 10 0.80 4.99 1.40 3.50 2.30 0.40 0.30 0.10 0.00 7.09 20.67 2.10 15.18 5.09 2.40 0.40 14.68 2.40 8.69 14.98 5.29 10.39 1.90 1.20 1.30 10.99 10.29 1.50 0.10 0.70 0.50 + 1944 11 1.20 1.10 4.20 32.57 15.28 15.09 4.40 3.20 1.30 7.89 3.60 3.70 3.50 9.39 2.00 4.10 8.09 5.49 1.30 0.40 14.19 9.89 0.70 0.00 0.30 0.00 21.48 7.69 10.39 11.09 -99.99 + 1944 12 20.60 12.00 9.30 6.00 7.00 11.80 4.40 0.30 0.20 3.60 1.10 0.00 1.90 16.30 13.80 13.90 4.00 0.40 8.30 9.60 2.10 0.20 0.20 1.40 1.60 6.50 0.90 0.00 1.00 0.00 0.30 + 1945 1 2.00 10.88 0.70 0.10 1.20 1.20 0.00 0.20 0.50 0.40 0.50 0.10 0.10 0.10 1.60 4.79 22.06 7.49 1.20 0.10 1.20 2.50 2.70 2.99 0.00 0.00 0.10 1.90 31.35 2.10 14.28 + 1945 2 9.71 1.10 29.33 4.30 5.81 19.62 3.20 6.11 10.11 1.80 2.60 14.82 8.91 4.71 1.90 5.31 3.80 0.60 6.21 0.40 3.20 2.20 1.30 11.51 18.32 5.11 0.80 4.30 -99.99 -99.99 -99.99 + 1945 3 0.00 0.00 1.50 0.60 0.10 0.00 0.00 0.50 0.50 0.00 0.00 0.30 1.30 1.40 1.70 1.20 1.30 6.89 17.28 1.60 0.30 0.00 0.00 0.40 5.79 0.30 8.39 6.39 9.59 9.59 18.68 + 1945 4 7.56 5.97 2.19 6.27 4.08 3.48 0.90 0.00 0.00 4.48 10.55 1.79 1.00 7.76 0.50 0.10 0.70 0.00 0.00 0.30 0.00 0.00 0.00 0.00 0.00 0.30 1.19 1.00 0.40 0.30 -99.99 + 1945 5 1.00 1.60 2.00 0.00 7.99 0.80 2.30 5.10 0.80 1.00 0.70 1.40 17.79 4.10 8.79 27.58 1.20 0.20 0.00 10.99 2.40 9.29 0.00 0.80 0.30 4.00 2.50 2.70 2.50 1.60 6.00 + 1945 6 9.39 2.90 6.49 2.30 16.29 1.90 11.69 1.90 2.90 0.50 8.09 0.60 1.50 4.40 1.90 0.20 1.90 0.40 1.20 3.70 0.40 3.60 2.70 1.50 6.99 2.10 0.00 0.10 8.49 7.19 -99.99 + 1945 7 3.60 0.00 0.20 2.40 0.60 1.30 0.10 0.20 14.20 0.00 0.20 0.10 15.30 0.00 7.40 8.40 0.20 11.40 9.00 5.60 9.40 2.30 0.80 0.00 0.00 0.20 0.30 0.00 0.10 0.00 0.00 + 1945 8 0.00 0.00 0.00 1.40 3.11 8.41 0.80 0.00 0.00 0.00 0.00 0.00 0.00 4.01 6.01 0.20 0.00 0.30 0.00 0.00 5.91 0.60 19.93 3.21 0.20 0.00 0.20 2.91 0.50 0.10 0.00 + 1945 9 0.00 0.00 0.00 1.30 0.00 0.00 0.00 0.00 0.60 5.01 3.30 19.02 10.11 4.91 12.32 24.63 5.71 0.80 8.41 9.91 21.93 17.12 2.40 0.00 1.80 4.71 2.40 0.00 0.60 0.50 -99.99 + 1945 10 0.00 0.10 0.50 0.40 0.00 0.20 1.00 1.10 17.40 9.70 0.40 0.00 0.00 0.10 0.00 0.10 0.10 0.00 0.50 3.10 5.00 7.00 26.80 26.80 10.10 1.40 11.90 13.80 1.10 6.90 11.10 + 1945 11 1.51 0.90 1.61 0.40 0.00 0.00 3.32 0.00 0.00 0.10 1.11 0.00 0.20 0.20 0.70 0.00 0.00 0.20 0.50 0.20 0.80 0.90 1.11 0.30 2.61 0.10 2.21 0.40 1.31 0.50 -99.99 + 1945 12 2.90 8.60 3.20 8.40 0.60 5.40 6.20 6.60 0.50 0.30 0.20 1.90 1.00 2.10 7.90 11.20 11.70 9.70 0.80 0.70 1.90 2.50 2.10 3.30 3.10 14.70 2.90 0.30 0.10 0.70 0.00 + 1946 1 0.00 0.00 20.21 18.61 1.00 2.20 0.80 4.60 17.61 7.50 5.70 2.80 0.00 0.00 0.00 0.00 0.00 2.30 1.10 0.40 2.50 19.01 5.10 10.51 18.51 2.60 6.60 12.51 8.10 5.70 10.51 + 1946 2 4.00 4.10 12.11 18.22 6.41 7.41 4.40 2.80 3.50 2.20 1.80 5.51 0.20 0.80 1.50 0.50 0.90 1.90 5.41 1.10 0.80 12.71 0.00 0.00 0.00 0.00 0.00 0.00 -99.99 -99.99 -99.99 + 1946 3 0.40 0.50 2.80 3.40 0.30 0.00 0.20 5.20 1.00 0.10 0.80 0.50 0.10 0.00 0.00 7.90 17.90 13.50 9.80 8.40 3.80 4.50 0.90 1.00 0.50 0.10 0.00 0.00 0.00 0.00 0.00 + 1946 4 0.00 0.00 0.00 0.70 0.00 7.03 4.72 0.20 0.00 0.00 2.01 2.31 0.20 0.00 0.40 17.06 0.00 0.00 2.81 0.80 0.60 6.02 3.61 4.12 0.90 0.30 0.00 0.00 0.00 0.00 -99.99 + 1946 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.10 0.30 1.69 0.70 0.00 0.20 2.39 2.59 0.00 4.58 0.00 0.00 2.09 1.99 5.48 0.00 2.59 4.78 + 1946 6 3.50 2.80 2.90 18.82 9.01 3.10 0.70 0.10 4.00 1.60 4.50 0.90 0.60 2.00 0.60 4.40 2.90 3.30 2.20 0.40 0.10 0.10 3.00 0.40 5.41 1.50 7.51 4.10 15.61 0.10 -99.99 + 1946 7 0.40 1.70 6.49 14.49 2.90 0.20 0.00 0.20 0.10 0.00 0.00 0.00 5.20 3.10 5.79 5.00 4.90 5.50 2.50 0.30 4.20 5.99 10.59 1.30 2.70 0.80 1.00 4.80 15.29 4.30 1.60 + 1946 8 3.40 3.70 4.90 2.90 3.50 3.50 2.40 4.20 3.70 0.80 0.60 5.19 1.10 5.09 0.30 0.20 0.70 2.90 2.60 0.00 1.60 0.00 4.30 2.60 0.00 0.10 4.40 14.69 7.49 7.49 5.49 + 1946 9 3.20 1.70 4.30 5.60 13.81 4.70 4.50 2.40 0.80 25.51 0.10 23.31 13.51 15.61 1.60 9.61 7.80 4.60 4.10 0.80 16.41 7.00 2.00 0.90 4.20 5.70 2.80 0.00 2.80 1.30 -99.99 + 1946 10 5.53 1.21 2.21 2.41 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40 2.71 2.31 0.30 0.20 1.01 0.10 0.00 0.00 0.30 0.00 0.00 0.00 0.20 + 1946 11 0.40 2.90 6.10 6.00 2.00 1.30 0.30 0.30 0.00 0.30 2.70 7.00 1.80 0.10 0.30 11.01 19.71 7.00 6.60 16.21 13.31 4.30 10.71 6.40 16.11 10.01 6.10 12.11 5.60 7.90 -99.99 + 1946 12 13.71 7.20 1.20 0.00 8.71 0.20 1.10 4.00 0.20 6.30 13.81 1.90 5.70 8.71 0.50 0.00 0.00 0.80 0.30 1.40 11.01 10.81 1.10 14.91 15.51 3.00 2.90 0.20 5.10 8.41 4.50 + 1947 1 11.81 8.41 16.21 9.21 1.00 3.80 5.70 15.91 2.00 5.10 10.51 7.11 2.00 15.61 3.50 10.41 7.51 1.20 0.00 0.00 0.00 0.00 0.00 0.10 0.60 0.10 0.20 0.40 0.20 0.10 0.00 + 1947 2 0.40 0.30 1.59 1.99 0.60 0.10 0.10 0.00 3.69 0.70 0.20 0.20 0.10 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.70 0.10 0.00 0.00 6.28 7.77 0.30 0.60 -99.99 -99.99 -99.99 + 1947 3 0.00 0.00 1.00 0.40 0.20 1.70 0.10 0.10 0.60 0.90 1.50 5.20 6.19 1.20 5.40 7.29 3.40 7.19 0.60 3.30 12.29 3.60 5.99 2.80 7.89 9.39 7.69 4.70 6.49 0.70 0.10 + 1947 4 0.00 0.00 0.00 3.20 23.01 6.30 6.50 2.30 1.00 2.40 0.90 0.20 7.90 0.50 3.10 0.80 0.00 6.30 18.21 10.71 13.41 6.50 19.91 6.60 8.70 14.61 13.21 2.40 10.31 1.10 -99.99 + 1947 5 1.60 0.20 4.20 1.10 8.10 5.00 1.00 5.60 4.00 5.00 1.20 1.40 3.50 10.10 0.40 0.00 9.30 4.30 0.00 0.00 1.60 6.00 0.60 5.20 3.40 1.00 0.00 6.30 0.50 16.50 7.20 + 1947 6 0.50 0.00 8.40 9.40 7.10 1.50 5.20 9.60 1.80 0.90 0.00 1.70 1.20 4.00 2.20 4.00 10.10 1.70 4.90 6.30 2.50 1.10 3.00 7.90 0.00 0.60 0.80 6.20 1.70 0.70 -99.99 + 1947 7 1.20 0.70 4.91 11.23 2.41 3.71 7.52 5.82 1.90 1.50 0.40 0.70 0.10 0.00 9.02 9.63 0.00 10.73 0.00 9.42 8.62 0.00 4.31 0.20 1.50 4.81 3.81 10.43 0.00 0.50 0.00 + 1947 8 0.00 1.70 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 + 1947 9 0.00 0.00 0.30 5.10 0.80 0.20 3.00 17.70 12.60 3.20 10.70 9.90 1.20 9.70 8.10 16.50 0.10 0.90 8.50 12.60 0.00 12.60 0.50 0.50 0.00 0.40 2.20 1.70 1.10 0.40 -99.99 + 1947 10 0.00 0.00 0.00 0.00 0.10 0.30 4.92 1.71 2.11 1.40 11.54 14.14 2.31 3.31 1.91 1.71 1.40 0.30 0.20 0.00 0.00 2.41 3.71 0.20 0.00 0.40 0.30 0.30 1.00 1.91 5.32 + 1947 11 9.61 16.02 9.31 0.40 0.00 2.70 3.10 24.62 12.41 8.51 24.42 2.50 0.40 3.20 1.20 0.50 0.40 0.00 18.42 24.52 20.92 13.31 6.21 2.10 0.30 0.30 0.10 0.60 0.20 0.10 -99.99 + 1947 12 0.00 0.00 0.50 0.30 1.90 0.40 3.60 0.60 0.00 1.30 0.80 0.20 0.50 0.10 0.00 0.00 0.00 0.00 0.00 0.10 0.40 1.70 8.21 7.21 7.61 10.21 9.01 4.71 1.60 1.60 15.52 + 1948 1 17.80 7.80 6.20 9.10 5.00 4.10 4.30 3.00 5.60 22.20 10.10 6.60 15.80 14.00 0.60 6.20 14.40 6.50 4.10 1.80 4.80 0.20 0.00 0.00 1.30 6.10 6.80 4.80 0.30 9.50 6.90 + 1948 2 18.51 4.20 7.31 1.80 15.41 16.61 8.31 20.31 10.71 2.20 18.31 3.40 2.40 3.90 0.30 1.30 0.10 0.00 0.30 1.50 0.30 0.10 0.70 0.20 0.00 0.00 0.00 0.00 0.00 -99.99 -99.99 + 1948 3 0.00 0.40 0.00 0.00 0.20 3.70 19.08 0.20 5.10 0.30 0.00 0.00 0.00 2.20 4.40 6.20 0.60 15.59 7.39 9.29 4.30 0.70 0.20 0.00 0.00 0.00 0.00 0.40 12.09 6.39 26.78 + 1948 4 16.02 2.60 2.70 1.10 4.00 3.50 15.42 1.70 0.10 0.80 0.20 0.90 1.60 0.20 0.00 0.00 4.91 6.21 0.00 0.50 3.60 7.51 1.00 0.10 0.00 0.90 12.71 3.90 2.60 0.20 -99.99 + 1948 5 1.01 1.21 1.81 10.88 0.50 0.50 0.00 0.00 0.00 0.00 2.32 0.20 4.23 0.81 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.42 0.30 0.10 0.30 0.10 0.00 3.02 0.00 7.35 5.74 + 1948 6 5.40 7.70 9.50 7.50 5.90 28.50 3.10 16.10 0.00 0.50 0.00 0.00 0.00 1.50 2.90 5.50 6.00 5.70 5.60 2.80 2.40 1.40 0.00 0.30 2.70 7.40 6.60 1.60 0.20 0.00 -99.99 + 1948 7 0.00 4.50 33.13 7.11 0.00 0.50 0.20 0.00 0.00 3.30 4.20 3.90 2.40 0.00 1.00 0.30 0.50 9.21 8.41 10.51 8.91 4.00 1.50 4.10 1.40 0.30 0.00 0.00 0.00 0.00 7.81 + 1948 8 0.10 1.20 1.70 1.00 7.30 3.30 16.00 2.30 0.10 0.60 0.90 22.00 0.00 10.60 5.50 4.00 3.40 0.50 0.10 0.50 12.20 8.10 7.80 18.00 8.60 1.70 0.00 15.20 5.90 18.00 23.60 + 1948 9 8.20 17.71 4.00 0.70 3.70 2.60 8.50 0.90 4.30 1.50 10.01 5.80 7.50 36.32 3.00 1.50 1.00 6.20 0.10 0.20 3.50 2.50 2.00 9.30 5.40 28.62 0.40 7.30 1.30 3.80 -99.99 + 1948 10 14.00 1.70 2.20 0.00 0.00 0.00 0.00 23.60 25.90 9.20 7.20 1.60 24.80 4.70 3.80 7.50 7.20 1.40 2.00 3.30 3.30 1.30 17.60 11.30 0.70 1.00 0.70 0.90 4.90 3.40 9.10 + 1948 11 2.10 15.09 20.58 6.59 3.90 0.20 0.00 0.00 0.10 0.30 3.90 15.69 2.70 2.30 5.40 5.40 16.29 0.80 5.30 8.09 0.30 0.00 0.00 0.40 1.00 0.10 1.00 0.20 0.20 0.00 -99.99 + 1948 12 6.10 9.50 1.90 0.70 17.61 12.71 9.71 8.90 13.21 7.70 22.31 1.20 6.70 12.11 3.40 0.80 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.10 0.00 1.10 5.00 26.11 14.11 4.20 6.90 + 1949 1 2.70 0.80 0.70 3.30 21.69 22.69 19.19 0.60 1.00 5.10 5.20 2.10 5.40 4.10 6.70 2.40 6.50 10.99 13.99 8.00 0.80 3.30 4.40 0.20 4.10 3.80 0.50 0.00 0.50 4.00 0.00 + 1949 2 0.00 0.00 0.00 0.00 0.20 1.60 8.49 11.19 6.10 3.10 6.00 3.50 5.50 7.20 2.90 0.80 0.70 7.49 16.29 7.49 9.19 20.59 3.50 1.60 7.99 7.00 1.70 8.09 -99.99 -99.99 -99.99 + 1949 3 0.00 0.00 11.53 7.92 7.92 0.70 2.81 0.30 0.10 0.00 7.92 6.02 2.01 0.40 6.42 2.01 1.10 0.20 1.40 7.42 4.01 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 + 1949 4 1.00 6.31 16.42 3.70 0.30 1.80 6.61 1.90 5.31 24.33 20.43 8.51 1.20 0.10 1.30 0.40 0.10 5.11 1.40 13.52 6.51 14.12 4.91 3.10 0.80 5.01 1.30 1.10 0.30 0.90 -99.99 + 1949 5 0.00 0.00 0.00 6.12 1.30 7.22 2.01 0.10 0.00 0.00 0.00 0.00 0.20 3.11 0.10 0.20 6.92 1.71 0.00 0.00 0.00 3.61 4.11 1.10 0.10 6.12 3.71 3.51 3.11 7.42 2.61 + 1949 6 2.92 1.41 4.23 4.13 4.93 0.30 2.82 0.00 0.00 5.23 0.00 3.42 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.21 0.30 0.50 0.00 -99.99 + 1949 7 0.00 0.00 0.20 0.20 0.10 0.10 0.00 0.00 0.00 0.10 0.00 0.30 14.57 1.60 0.60 0.00 0.00 0.20 0.20 11.88 0.40 0.20 0.10 0.10 0.80 1.20 1.80 4.79 3.59 12.28 1.50 + 1949 8 13.39 2.70 0.30 7.09 5.50 1.50 47.16 2.80 3.90 5.70 0.10 0.00 3.00 4.10 8.09 0.00 0.00 0.60 0.10 0.00 3.60 0.50 0.10 0.00 0.00 0.30 1.30 1.10 3.50 1.30 8.79 + 1949 9 0.30 7.20 0.70 8.90 2.70 3.80 1.30 12.00 12.50 0.20 0.00 0.00 0.20 0.70 5.80 2.20 0.00 0.00 0.00 0.10 0.20 1.10 0.50 1.20 0.20 0.00 0.00 0.30 0.80 0.90 -99.99 + 1949 10 2.10 4.49 0.00 0.00 0.10 7.49 2.50 0.70 2.70 11.38 2.90 1.00 0.10 1.70 5.59 3.19 23.76 5.79 4.09 5.29 9.38 3.19 19.77 1.70 36.04 0.60 0.20 6.59 1.00 8.29 2.20 + 1949 11 6.11 0.90 7.31 15.93 4.01 10.02 9.32 2.81 15.53 5.21 14.13 16.53 0.70 3.01 4.71 5.31 4.21 0.80 2.60 7.21 4.51 9.92 0.70 0.20 1.40 0.20 0.60 1.30 4.61 5.01 -99.99 + 1949 12 8.30 20.10 8.10 13.60 6.60 18.90 8.90 4.50 2.60 0.00 1.70 5.90 8.10 13.40 4.80 12.90 5.40 10.00 8.20 1.20 10.40 1.90 13.10 13.80 25.90 8.20 4.80 8.20 2.00 0.30 4.30 + 1950 1 7.01 10.51 5.81 1.90 19.62 22.42 2.70 4.30 0.70 1.90 2.50 5.50 0.80 7.01 8.41 0.50 0.00 0.00 1.10 0.00 0.00 0.10 0.00 0.00 0.00 0.20 0.00 0.40 4.80 2.60 0.80 + 1950 2 11.90 6.60 4.50 2.40 0.00 0.10 7.50 6.30 6.70 14.50 7.20 1.50 2.90 19.90 19.20 5.20 5.30 3.70 2.70 1.50 0.70 2.00 4.00 0.80 0.00 0.00 1.60 0.70 -99.99 -99.99 -99.99 + 1950 3 11.69 4.90 1.80 1.60 0.00 0.00 0.00 1.60 0.20 0.00 0.30 0.30 0.00 2.70 5.89 11.09 7.89 18.68 3.50 9.39 1.10 12.19 1.10 0.10 0.00 0.00 0.00 0.00 0.20 0.10 6.59 + 1950 4 14.08 0.60 0.60 5.69 1.00 1.80 19.37 13.68 11.98 7.29 2.60 1.70 2.10 0.00 0.20 3.49 4.09 1.00 0.00 4.09 1.40 2.10 3.79 0.30 1.70 0.10 1.60 0.40 2.00 9.18 -99.99 + 1950 5 13.03 6.81 0.10 0.20 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.30 3.61 2.91 1.50 1.70 7.31 1.90 0.10 0.00 0.00 2.10 4.11 3.01 1.00 0.50 0.10 + 1950 6 0.40 0.10 0.80 0.10 0.00 0.00 0.20 0.10 1.80 0.00 0.00 0.00 2.60 2.50 2.30 4.51 7.01 0.70 0.00 7.41 0.30 0.10 0.00 3.30 7.01 1.80 4.31 23.03 4.01 2.00 -99.99 + 1950 7 0.30 0.20 0.00 0.00 0.00 0.10 6.70 5.90 2.50 9.80 1.20 2.00 29.30 5.40 9.60 4.00 6.60 9.60 14.70 5.80 1.80 3.00 0.30 1.80 3.40 3.30 2.00 6.10 2.30 10.70 2.20 + 1950 8 1.30 2.10 0.30 4.30 8.51 0.10 0.30 14.41 2.20 8.21 6.20 2.40 1.50 9.71 10.81 4.30 13.61 8.61 2.70 3.40 0.00 6.70 4.70 11.31 9.81 12.51 1.20 3.30 0.40 2.60 0.00 + 1950 9 6.40 1.80 6.00 8.20 1.20 35.19 8.00 0.30 2.40 17.59 19.49 6.80 7.40 3.70 0.90 24.99 26.49 1.70 11.10 7.40 7.20 5.20 13.00 10.40 8.60 4.20 8.70 3.40 2.90 18.29 -99.99 + 1950 10 7.19 2.80 6.69 4.59 9.99 4.59 4.49 12.18 11.38 9.49 3.99 4.59 7.99 4.49 2.30 20.17 1.60 2.50 0.60 0.00 6.99 1.20 0.00 0.00 0.00 6.39 1.00 0.10 1.50 6.69 2.10 + 1950 11 8.90 1.00 0.70 0.10 0.40 0.00 15.60 14.70 2.70 0.40 9.40 8.70 3.50 1.80 3.80 2.10 2.80 8.60 0.90 0.80 4.80 0.50 0.00 0.00 0.00 0.00 2.30 4.20 5.00 12.10 -99.99 + 1950 12 7.67 0.70 1.30 0.20 1.00 5.18 0.70 1.79 14.45 2.29 1.10 0.20 0.30 1.30 0.00 0.20 3.39 2.49 5.28 2.99 1.00 2.39 0.80 0.00 0.00 0.10 0.00 0.10 0.00 0.30 0.10 + 1951 1 2.69 0.20 2.79 2.40 0.30 2.30 5.39 0.50 15.67 13.97 9.28 4.79 8.08 8.38 0.80 26.35 13.67 1.40 2.69 2.99 7.09 0.40 0.00 0.00 5.09 0.50 2.89 0.30 3.19 6.49 3.49 + 1951 2 5.70 15.40 3.30 7.90 10.90 2.20 1.70 5.20 0.10 0.40 1.70 2.50 0.20 0.50 0.00 6.80 5.20 3.00 8.90 2.60 1.50 0.80 1.70 0.10 3.40 0.60 0.20 0.20 -99.99 -99.99 -99.99 + 1951 3 1.50 0.60 0.90 5.50 1.10 3.30 4.30 0.00 1.00 0.20 0.40 0.10 3.70 0.30 0.00 0.20 3.20 4.60 0.00 0.10 25.90 16.10 0.70 0.90 5.30 4.70 0.20 0.10 1.00 9.30 5.60 + 1951 4 2.11 0.50 17.99 4.72 0.40 5.73 3.12 0.10 0.30 0.00 20.00 2.41 3.92 4.62 20.40 2.61 0.20 2.71 0.00 0.00 0.00 0.10 0.20 0.40 0.90 0.40 0.00 0.00 0.90 3.32 -99.99 + 1951 5 18.36 5.19 0.10 0.20 0.20 0.00 1.10 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.00 3.49 7.09 0.30 0.50 0.40 9.48 0.90 0.50 1.30 0.00 0.00 0.00 0.00 + 1951 6 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.10 6.51 6.21 6.41 2.60 2.30 7.61 5.11 0.30 1.60 14.02 0.40 0.00 1.40 0.00 6.31 0.50 0.10 0.00 0.00 0.40 -99.99 + 1951 7 3.10 6.61 0.00 0.40 6.61 7.81 4.10 4.40 11.31 5.41 6.11 9.41 0.00 0.00 0.60 0.10 2.80 1.10 0.20 0.10 0.00 7.71 0.00 0.40 4.20 8.61 1.80 0.40 0.00 0.00 0.90 + 1951 8 0.40 18.61 0.60 0.90 3.40 7.81 6.60 5.80 0.00 0.60 7.51 0.50 0.20 0.00 0.40 10.91 0.90 12.11 1.50 4.80 11.81 1.20 4.20 1.60 12.01 6.60 1.20 12.51 6.70 0.40 1.40 + 1951 9 2.20 0.50 12.00 4.70 0.00 0.00 0.00 0.00 0.00 0.30 8.70 5.20 15.10 10.30 2.80 2.10 1.00 0.50 0.00 0.00 0.10 1.90 10.20 17.80 8.50 5.60 7.10 0.00 0.00 0.00 -99.99 + 1951 10 0.00 0.10 0.10 1.50 0.00 0.00 0.00 0.00 4.20 0.30 0.00 0.00 0.10 0.90 3.80 2.50 0.40 0.20 7.60 7.70 2.00 1.10 0.90 0.00 0.00 0.00 0.00 0.00 0.10 4.30 0.40 + 1951 11 3.60 2.10 10.21 18.51 11.11 7.50 0.00 3.70 4.30 11.61 3.50 0.80 2.90 8.90 8.00 15.51 9.50 6.40 15.51 5.50 2.90 1.20 16.31 4.40 0.80 2.90 11.61 6.00 1.80 5.90 -99.99 + 1951 12 6.01 10.31 13.21 5.10 5.20 4.20 19.82 12.51 2.60 0.10 0.30 0.60 4.30 5.30 4.70 0.40 10.91 2.10 26.42 0.00 15.81 1.00 18.02 5.30 5.30 4.50 16.61 1.80 14.21 5.91 5.20 + 1952 1 16.11 1.50 0.70 6.70 3.80 2.80 3.00 15.81 9.71 5.40 1.00 0.20 21.21 5.10 9.11 12.71 1.10 0.30 0.00 0.00 0.00 4.80 0.00 0.00 1.50 0.30 0.40 11.81 0.50 21.11 5.20 + 1952 2 4.79 5.39 0.50 0.30 7.28 3.09 0.60 0.10 2.20 3.49 0.20 0.30 2.99 0.00 0.40 0.70 0.10 0.00 0.10 4.29 0.60 0.00 0.30 0.00 0.00 0.00 0.00 3.89 4.79 -99.99 -99.99 + 1952 3 10.60 6.40 5.40 3.80 5.20 15.00 11.60 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.10 1.80 12.40 0.20 13.30 1.70 0.70 0.30 0.00 0.10 0.50 0.00 0.10 0.20 0.20 + 1952 4 1.10 0.20 0.00 7.39 8.59 2.30 1.20 0.70 5.49 0.20 1.50 0.00 0.00 0.00 0.00 0.00 0.00 0.40 3.59 14.18 8.69 2.90 1.80 0.00 0.40 0.00 1.50 0.10 0.00 3.29 -99.99 + 1952 5 0.40 0.00 3.12 0.91 0.00 8.36 0.10 12.89 1.21 5.64 11.79 0.30 0.40 0.00 0.00 0.00 0.00 0.20 1.01 0.20 0.00 0.00 0.00 0.00 0.00 0.10 0.91 0.10 0.10 0.00 7.15 + 1952 6 8.50 2.30 0.80 11.90 0.30 0.60 0.30 0.00 0.00 1.30 0.00 0.00 3.40 0.80 1.60 12.00 5.90 3.10 9.50 1.90 10.40 0.00 0.60 7.30 0.30 2.10 0.00 10.00 1.90 0.70 -99.99 + 1952 7 10.50 0.30 0.00 0.00 0.00 4.60 9.60 1.00 0.60 6.50 1.90 4.40 1.90 1.30 4.30 10.60 0.50 4.10 8.60 1.70 2.00 0.10 0.00 0.00 0.00 0.10 0.10 0.20 0.20 0.00 9.80 + 1952 8 2.90 10.58 5.89 16.48 0.10 5.99 25.96 3.99 16.38 1.10 4.89 5.69 1.70 0.70 0.10 4.59 0.30 0.00 0.00 0.20 0.00 0.30 0.10 0.90 0.00 18.17 2.70 1.10 0.10 2.80 3.69 + 1952 9 2.90 15.12 0.30 0.10 0.00 0.40 0.40 4.10 0.10 0.00 0.00 0.00 0.10 0.00 0.00 1.70 0.50 0.10 1.10 5.61 0.10 3.30 16.22 16.12 13.32 1.20 0.80 0.10 0.30 0.30 -99.99 + 1952 10 0.80 0.20 0.70 0.50 3.50 1.00 1.60 3.40 0.60 0.00 0.00 10.59 6.59 0.00 0.00 0.10 0.00 1.30 9.79 0.10 0.30 13.29 14.29 6.40 6.30 8.89 16.39 7.79 6.30 3.10 4.80 + 1952 11 3.20 4.61 2.50 15.92 7.51 7.91 0.10 4.51 0.60 0.50 0.00 0.50 4.51 4.71 0.20 0.30 0.00 0.10 0.10 5.31 2.10 2.80 0.10 0.10 0.00 0.40 0.00 0.00 0.00 0.00 -99.99 + 1952 12 0.30 0.10 0.00 0.00 0.00 1.40 1.40 21.48 3.40 9.89 4.10 1.20 0.20 0.90 4.70 16.69 1.20 8.59 8.59 9.29 7.29 10.19 6.00 5.70 5.10 0.80 1.40 1.20 2.20 2.50 2.80 + 1953 1 0.00 0.00 0.00 4.09 1.80 0.10 0.30 2.80 0.80 1.90 1.00 3.70 0.20 4.69 0.60 0.70 0.80 0.00 0.00 0.00 0.00 1.80 3.00 1.70 0.70 15.88 6.69 1.80 1.90 17.68 0.60 + 1953 2 0.00 0.00 0.00 0.30 0.20 0.20 0.40 8.33 1.71 0.70 0.30 0.40 6.52 0.10 0.30 4.52 0.90 1.71 5.12 4.72 1.91 3.71 2.71 10.14 1.51 1.51 0.00 0.00 -99.99 -99.99 -99.99 + 1953 3 0.00 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.14 0.20 3.72 6.94 5.33 6.84 7.74 + 1953 4 7.90 2.30 1.50 4.00 2.40 0.90 1.40 1.80 0.00 2.00 10.90 2.60 1.70 1.00 6.10 2.90 0.20 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.10 0.60 7.30 6.30 1.70 1.80 -99.99 + 1953 5 0.20 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.01 4.31 8.81 1.80 2.80 14.22 4.21 1.60 5.21 1.30 4.01 12.02 4.81 0.40 1.80 1.30 0.10 0.00 + 1953 6 0.80 0.10 2.10 0.10 0.00 0.00 0.00 0.00 1.70 0.10 0.00 0.10 0.50 10.20 4.30 2.60 1.70 3.30 0.80 4.40 3.00 0.00 0.00 0.20 3.90 19.80 0.00 0.00 0.10 0.00 -99.99 + 1953 7 0.10 2.80 1.30 0.80 14.62 6.41 5.31 4.81 2.30 1.00 15.42 2.40 11.91 3.10 0.10 11.11 7.91 2.80 3.90 12.01 3.90 7.91 3.10 15.62 4.71 11.11 3.00 2.50 1.40 0.10 0.10 + 1953 8 0.30 0.20 2.90 1.80 0.20 0.00 0.00 0.00 0.40 0.00 0.20 3.40 0.00 9.31 1.30 8.01 11.81 1.70 1.10 8.21 5.51 0.40 3.50 5.61 2.20 0.50 7.81 1.40 5.81 12.61 13.41 + 1953 9 13.00 11.00 0.40 0.30 0.40 0.00 0.00 0.50 0.40 0.40 0.30 0.00 0.00 1.40 7.00 0.80 15.10 1.20 14.00 10.90 13.70 7.50 0.10 0.30 2.70 5.00 4.70 4.80 13.40 20.80 -99.99 + 1953 10 7.89 2.60 0.00 0.00 0.00 0.00 0.00 0.30 0.00 0.50 0.40 2.30 1.20 0.10 0.80 5.49 0.20 0.00 0.00 5.59 0.30 2.20 6.89 10.49 0.30 14.49 4.50 0.10 12.09 3.60 19.18 + 1953 11 11.40 6.20 10.90 1.70 3.60 19.90 8.80 7.60 2.50 10.10 17.80 17.80 4.10 32.60 4.10 0.20 0.00 2.60 4.10 0.00 0.00 0.00 6.50 5.60 7.80 11.30 8.10 3.80 3.40 2.00 -99.99 + 1953 12 6.00 19.70 29.20 0.00 0.20 0.00 0.00 1.30 8.50 1.10 1.20 4.90 5.20 2.50 0.10 0.00 0.30 6.70 0.80 9.50 5.70 3.00 11.30 9.70 1.50 8.10 2.10 0.20 1.40 0.50 0.40 + 1954 1 0.40 0.30 0.00 0.00 2.30 0.30 0.80 2.20 0.20 0.00 0.90 11.09 6.39 8.49 17.08 7.99 2.40 25.37 6.69 20.67 2.10 9.59 1.90 5.29 16.58 0.40 0.00 0.50 0.70 0.50 0.20 + 1954 2 0.80 0.10 0.10 1.10 0.50 13.88 0.70 0.10 2.80 7.29 1.30 13.28 8.98 0.90 0.30 7.29 0.40 1.70 3.69 6.09 2.90 17.67 5.49 14.08 5.39 0.60 0.00 0.00 -99.99 -99.99 -99.99 + 1954 3 0.00 8.92 5.51 0.20 3.81 18.54 9.32 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90 1.90 4.11 9.42 7.92 2.00 1.50 1.60 0.10 4.71 0.70 17.43 3.61 0.70 + 1954 4 4.39 16.67 9.18 3.39 0.50 0.00 2.79 0.10 0.00 0.40 1.40 1.40 3.29 0.50 0.00 0.10 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.50 6.59 -99.99 + 1954 5 1.00 9.13 3.41 2.51 20.86 1.50 2.01 0.10 0.00 0.10 1.20 0.40 10.03 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.01 3.71 15.14 2.11 3.11 9.33 16.35 0.60 0.00 0.00 + 1954 6 0.00 0.00 0.00 0.00 1.20 4.10 0.70 5.60 1.40 0.90 0.10 0.00 0.10 13.10 12.10 4.00 3.90 4.30 8.30 10.10 3.50 9.30 4.50 6.10 9.20 1.40 0.50 0.10 3.40 1.50 -99.99 + 1954 7 0.70 1.90 5.99 3.10 0.30 1.00 1.00 0.50 4.40 0.50 0.00 0.00 4.00 2.10 0.10 6.79 3.10 0.40 10.49 1.00 1.70 4.30 21.48 0.50 0.00 17.58 14.79 3.10 0.60 0.60 0.60 + 1954 8 7.41 0.60 0.20 7.81 12.91 5.20 0.50 2.40 5.30 1.40 0.00 8.11 3.50 3.40 3.80 0.00 17.61 0.90 0.00 0.10 6.20 2.00 1.20 0.00 0.00 1.20 1.10 13.81 3.20 14.21 5.50 + 1954 9 3.40 2.10 5.30 0.00 4.20 3.00 5.70 8.40 14.51 6.60 3.80 1.90 4.80 13.71 19.71 11.61 4.80 0.50 17.01 7.50 1.90 0.00 17.61 10.41 4.60 1.30 0.70 3.70 12.81 7.70 -99.99 + 1954 10 3.50 0.40 10.81 14.31 1.60 0.00 11.11 0.30 4.70 5.00 1.60 3.80 9.11 2.40 21.62 17.31 33.23 26.62 2.70 1.40 4.00 9.21 10.01 1.70 1.40 15.51 8.91 19.12 7.41 0.40 0.10 + 1954 11 0.00 4.00 4.40 2.00 0.30 0.00 10.40 12.20 12.30 21.90 9.10 11.10 4.70 0.10 2.20 0.90 2.40 3.00 1.40 5.30 7.20 18.70 11.40 19.30 4.40 13.10 24.00 3.70 9.60 8.60 -99.99 + 1954 12 18.41 8.60 8.50 6.40 1.00 0.50 1.70 6.80 9.00 2.00 7.60 2.70 2.50 15.41 1.80 7.20 6.00 8.40 8.80 3.30 6.30 7.70 0.20 5.40 11.81 8.20 4.90 7.70 1.50 0.00 0.00 + 1955 1 0.00 0.00 0.30 0.50 0.10 0.00 0.00 0.10 27.21 3.29 2.29 1.00 0.20 1.00 3.79 1.30 2.19 2.59 0.00 2.99 7.08 0.00 0.70 3.39 6.18 0.60 10.37 8.67 5.48 2.99 1.00 + 1955 2 9.20 5.00 0.10 0.00 0.20 7.30 10.60 1.30 0.00 0.40 1.80 0.90 1.80 1.80 0.30 0.90 3.40 0.90 0.50 0.10 0.30 0.30 0.90 0.50 0.00 0.00 2.30 21.20 -99.99 -99.99 -99.99 + 1955 3 9.70 0.00 1.10 0.10 0.20 0.20 0.60 0.30 0.00 0.00 0.00 0.00 0.00 0.20 0.10 0.10 0.30 0.60 0.00 17.60 3.90 2.50 9.40 7.60 0.20 0.00 0.00 0.00 0.00 0.00 0.00 + 1955 4 0.00 6.69 2.50 0.20 7.29 2.00 10.69 4.99 9.89 0.40 1.10 0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.30 3.20 0.20 0.00 6.49 8.79 15.58 0.10 1.70 3.00 -99.99 + 1955 5 6.70 0.10 17.60 19.00 3.40 1.10 7.30 8.00 4.30 1.10 3.30 7.40 1.30 1.70 2.40 0.20 1.30 0.70 0.00 0.90 0.60 7.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 + 1955 6 0.00 3.60 1.30 0.50 0.80 0.00 2.20 0.00 0.00 0.40 3.10 0.10 16.80 1.50 0.40 0.10 0.00 0.00 0.80 0.30 1.60 0.70 7.30 0.70 1.50 2.40 8.40 16.90 0.30 6.20 -99.99 + 1955 7 10.63 10.43 14.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.40 0.10 0.00 0.00 0.10 0.10 0.00 0.00 0.00 0.20 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 + 1955 8 0.00 0.10 0.00 0.00 0.30 0.10 0.00 6.92 0.80 0.00 0.00 0.10 0.00 0.00 0.90 7.32 3.11 8.32 2.01 0.40 2.61 0.10 0.00 0.00 0.00 0.00 0.50 0.40 2.01 0.60 1.40 + 1955 9 15.21 2.50 4.20 12.61 0.70 0.00 0.00 8.41 5.30 13.01 1.50 9.71 2.00 1.90 0.20 2.70 9.21 0.30 0.00 6.30 3.60 2.90 0.30 10.11 8.11 2.20 0.70 1.00 3.20 0.60 -99.99 + 1955 10 2.90 6.39 1.40 2.90 12.99 0.20 7.49 2.60 0.20 0.00 1.20 0.00 6.49 5.10 0.90 2.80 0.40 20.58 7.99 0.90 0.10 0.20 0.30 0.40 15.19 0.20 0.90 0.30 1.00 2.50 3.20 + 1955 11 0.70 5.00 7.00 0.10 2.20 6.30 17.20 3.30 1.20 2.40 7.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.90 0.10 0.40 0.00 1.50 0.70 4.50 1.80 0.70 1.20 -99.99 + 1955 12 1.40 11.61 2.40 0.80 3.80 14.51 0.30 6.40 25.61 1.60 0.00 0.20 7.10 18.71 4.30 1.10 0.10 0.00 0.00 0.20 3.60 13.71 15.01 1.30 16.11 7.80 27.91 9.20 1.80 2.10 8.00 + 1956 1 1.00 0.40 0.20 0.30 0.70 1.20 2.00 0.00 0.60 6.39 1.10 1.60 0.00 3.89 5.19 2.40 4.39 1.40 9.68 6.69 7.29 1.10 1.10 0.30 1.30 12.28 7.58 13.87 2.20 2.89 0.20 + 1956 2 0.40 0.00 6.21 7.72 0.40 0.40 0.10 0.60 0.10 0.40 0.40 0.50 0.50 0.00 1.60 0.10 0.10 0.20 1.80 0.80 1.20 0.10 0.00 0.00 0.00 0.00 6.82 4.91 6.52 -99.99 -99.99 + 1956 3 25.16 4.49 7.79 2.20 7.69 3.89 0.20 2.70 0.00 0.00 0.00 1.40 0.00 0.00 0.20 0.10 0.50 0.00 0.00 3.00 0.00 5.19 0.00 5.09 0.20 0.40 0.30 0.00 0.00 0.00 0.00 + 1956 4 0.00 1.00 0.50 3.09 0.00 0.40 2.79 7.38 5.49 1.60 0.00 0.00 0.00 2.29 1.00 0.50 0.00 0.00 0.00 0.00 1.00 0.40 0.60 1.80 2.59 1.10 0.00 0.30 0.20 4.29 -99.99 + 1956 5 1.50 2.40 1.40 0.50 0.50 7.29 8.39 13.68 15.38 2.80 2.50 0.00 2.90 0.50 2.40 1.10 0.80 0.10 0.00 4.99 0.10 0.00 7.89 0.10 0.30 0.20 0.00 0.00 1.10 0.10 0.90 + 1956 6 1.00 1.20 12.41 13.12 8.91 9.91 1.20 0.00 0.00 0.00 0.80 5.51 1.20 3.50 0.10 2.90 5.81 3.80 0.50 0.20 0.20 0.10 0.30 0.00 0.60 0.00 3.90 1.10 2.80 4.00 -99.99 + 1956 7 7.80 3.80 4.40 19.90 0.80 5.20 5.70 1.90 0.00 0.60 0.00 0.00 8.30 3.60 0.00 0.80 5.00 3.40 0.00 0.00 0.10 0.30 18.60 1.10 2.50 0.20 0.80 12.90 23.10 2.00 1.50 + 1956 8 11.79 5.30 3.20 1.00 0.90 2.80 3.50 0.00 0.00 17.69 3.70 27.78 7.40 0.50 5.00 18.09 9.79 4.60 1.70 1.60 0.10 0.70 7.80 9.69 2.00 0.30 11.39 7.30 0.70 0.20 0.30 + 1956 9 0.00 5.80 14.30 0.60 11.90 3.50 1.00 0.00 0.00 7.60 1.00 9.90 0.70 0.00 2.40 0.00 0.90 0.40 0.30 1.20 1.70 15.20 7.00 0.00 0.60 2.80 22.40 6.20 5.60 3.00 -99.99 + 1956 10 1.90 5.69 9.79 3.50 0.10 0.80 1.30 0.40 0.00 0.00 0.90 0.40 0.00 0.00 0.80 17.78 1.30 0.60 17.58 0.00 0.70 13.49 8.49 10.69 2.70 0.20 6.49 1.10 0.10 0.20 0.00 + 1956 11 0.00 0.00 0.10 0.20 0.10 0.00 1.60 5.71 4.71 2.20 0.40 0.60 3.51 0.80 0.10 1.10 0.00 0.30 0.10 0.00 1.80 3.01 0.00 8.82 3.91 8.31 7.61 0.60 0.20 2.70 -99.99 + 1956 12 3.50 2.60 3.20 24.30 4.10 1.60 0.80 3.60 5.50 24.80 13.20 10.30 16.80 9.80 10.30 1.70 1.40 0.10 3.00 0.70 2.10 4.60 2.60 1.50 2.00 1.70 8.40 5.60 2.80 9.00 1.10 + 1957 1 1.20 8.70 15.00 13.50 11.20 1.20 0.70 1.30 3.30 0.10 4.60 0.10 0.10 0.30 0.00 0.10 0.00 0.00 4.90 13.80 15.00 17.60 10.10 0.70 28.60 6.40 3.80 11.10 2.80 6.90 6.70 + 1957 2 3.60 0.30 6.81 8.11 7.51 3.50 11.01 4.60 0.20 5.61 2.50 2.40 2.80 0.00 4.60 0.50 0.00 0.00 0.00 1.30 0.00 0.00 28.83 3.10 0.50 0.00 0.00 0.00 -99.99 -99.99 -99.99 + 1957 3 6.99 1.10 1.30 2.60 1.70 3.10 2.30 6.69 3.40 2.90 0.70 0.00 3.80 3.50 18.59 6.20 3.10 8.49 17.29 8.19 1.00 1.10 4.70 1.60 6.39 1.10 0.10 0.10 9.29 0.20 0.10 + 1957 4 0.80 2.50 10.40 2.40 0.00 0.00 0.00 0.00 0.00 0.10 0.20 0.70 0.70 0.90 2.70 10.40 6.20 2.50 1.80 11.50 7.90 0.00 0.20 0.00 0.00 0.20 0.20 2.10 0.00 0.30 -99.99 + 1957 5 0.10 0.00 0.00 0.30 0.00 0.50 4.50 9.60 0.20 1.90 3.30 5.40 2.20 4.00 8.50 5.40 2.50 5.00 5.10 1.00 0.10 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 + 1957 6 1.71 1.21 3.32 3.52 1.51 0.60 0.60 0.00 1.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.30 0.10 0.20 0.10 14.48 16.18 11.06 0.80 0.00 -99.99 + 1957 7 0.00 0.30 0.10 0.00 0.00 19.49 6.60 0.30 0.00 1.80 13.79 6.99 3.10 0.70 0.20 3.80 10.79 5.90 7.99 6.40 0.00 0.60 1.60 10.39 19.69 11.39 0.30 0.10 0.00 0.80 0.50 + 1957 8 0.00 0.00 0.00 2.30 1.20 0.00 0.50 5.70 3.50 10.71 3.10 0.90 11.11 10.01 1.60 1.10 0.80 6.50 2.80 0.90 1.70 1.10 16.71 37.03 4.40 2.80 1.00 0.10 0.20 2.10 3.20 + 1957 9 0.00 0.20 4.70 2.90 3.10 12.20 6.00 5.90 6.80 2.70 9.50 5.10 0.30 0.70 1.20 7.60 6.80 3.20 0.00 1.50 5.90 8.90 0.20 0.00 0.00 0.00 1.20 0.30 0.20 0.00 -99.99 + 1957 10 0.30 1.20 0.00 6.51 0.00 0.10 0.30 0.40 0.10 0.50 0.20 3.60 1.70 0.40 14.32 0.30 9.81 15.62 6.61 12.52 6.41 8.31 1.20 11.32 18.93 0.20 9.91 2.60 0.50 7.91 8.21 + 1957 11 8.00 7.20 5.10 6.30 2.70 0.50 0.40 1.00 0.00 1.10 1.90 0.30 0.00 0.10 0.00 0.00 3.20 0.80 2.00 2.00 7.60 0.10 0.20 0.90 0.10 2.00 3.00 1.60 0.00 0.00 -99.99 + 1957 12 0.00 0.00 1.50 0.40 6.60 16.11 21.11 2.50 1.30 23.02 3.90 0.80 0.00 0.20 1.70 6.10 3.50 2.90 12.01 9.51 17.81 7.40 0.10 1.00 1.10 1.50 1.50 2.10 1.50 1.70 0.00 + 1958 1 0.00 0.90 1.70 12.31 7.10 11.81 3.00 29.02 10.91 11.31 1.40 0.40 2.00 1.70 1.20 1.60 5.00 3.50 3.10 3.70 0.90 0.00 0.10 8.11 21.71 2.80 3.70 5.30 0.20 0.10 1.20 + 1958 2 3.20 0.10 3.90 14.59 0.10 0.00 3.40 6.79 3.20 8.49 6.79 0.30 7.19 4.30 2.30 0.40 0.10 0.40 1.20 5.79 2.30 14.09 5.29 2.50 0.10 1.80 1.00 3.90 -99.99 -99.99 -99.99 + 1958 3 0.10 0.00 4.41 4.11 1.60 0.40 0.30 0.40 0.10 0.10 0.20 3.31 2.21 0.00 0.00 0.10 0.00 0.00 0.20 0.10 0.00 0.00 0.00 0.80 0.30 3.11 2.11 2.41 8.52 3.21 0.10 + 1958 4 0.00 0.40 2.80 2.70 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.10 5.80 4.10 4.40 2.30 0.50 0.00 4.00 5.70 2.70 8.20 3.00 1.90 0.20 0.00 0.00 -99.99 + 1958 5 0.00 0.00 0.00 0.00 7.42 0.20 9.83 5.12 0.00 0.00 0.90 0.50 0.30 1.20 1.30 0.20 3.31 14.25 10.23 7.12 1.10 3.31 8.33 6.42 0.60 1.81 0.90 0.20 2.21 4.92 1.20 + 1958 6 2.00 7.71 0.40 0.00 0.00 0.00 2.60 0.10 5.61 5.21 12.11 0.00 0.00 0.00 3.10 1.00 0.10 6.01 5.61 0.20 0.50 0.40 1.80 4.10 11.61 2.40 8.21 0.00 1.20 9.01 -99.99 + 1958 7 1.70 0.00 0.10 0.80 0.00 0.10 0.50 1.00 1.20 0.20 7.69 13.98 8.49 1.70 6.99 4.19 1.30 1.60 10.39 0.10 5.69 0.20 0.10 0.00 6.69 9.29 12.68 30.86 8.69 6.39 3.20 + 1958 8 9.51 2.60 8.31 8.01 0.70 1.30 0.30 0.10 7.61 18.12 2.30 1.00 10.81 3.81 12.02 0.00 1.50 10.91 2.30 7.21 7.81 11.11 0.30 0.00 0.90 9.01 6.81 0.00 0.20 3.10 0.70 + 1958 9 0.40 0.00 0.00 0.60 0.90 21.18 5.79 1.10 0.00 0.00 0.00 0.00 0.50 0.60 0.10 1.70 0.00 10.29 1.70 5.10 2.80 0.60 19.58 13.99 0.00 0.00 0.80 15.09 4.90 3.20 -99.99 + 1958 10 1.90 3.40 15.59 14.69 2.10 15.19 3.70 3.20 6.89 12.59 1.90 13.79 0.50 4.10 5.70 1.30 0.40 1.50 2.30 0.90 0.50 0.50 0.30 0.00 0.00 0.00 0.00 0.00 3.70 3.70 0.90 + 1958 11 19.40 0.90 0.40 8.85 1.71 0.60 4.62 1.21 1.31 0.30 6.03 6.23 0.80 1.21 1.71 0.40 0.00 0.00 1.01 0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 -99.99 + 1958 12 0.80 0.10 0.30 0.10 0.00 0.20 7.51 5.01 0.40 8.91 8.31 19.92 0.30 5.31 1.20 0.40 4.11 9.81 9.91 4.91 6.61 3.30 0.10 1.90 9.61 7.51 7.51 9.51 11.21 5.61 10.11 + 1959 1 16.73 0.10 0.40 0.30 0.00 0.00 0.60 1.00 0.20 0.60 0.50 0.00 0.00 0.00 0.00 2.20 3.21 16.13 9.02 0.80 2.10 1.10 0.10 0.10 0.00 0.00 0.00 0.30 1.20 0.30 0.00 + 1959 2 0.00 0.00 0.00 0.10 0.10 0.00 0.10 0.00 1.60 0.10 0.10 0.00 4.39 6.99 1.90 0.10 0.00 0.10 1.40 2.50 3.39 1.40 5.89 5.79 2.50 4.79 8.58 1.60 -99.99 -99.99 -99.99 + 1959 3 0.30 5.80 1.50 2.50 7.10 1.30 0.00 0.00 0.10 3.20 8.20 0.60 6.70 14.70 0.10 0.00 0.00 0.00 0.00 0.00 0.00 5.10 0.30 4.50 2.50 4.40 3.00 0.90 2.90 1.40 7.40 + 1959 4 4.70 2.60 0.40 1.20 4.90 2.10 8.01 1.30 1.10 3.10 7.91 3.60 6.31 3.00 1.80 0.40 2.40 2.10 1.40 0.20 0.00 0.00 0.00 5.00 20.02 2.70 7.31 1.60 0.10 6.01 -99.99 + 1959 5 3.28 3.28 0.20 0.10 0.40 0.00 6.55 0.00 1.39 4.17 8.04 5.46 0.10 0.00 0.10 0.20 1.09 2.18 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 5.16 + 1959 6 1.90 0.00 2.79 4.09 2.89 6.39 15.96 10.87 1.80 0.30 0.50 0.10 0.00 0.00 0.00 0.50 1.40 0.20 0.00 0.00 1.80 1.50 0.20 3.59 8.18 6.78 3.39 2.29 3.69 4.39 -99.99 + 1959 7 8.11 18.83 4.81 0.00 1.30 3.00 0.50 0.00 0.00 0.00 26.34 6.71 0.10 0.00 1.70 13.82 6.81 4.01 3.30 0.20 0.00 0.00 0.00 0.00 0.60 22.33 18.73 8.01 0.20 0.00 0.20 + 1959 8 0.70 0.70 0.10 0.20 0.40 1.11 0.30 0.00 1.41 0.00 0.00 0.00 7.04 2.01 2.92 0.10 2.01 0.00 0.00 0.50 0.91 2.41 6.94 3.22 0.50 0.00 0.70 0.00 0.00 0.00 0.00 + 1959 9 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.10 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 16.71 5.87 1.09 6.37 2.79 4.48 0.10 0.40 0.00 0.00 0.10 -99.99 + 1959 10 0.00 0.10 0.00 0.00 0.00 0.80 0.00 0.00 0.00 0.00 1.90 5.80 0.10 0.00 0.00 7.50 33.52 14.91 5.20 18.41 6.30 1.50 6.00 9.21 11.51 33.92 1.80 0.70 2.60 0.10 0.90 + 1959 11 2.00 4.20 0.70 0.70 2.20 4.40 0.10 18.81 9.81 6.30 0.60 2.80 10.01 6.90 1.20 4.50 2.90 4.60 14.21 6.90 2.60 21.71 9.91 4.90 6.10 2.80 3.50 12.81 4.30 2.70 -99.99 + 1959 12 6.11 6.11 0.90 0.10 7.91 7.01 4.41 9.12 3.31 0.30 2.60 2.81 14.33 0.50 1.10 13.93 8.72 4.21 7.21 10.12 6.91 13.83 8.22 6.71 12.42 11.32 4.01 0.80 18.63 4.21 16.73 + 1960 1 0.10 0.50 3.59 4.29 0.40 0.00 0.00 0.20 0.00 0.20 0.10 1.70 0.60 0.40 0.20 0.10 5.19 16.18 0.80 10.18 13.48 19.57 1.90 0.60 0.30 0.10 0.60 3.79 2.80 32.75 8.79 + 1960 2 9.80 15.70 16.90 4.50 0.40 0.00 0.10 0.00 0.20 0.80 0.20 0.90 2.50 0.90 1.10 0.60 6.40 4.80 4.40 3.90 4.80 2.90 0.80 9.50 3.20 14.30 15.30 0.90 17.10 -99.99 -99.99 + 1960 3 3.10 10.08 8.49 0.70 0.00 0.00 0.00 0.00 1.20 2.30 0.70 0.90 5.29 3.59 2.40 0.10 0.00 4.39 10.38 6.79 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.00 1.60 0.10 + 1960 4 6.41 10.71 8.41 10.21 10.01 1.60 3.90 15.01 8.01 2.80 7.31 21.82 9.21 4.40 0.30 0.00 0.00 0.20 0.90 0.10 0.10 0.00 0.00 0.20 0.00 0.20 0.00 0.10 0.00 0.90 -99.99 + 1960 5 0.00 0.10 1.50 4.70 0.20 0.30 0.30 3.00 0.20 0.00 0.00 11.20 15.40 0.70 0.80 0.00 0.00 0.00 0.00 0.00 0.10 1.00 15.60 0.00 2.90 3.70 0.50 0.00 0.00 0.00 1.30 + 1960 6 2.89 0.50 0.00 0.10 7.88 6.88 9.87 3.49 0.10 3.59 9.77 8.17 0.30 1.79 6.88 0.80 0.10 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00 -99.99 + 1960 7 0.10 0.30 2.10 5.40 14.01 4.90 1.50 0.60 0.20 9.31 6.31 3.20 4.30 4.70 1.90 12.71 3.90 5.30 0.70 2.60 3.90 1.20 3.50 1.10 6.81 0.70 4.10 2.00 3.90 0.20 0.90 + 1960 8 0.80 7.19 1.80 0.40 0.00 0.00 0.40 6.69 7.39 0.40 0.20 1.20 3.10 0.40 2.10 1.00 9.29 2.10 0.90 5.39 6.59 10.99 0.80 13.79 13.69 5.00 3.70 1.10 0.50 0.10 0.10 + 1960 9 0.10 8.31 4.61 0.50 3.50 8.31 0.00 7.71 0.00 2.80 3.00 1.00 18.72 10.41 0.50 6.61 1.00 2.90 1.40 0.30 1.60 0.50 0.10 0.70 0.00 0.00 0.00 0.40 0.20 0.20 -99.99 + 1960 10 3.09 23.55 7.09 0.60 7.48 0.30 1.30 0.50 0.00 0.00 0.30 0.40 0.10 0.10 0.00 0.10 6.69 6.09 12.87 1.50 1.40 2.59 1.40 0.30 1.00 1.30 1.00 1.30 0.30 7.19 7.78 + 1960 11 11.40 12.40 14.50 3.50 0.70 0.00 0.10 3.10 15.30 15.30 8.20 6.60 3.20 10.50 11.10 3.80 0.00 1.00 2.40 8.60 2.30 5.60 3.30 3.50 0.10 0.00 6.00 1.20 12.80 23.70 -99.99 + 1960 12 4.30 19.31 19.41 17.61 2.80 0.90 3.80 5.70 0.10 0.80 3.30 0.10 0.50 0.10 4.40 3.30 3.90 2.00 0.90 0.10 1.00 7.50 1.10 4.70 35.92 10.71 8.10 2.40 6.20 4.20 4.10 + 1961 1 9.08 1.70 2.00 1.20 5.49 0.10 8.09 7.39 1.20 0.00 21.86 6.59 0.70 0.20 0.00 0.20 0.70 6.69 0.20 0.00 0.10 0.10 0.00 0.00 0.00 11.98 7.39 12.18 9.18 5.59 1.20 + 1961 2 1.80 0.10 8.40 12.30 18.90 8.60 9.80 11.30 8.00 2.40 9.10 8.80 5.20 3.50 0.50 0.10 4.40 0.70 0.00 0.20 0.00 0.00 0.00 3.10 4.90 10.10 3.80 1.60 -99.99 -99.99 -99.99 + 1961 3 10.57 0.20 0.10 0.60 0.00 1.00 0.10 0.10 0.40 0.60 12.67 4.69 2.49 0.30 0.00 0.00 3.59 0.60 1.10 0.00 0.30 0.50 3.99 0.40 4.99 0.50 0.20 13.07 15.46 0.90 1.60 + 1961 4 2.60 0.20 0.10 4.39 17.87 0.30 0.10 4.59 5.09 1.30 9.68 11.98 2.20 0.90 0.00 0.50 0.10 0.80 12.98 14.27 2.40 4.99 2.10 0.40 6.29 2.89 1.50 0.20 2.10 0.80 -99.99 + 1961 5 7.39 3.69 8.58 1.70 3.99 6.49 13.28 3.09 0.10 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.20 1.30 0.00 0.20 2.20 2.89 0.10 + 1961 6 0.00 1.59 0.40 2.29 10.25 0.90 2.29 1.99 0.60 2.19 0.10 0.10 0.00 1.39 2.49 3.98 7.17 2.59 1.00 0.60 6.97 0.20 0.00 4.48 8.96 0.10 1.39 0.20 0.00 1.29 -99.99 + 1961 7 0.10 0.50 11.57 0.10 0.00 2.69 4.19 0.70 0.40 0.60 13.06 33.41 2.19 0.00 3.59 1.80 0.20 0.30 0.00 0.00 0.00 0.10 0.00 3.09 19.45 3.49 2.59 0.50 0.10 3.99 0.10 + 1961 8 0.70 0.70 34.38 1.10 6.60 1.50 7.10 44.67 5.30 2.10 0.20 6.00 0.80 0.80 2.90 0.60 5.20 6.00 1.80 9.49 7.70 0.40 0.90 8.99 10.79 6.00 3.70 0.20 0.10 0.00 0.00 + 1961 9 9.59 8.29 1.30 1.10 4.20 2.40 0.10 0.10 4.30 3.00 2.00 23.79 2.40 9.69 9.09 1.90 0.20 0.10 3.60 2.10 2.20 1.20 4.30 4.30 16.59 11.39 10.79 13.29 10.19 1.60 -99.99 + 1961 10 0.00 4.00 6.00 15.90 11.00 0.20 5.40 5.10 10.70 4.20 5.60 0.10 0.00 0.30 3.00 24.50 1.80 0.20 0.00 4.70 9.00 20.00 22.40 7.30 5.50 8.60 1.20 0.50 1.60 4.50 3.70 + 1961 11 10.39 4.80 0.30 2.00 11.19 3.70 18.39 1.20 1.50 0.40 0.20 0.60 0.20 0.00 0.40 0.20 0.10 0.10 1.80 0.00 1.50 10.89 11.19 9.39 9.69 1.00 0.40 11.79 12.99 2.60 -99.99 + 1961 12 3.10 1.10 0.90 16.40 3.50 1.80 0.70 10.10 8.30 22.80 7.10 6.80 9.20 0.10 1.10 0.10 0.00 0.00 0.00 0.10 0.00 0.20 0.00 0.00 0.10 0.10 2.60 5.70 0.60 0.50 1.50 + 1962 1 0.10 1.30 0.10 4.00 9.60 13.41 0.80 16.11 2.70 18.21 16.91 9.10 5.60 4.10 32.01 7.40 11.70 8.50 5.10 3.70 2.10 11.10 10.70 13.81 7.40 0.30 0.00 0.30 3.40 25.51 12.70 + 1962 2 1.00 2.81 4.92 9.33 11.74 8.43 1.81 3.41 2.51 3.51 39.24 3.11 0.10 3.81 8.23 1.51 1.20 0.90 0.20 0.00 0.00 0.00 0.00 0.40 0.80 2.31 0.70 0.10 -99.99 -99.99 -99.99 + 1962 3 0.60 0.50 0.00 0.10 0.00 0.00 0.10 2.20 1.90 1.00 0.10 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.10 0.10 0.00 0.00 0.10 5.60 15.00 0.20 0.10 9.60 8.40 1.90 5.70 + 1962 4 5.21 31.27 5.21 4.81 2.20 22.75 4.31 0.80 3.91 4.51 0.30 0.00 0.00 0.00 0.00 0.20 0.30 1.70 0.30 3.61 1.60 0.00 0.00 0.10 0.30 0.00 0.00 0.00 0.00 0.00 -99.99 + 1962 5 0.00 0.00 0.00 0.10 1.50 1.20 7.41 1.20 0.20 4.91 1.90 0.00 0.10 0.10 17.73 7.61 3.30 1.70 0.70 6.81 1.30 6.21 0.60 0.00 0.00 0.00 0.00 2.20 0.30 0.10 0.00 + 1962 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.70 0.20 1.90 1.10 3.79 1.40 2.00 0.00 7.19 7.19 10.39 2.80 10.59 2.50 10.88 3.00 4.59 0.40 0.10 0.00 0.70 0.20 -99.99 + 1962 7 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 12.41 1.90 0.00 0.00 0.00 0.00 0.00 0.00 16.42 3.80 3.00 23.32 1.40 0.00 17.62 0.10 0.00 0.00 0.10 10.51 2.20 2.50 + 1962 8 0.30 4.10 15.19 5.90 2.70 3.60 2.70 2.50 11.69 32.18 3.10 0.50 0.00 2.50 13.49 4.30 0.10 2.60 8.80 6.20 10.59 7.50 13.29 4.30 9.89 19.89 4.40 0.30 0.70 1.40 0.00 + 1962 9 6.10 9.80 9.10 8.00 2.30 0.70 3.50 17.61 34.62 2.30 24.81 0.30 0.80 9.80 1.40 2.00 0.00 0.00 0.00 0.00 0.00 4.20 0.50 0.90 2.40 9.50 9.10 3.90 21.11 12.41 -99.99 + 1962 10 6.61 0.10 1.00 6.61 0.00 0.00 0.00 0.00 0.00 0.20 0.30 0.00 0.60 0.10 0.00 0.40 0.30 1.30 0.00 0.00 0.00 0.00 1.50 4.91 1.60 1.80 14.12 0.50 14.92 11.82 7.31 + 1962 11 9.61 4.61 2.70 2.40 2.30 1.60 3.30 0.40 0.30 0.10 0.20 0.00 3.20 3.40 3.80 16.92 2.60 0.10 0.40 0.20 0.10 4.41 19.42 0.70 0.00 0.00 0.60 0.80 1.80 0.30 -99.99 + 1962 12 0.80 0.00 0.30 0.10 0.00 0.50 35.67 15.09 1.90 7.39 3.10 0.70 1.70 12.89 7.59 0.50 5.60 4.10 17.39 4.50 0.70 0.40 3.10 2.60 7.99 0.20 0.00 0.00 1.10 3.60 0.50 + 1963 1 1.41 0.10 1.82 3.03 0.40 0.10 0.10 0.30 0.00 0.30 0.10 0.00 0.50 0.10 2.62 0.10 0.10 0.50 0.10 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.00 8.37 1.11 1.11 + 1963 2 0.50 0.10 0.00 0.20 2.10 5.40 12.60 0.30 0.10 0.10 0.00 0.00 3.20 10.00 2.80 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -99.99 -99.99 -99.99 + 1963 3 0.00 0.00 0.00 6.71 6.51 12.71 4.30 16.02 7.01 3.30 0.00 1.10 18.72 11.91 4.30 7.01 14.32 4.20 0.00 0.20 0.30 0.00 0.80 29.73 2.30 5.91 3.30 9.31 4.10 0.20 1.40 + 1963 4 4.42 0.50 0.50 1.00 2.11 0.00 0.00 0.00 0.20 2.31 2.01 4.32 4.22 7.83 0.70 5.82 9.94 2.01 0.00 6.32 12.34 1.91 0.90 0.60 0.00 1.20 2.71 0.40 0.80 8.03 -99.99 + 1963 5 0.20 3.70 0.40 8.70 6.70 7.90 11.00 3.00 5.20 7.90 5.40 9.50 5.00 1.40 0.50 10.80 3.00 4.40 4.90 10.10 4.50 0.00 0.80 4.70 0.60 1.10 0.00 0.00 0.00 0.60 0.00 + 1963 6 0.00 0.00 0.00 0.10 0.00 2.31 6.51 0.60 0.00 0.00 0.60 5.41 0.50 0.00 4.11 0.10 9.92 7.52 2.91 11.32 1.80 1.00 9.62 6.21 2.81 8.52 6.61 0.80 0.40 1.00 -99.99 + 1963 7 0.40 3.90 8.79 3.00 5.79 1.80 0.00 1.60 0.40 3.00 2.60 0.80 2.90 8.09 6.09 1.50 1.10 3.30 3.80 0.00 3.20 0.70 19.28 0.80 1.10 0.00 0.00 0.00 0.00 0.00 0.00 + 1963 8 0.30 4.70 0.10 5.00 10.10 9.00 7.40 1.10 8.50 4.10 1.00 0.40 0.20 1.00 1.50 9.90 1.90 0.90 1.00 5.50 0.30 1.30 14.20 1.40 4.70 9.10 0.30 0.00 4.60 6.30 4.30 + 1963 9 4.80 3.40 1.20 0.70 0.90 3.00 11.69 8.79 2.60 0.10 0.20 1.00 0.20 0.10 0.70 0.10 1.50 0.00 0.10 0.10 0.00 0.00 7.79 4.80 26.98 9.29 1.70 9.49 1.30 6.19 -99.99 + 1963 10 3.89 14.98 3.00 7.79 2.10 3.89 6.59 11.58 19.37 0.20 0.00 7.79 1.30 1.50 7.19 1.00 2.10 1.70 14.38 1.40 16.18 3.60 1.90 0.10 0.00 0.00 0.00 4.79 2.10 0.20 8.09 + 1963 11 3.10 1.50 0.90 1.20 2.90 0.90 2.40 5.39 2.10 29.57 15.99 14.39 9.19 0.70 0.10 0.10 20.68 6.69 2.40 12.39 17.98 14.29 28.77 6.39 5.00 0.00 6.59 2.10 0.10 0.40 -99.99 + 1963 12 0.40 0.00 0.00 0.00 0.00 0.20 0.50 1.10 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.10 0.10 0.00 1.00 0.00 0.20 0.00 8.48 3.99 2.00 2.00 6.19 13.08 11.48 1.90 + 1964 1 0.29 0.10 8.87 4.09 0.49 1.36 0.19 0.00 0.00 0.19 0.10 0.49 1.36 1.17 0.00 0.00 0.10 3.90 1.07 0.19 0.00 0.10 2.44 0.49 0.39 0.10 17.05 4.00 10.72 9.26 7.89 + 1964 2 1.08 4.30 6.01 2.06 0.09 1.08 0.00 0.45 2.15 2.42 0.99 0.00 0.00 0.18 0.09 0.00 1.08 0.36 0.00 0.00 0.72 3.23 6.28 1.97 0.27 2.24 2.69 0.18 0.00 -99.99 -99.99 + 1964 3 0.00 0.00 1.18 0.00 0.63 0.09 0.00 0.09 0.54 0.81 0.00 3.62 2.44 11.57 1.27 0.00 0.63 0.00 13.29 7.32 1.18 0.09 8.50 4.79 0.00 0.00 0.45 0.00 0.09 0.45 0.36 + 1964 4 0.00 0.09 0.09 0.00 2.40 0.09 2.49 1.11 1.85 0.74 8.03 1.66 10.25 2.49 2.95 2.12 2.49 1.02 14.96 1.57 3.69 0.46 1.85 1.48 5.54 3.05 7.29 1.66 3.97 3.79 -99.99 + 1964 5 2.05 8.49 8.49 4.29 3.64 4.67 18.30 3.17 6.63 9.06 6.16 2.61 2.61 0.19 0.00 0.19 0.09 7.00 2.15 2.33 7.28 0.19 0.00 0.00 0.00 0.00 0.00 0.00 3.92 0.28 0.09 + 1964 6 0.09 1.04 5.56 4.43 0.85 16.11 1.79 0.57 15.93 7.82 1.23 11.78 0.19 6.22 3.49 5.18 0.19 0.09 0.38 0.28 0.00 0.00 0.09 0.57 0.00 4.99 0.00 0.19 0.75 0.09 -99.99 + 1964 7 0.47 0.56 0.19 0.28 0.00 5.77 24.38 4.19 1.02 12.47 0.65 0.09 8.93 4.19 0.00 0.09 2.33 2.61 0.28 0.56 2.23 0.09 0.28 10.05 0.09 0.09 0.74 3.07 2.98 1.40 2.23 + 1964 8 0.29 0.68 0.39 0.29 4.76 1.56 1.46 1.75 0.19 0.78 0.00 0.19 0.00 7.19 3.01 10.79 25.86 8.17 0.39 0.68 7.78 11.28 10.89 11.57 6.42 5.25 8.65 1.94 0.10 0.00 0.00 + 1964 9 0.00 0.00 0.10 0.10 13.94 0.77 4.55 15.39 20.42 5.52 0.29 0.10 7.74 14.23 6.97 4.45 3.29 6.39 3.19 1.06 23.33 12.20 0.10 1.36 1.84 3.58 0.10 2.61 0.10 0.10 -99.99 + 1964 10 0.00 0.00 0.00 0.10 18.12 31.61 8.77 4.14 0.29 2.51 1.06 2.60 14.36 3.37 0.67 0.48 0.48 5.11 0.77 1.54 0.10 7.13 0.96 3.37 0.96 2.60 0.00 0.00 0.00 0.00 0.10 + 1964 11 0.00 0.09 0.09 0.00 0.56 0.19 0.09 0.09 0.00 0.19 7.59 9.56 10.12 15.65 13.78 4.87 2.44 15.09 4.87 1.78 0.28 3.28 5.15 5.53 1.41 7.69 10.78 4.50 1.41 5.81 -99.99 + 1964 12 0.47 1.87 0.65 4.48 7.47 5.60 17.56 17.65 3.08 2.43 26.43 13.45 3.46 2.24 4.20 1.87 0.09 0.00 1.31 0.47 0.28 0.09 0.09 0.09 1.68 7.66 0.37 13.64 18.31 7.29 11.30 + 1965 1 0.30 0.00 0.00 0.90 0.40 9.89 10.19 17.68 16.28 17.38 7.39 5.59 22.37 7.79 7.49 14.98 6.19 0.00 0.10 0.00 3.10 4.19 11.19 0.20 0.30 1.00 0.30 0.20 0.00 0.00 0.00 + 1965 2 0.00 0.10 0.00 0.00 0.00 0.10 0.10 0.10 0.20 0.51 8.55 6.01 0.10 0.10 0.00 0.00 0.31 0.10 0.71 0.20 0.20 0.00 0.51 0.00 0.31 0.00 0.41 3.77 -99.99 -99.99 -99.99 + 1965 3 0.20 1.10 5.00 0.50 0.10 1.00 3.60 0.20 0.00 0.00 0.00 0.30 4.80 2.60 9.60 0.40 0.50 4.30 3.90 0.40 4.70 2.50 1.90 11.00 8.00 21.40 2.70 0.00 0.00 0.00 0.00 + 1965 4 0.00 0.00 0.60 0.50 0.10 2.40 3.81 0.80 16.73 6.91 11.92 2.91 0.60 12.83 0.60 15.53 2.91 3.01 0.20 0.00 0.00 1.60 0.10 1.00 4.91 3.61 1.20 1.10 1.80 0.00 -99.99 + 1965 5 0.00 2.40 3.30 1.40 0.20 3.30 9.01 6.51 1.30 0.00 0.20 0.00 0.00 5.81 0.20 3.00 9.71 0.50 0.00 0.20 4.21 8.51 4.81 5.81 5.21 1.20 4.21 0.00 0.00 0.00 0.00 + 1965 6 0.00 0.00 0.00 5.11 1.90 3.61 0.20 0.00 0.00 0.10 1.20 4.81 0.00 12.42 12.22 1.00 13.22 4.21 1.50 7.91 0.80 4.01 7.61 22.14 9.92 0.40 0.30 0.80 0.10 0.00 -99.99 + 1965 7 0.10 0.00 0.10 0.10 0.30 0.10 1.00 0.80 0.00 11.20 3.60 2.90 5.00 0.10 0.00 0.00 0.00 0.00 0.10 5.40 2.70 1.40 7.60 5.50 0.40 0.70 21.20 32.00 12.20 5.10 4.00 + 1965 8 0.70 3.50 0.00 28.90 7.50 3.40 1.10 0.00 0.00 0.00 0.10 0.00 0.00 5.70 0.00 0.50 3.90 0.60 2.20 21.20 7.10 2.40 1.40 11.50 3.80 0.00 4.10 8.20 2.90 8.00 0.40 + 1965 9 0.00 0.10 6.40 1.30 5.40 18.30 3.40 3.30 6.60 0.70 0.00 0.20 0.20 22.80 3.10 1.00 20.10 0.00 0.30 2.30 10.90 0.90 7.90 17.50 27.30 2.50 0.10 1.10 1.70 0.40 -99.99 + 1965 10 12.70 2.90 3.80 9.80 1.40 1.20 0.10 0.00 0.00 0.00 0.00 0.00 0.30 7.70 0.30 1.20 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 13.70 20.90 11.20 10.90 7.80 38.90 + 1965 11 10.70 2.00 0.10 0.10 0.00 0.30 7.80 1.70 0.20 0.10 1.10 2.20 0.20 0.30 0.00 2.20 2.60 2.20 11.40 2.00 0.00 7.60 8.80 2.40 1.40 6.00 0.90 1.80 1.70 0.10 -99.99 + 1965 12 13.40 7.20 0.30 14.40 5.30 0.50 10.90 15.00 9.60 1.50 1.90 2.60 4.60 7.80 2.40 3.80 16.20 2.60 2.40 2.00 3.20 10.30 1.70 0.30 0.00 0.10 0.00 4.90 9.60 3.60 10.10 + 1966 1 11.30 2.20 0.10 4.90 12.60 3.10 0.20 0.80 0.00 0.00 0.10 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.30 0.20 0.00 11.30 6.00 6.80 13.40 12.70 0.20 0.00 + 1966 2 2.70 5.90 5.80 26.32 7.11 5.80 3.90 1.30 1.30 0.50 0.10 0.80 0.30 0.00 0.00 0.00 0.00 13.31 6.60 9.31 2.90 10.71 2.00 11.91 7.01 5.60 7.81 0.00 -99.99 -99.99 -99.99 + 1966 3 16.19 2.70 4.20 2.20 0.40 0.80 9.59 1.50 10.29 5.40 2.30 1.60 0.70 0.50 0.10 0.20 4.80 0.00 0.00 1.90 1.90 5.90 1.90 0.60 15.99 19.68 0.60 0.10 2.70 2.60 8.19 + 1966 4 0.00 0.00 0.00 0.70 8.38 0.30 0.10 3.09 9.97 1.90 0.70 0.10 0.00 0.40 0.40 0.10 0.00 2.89 2.79 2.39 8.38 16.96 3.29 1.70 3.19 6.68 1.60 0.40 0.60 0.00 -99.99 + 1966 5 0.50 0.70 0.90 7.01 2.90 1.60 7.81 1.40 0.10 5.11 4.70 0.40 2.60 1.10 0.00 13.11 1.70 1.30 9.41 2.80 16.32 5.71 1.30 10.01 2.70 0.00 0.00 0.00 0.00 0.00 0.00 + 1966 6 0.10 0.00 6.71 15.81 0.40 4.20 0.40 0.00 8.71 0.20 0.00 1.00 8.71 1.60 4.10 2.70 5.10 3.60 3.60 5.60 6.40 16.51 18.71 0.80 1.00 10.21 1.60 0.00 0.50 0.00 -99.99 + 1966 7 0.10 0.50 0.00 0.00 1.61 0.70 0.30 0.40 2.51 4.92 1.00 4.32 1.41 0.00 1.71 0.00 0.00 0.00 0.00 0.00 0.00 1.20 0.90 1.31 11.85 3.71 5.92 2.91 4.02 0.60 0.00 + 1966 8 0.80 0.20 7.32 5.22 0.10 0.20 0.10 1.30 18.15 6.12 5.22 1.10 32.59 0.10 0.00 4.91 0.90 1.60 0.90 11.43 2.31 0.70 0.10 0.00 0.00 0.00 0.10 0.00 2.21 0.30 0.00 + 1966 9 14.23 1.80 32.47 3.41 2.81 0.40 0.40 1.70 21.65 5.81 10.82 5.91 6.92 13.83 0.20 4.31 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.30 1.40 0.30 7.42 -99.99 + 1966 10 8.90 0.70 9.40 0.00 23.80 6.20 8.00 0.40 1.60 4.20 1.10 0.20 7.40 0.50 0.40 3.40 4.00 1.60 4.40 4.50 2.70 2.60 0.20 0.00 1.30 0.40 0.50 0.50 0.50 2.40 1.60 + 1966 11 2.40 0.00 2.60 2.40 0.80 1.40 0.80 2.10 1.40 0.30 16.69 6.89 7.89 13.19 11.79 0.30 0.00 0.20 0.00 0.00 0.10 0.00 0.90 7.09 4.60 5.10 4.60 2.40 18.39 13.09 -99.99 + 1966 12 12.91 1.40 0.60 1.90 8.50 1.30 17.91 7.20 3.40 0.50 8.00 2.40 0.40 6.10 10.71 2.00 23.51 3.00 26.81 3.60 2.30 5.20 1.80 2.40 2.40 9.70 3.70 11.81 5.80 3.10 7.60 + 1967 1 0.50 0.10 0.20 0.00 0.90 1.10 0.60 0.30 0.50 0.10 0.10 0.10 0.80 0.00 0.00 2.70 12.69 13.19 7.99 7.69 8.79 7.89 4.60 4.00 13.79 7.39 4.20 2.20 3.40 3.40 9.19 + 1967 2 3.60 10.79 4.80 0.90 0.20 2.80 0.00 0.40 0.50 0.00 0.00 0.00 0.00 0.00 2.60 7.09 4.40 9.79 16.19 7.09 3.40 9.69 1.80 6.00 7.49 9.79 19.49 9.49 -99.99 -99.99 -99.99 + 1967 3 13.01 2.70 0.30 10.31 10.11 4.40 2.30 2.50 8.41 5.70 10.51 1.10 3.40 5.00 6.30 7.91 3.90 1.00 0.50 2.40 1.10 4.80 2.40 8.61 8.81 6.60 2.00 2.10 0.60 0.60 0.00 + 1967 4 18.57 5.09 2.20 2.20 0.10 0.80 1.00 0.50 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.70 0.10 1.90 5.79 1.90 1.10 3.49 5.99 7.39 0.00 2.30 0.30 0.20 0.90 1.90 -99.99 + 1967 5 1.00 1.20 10.22 3.51 3.71 6.61 5.21 3.71 1.30 0.80 5.51 0.70 1.70 0.90 7.91 6.21 3.31 11.72 3.31 3.51 13.22 12.82 3.61 4.71 1.90 1.40 5.01 5.11 0.20 0.30 0.00 + 1967 6 0.30 5.11 2.50 0.10 2.90 9.51 0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 11.42 1.70 6.81 7.51 0.30 2.00 5.51 0.00 4.51 5.21 0.30 0.00 -99.99 + 1967 7 5.11 5.11 4.81 0.10 0.10 2.90 14.32 0.70 1.00 0.80 0.80 0.90 8.51 13.72 0.40 2.30 10.82 5.61 1.90 1.00 0.10 0.00 7.71 1.60 3.91 5.41 0.60 0.80 7.51 1.40 8.01 + 1967 8 0.90 1.10 5.51 1.80 0.40 0.70 0.00 4.91 2.40 3.30 16.72 2.30 0.60 13.92 6.31 5.01 0.50 0.70 0.00 0.00 0.00 0.30 0.00 0.20 0.80 0.40 6.71 4.41 2.70 3.90 0.00 + 1967 9 6.40 18.60 7.20 19.20 6.70 0.70 0.00 0.10 0.40 12.40 13.60 0.00 0.00 0.00 0.00 0.10 3.50 4.00 0.80 0.40 0.30 0.10 1.10 11.80 5.00 4.40 0.50 3.70 7.90 10.20 -99.99 + 1967 10 23.68 12.99 11.59 0.10 3.00 22.38 9.79 28.98 14.69 2.20 3.00 5.30 15.09 7.29 5.90 6.99 4.10 17.99 8.29 1.60 0.40 5.40 7.99 15.49 15.49 8.39 2.20 0.40 0.90 3.90 1.20 + 1967 11 11.49 3.10 2.60 0.40 0.30 0.70 1.90 10.69 3.00 12.99 4.30 10.59 10.69 6.79 0.30 0.00 0.10 0.20 0.50 0.30 0.00 0.00 0.20 4.70 1.20 5.10 10.19 5.89 3.20 1.00 -99.99 + 1967 12 0.60 1.30 0.00 3.10 1.60 0.30 0.10 0.50 0.40 4.10 3.50 0.20 0.90 1.70 4.10 0.10 0.80 0.00 0.00 15.22 12.11 16.12 4.80 8.81 0.10 3.30 4.80 0.90 3.10 4.30 3.00 + 1968 1 5.99 6.98 1.00 1.30 3.19 0.10 0.20 2.89 0.20 1.90 0.00 3.29 10.48 16.46 7.08 13.97 5.59 8.98 0.70 0.20 0.20 0.40 0.50 1.50 0.50 0.90 2.29 1.40 9.18 9.68 13.57 + 1968 2 5.98 3.95 9.19 11.59 8.28 2.94 6.16 4.23 0.18 0.18 0.00 5.88 0.28 0.00 0.28 2.21 0.46 0.09 6.34 2.39 0.00 0.09 3.13 0.18 0.00 0.00 0.00 0.09 0.09 -99.99 -99.99 + 1968 3 0.10 0.10 0.10 0.40 0.20 0.10 0.00 0.00 0.20 0.00 0.00 3.40 3.40 9.30 0.90 18.20 13.50 8.80 9.70 2.20 6.80 11.70 8.80 0.80 2.90 19.60 0.70 0.20 0.30 3.40 16.40 + 1968 4 11.10 2.90 0.90 0.30 0.10 1.20 0.00 0.40 0.10 0.00 0.00 0.00 0.00 0.00 0.00 8.40 4.30 6.10 10.10 0.20 5.60 0.50 0.30 0.00 0.00 2.20 5.90 0.50 0.50 0.90 -99.99 + 1968 5 6.01 9.61 9.71 15.01 16.82 0.80 0.60 0.00 10.51 3.90 2.80 3.20 0.70 12.21 2.60 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.80 3.00 0.10 0.00 0.00 2.40 1.20 + 1968 6 2.61 0.60 1.10 0.00 1.30 1.90 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.80 6.21 3.91 1.00 3.11 5.51 7.01 9.12 2.81 0.00 0.00 2.10 0.80 -99.99 + 1968 7 18.88 29.52 7.23 0.30 0.40 0.70 1.00 5.02 0.10 1.81 0.60 0.20 0.00 0.50 2.41 0.80 0.30 0.40 1.10 0.90 0.10 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.80 0.80 + 1968 8 0.00 0.00 0.30 0.40 1.90 0.00 0.10 0.00 0.00 0.00 0.00 17.00 20.70 0.90 4.50 0.40 1.40 0.30 17.10 1.20 0.50 8.40 0.60 0.00 0.00 0.00 0.80 0.20 0.00 6.30 1.30 + 1968 9 11.11 11.21 5.40 0.10 8.30 0.00 0.40 4.40 0.40 8.30 7.20 18.41 0.70 0.10 0.00 0.00 0.00 0.00 10.51 1.30 0.10 10.81 0.50 0.00 11.61 7.00 17.01 10.61 8.71 15.81 -99.99 + 1968 10 20.78 4.30 5.29 1.30 3.00 0.50 0.80 0.20 21.38 7.09 18.08 9.69 4.20 4.20 10.39 7.79 0.10 0.10 20.88 0.20 0.00 0.00 0.00 0.00 1.20 3.70 9.79 6.89 8.49 7.49 25.38 + 1968 11 3.00 0.00 0.00 0.00 0.40 0.00 0.30 0.10 0.40 4.50 2.30 0.00 0.00 0.00 0.00 0.00 0.00 0.10 1.10 10.79 30.27 11.19 8.39 8.09 2.70 0.30 14.89 0.10 0.00 0.50 -99.99 + 1968 12 0.56 0.56 4.74 3.53 3.53 0.37 0.00 0.19 0.00 0.09 0.00 2.79 0.84 0.93 2.97 5.39 0.84 1.02 11.71 4.18 12.55 10.97 0.46 0.37 0.09 0.09 0.09 0.00 0.09 0.09 0.74 + 1969 1 0.30 0.60 4.10 6.50 2.00 1.90 6.00 5.90 0.20 7.90 1.00 13.50 0.80 3.50 1.40 1.90 4.20 3.50 0.40 15.50 5.30 0.10 5.60 4.20 2.00 3.90 8.30 0.60 3.40 6.80 4.60 + 1969 2 5.81 0.00 0.60 0.80 10.82 2.40 0.50 0.90 0.40 11.22 1.90 0.20 0.30 0.40 0.10 0.10 1.90 0.90 0.10 0.10 0.10 9.22 0.30 0.60 1.50 0.20 0.20 0.20 -99.99 -99.99 -99.99 + 1969 3 0.20 0.40 0.00 0.00 0.00 0.00 0.10 1.00 0.00 0.20 0.00 1.10 3.20 0.90 0.60 0.10 2.40 3.70 3.20 0.30 0.10 0.00 0.00 0.20 0.00 0.00 0.00 0.40 4.60 6.00 3.50 + 1969 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.31 5.13 1.81 10.06 1.11 1.61 10.16 1.11 0.70 0.00 0.00 0.00 0.20 3.72 0.60 3.52 6.23 2.82 1.01 0.70 0.40 0.10 0.40 -99.99 + 1969 5 0.20 4.50 0.30 1.30 0.20 9.91 11.91 6.31 0.80 4.20 3.10 4.30 8.81 0.90 1.80 0.20 1.30 0.30 0.00 0.00 0.00 0.00 0.90 15.82 0.90 7.71 2.80 2.20 0.70 3.20 1.40 + 1969 6 0.40 10.71 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.71 6.51 11.61 8.81 3.50 7.11 4.20 2.70 2.90 1.20 0.90 10.51 1.20 2.00 1.30 2.10 -99.99 + 1969 7 4.49 0.00 6.79 1.80 1.60 1.00 3.70 0.40 0.60 4.39 1.40 0.20 0.00 0.00 0.00 1.00 2.30 11.48 0.50 2.50 2.60 9.59 0.30 0.00 6.89 7.09 2.50 1.00 0.00 0.00 0.00 + 1969 8 0.20 3.61 6.91 3.00 1.20 0.00 0.00 13.02 6.11 0.70 1.30 0.10 0.90 1.90 0.00 0.90 0.80 0.70 7.01 3.31 3.91 1.60 0.00 2.50 2.80 0.90 0.10 0.00 0.00 0.00 0.10 + 1969 9 0.00 0.20 0.00 0.10 0.10 0.30 0.60 0.50 11.10 8.30 5.30 0.00 0.00 0.00 0.00 0.10 3.10 1.70 0.00 6.80 11.20 0.30 2.40 4.20 8.20 11.60 3.00 6.20 2.60 1.90 -99.99 + 1969 10 13.34 5.92 2.11 0.10 3.31 2.21 2.61 14.54 0.80 0.00 0.00 0.00 9.43 1.70 1.40 3.91 0.20 0.20 0.40 0.50 0.80 6.42 18.65 5.11 0.40 0.40 0.40 2.21 1.81 2.91 1.00 + 1969 11 18.41 18.21 3.60 6.70 13.31 4.70 14.01 9.91 8.50 7.60 1.20 7.10 2.90 2.70 2.30 0.20 0.90 3.10 6.20 7.20 7.10 11.41 0.20 0.00 0.10 2.40 10.11 0.60 0.40 2.70 -99.99 + 1969 12 2.80 8.49 0.10 0.00 2.60 4.00 0.50 0.70 0.50 6.10 0.30 0.10 27.98 12.49 2.50 2.60 3.30 5.00 5.80 14.69 18.49 1.50 6.89 0.40 0.40 0.40 0.00 0.00 0.20 0.10 0.20 + 1970 1 0.70 0.40 0.40 0.40 4.20 0.00 0.00 1.80 10.19 0.80 10.99 3.90 1.40 6.29 4.80 0.40 12.69 4.40 8.39 3.50 7.19 0.60 0.50 8.79 3.50 5.20 0.10 0.00 1.50 1.20 7.89 + 1970 2 21.42 5.40 1.00 0.30 0.00 8.81 6.10 5.30 1.90 0.30 0.10 0.10 0.00 0.00 0.10 7.81 2.50 8.01 19.72 5.40 13.41 11.71 5.30 0.70 0.20 0.40 0.20 0.50 -99.99 -99.99 -99.99 + 1970 3 0.90 0.20 1.90 0.30 0.50 0.40 0.70 0.40 0.20 7.99 3.59 0.80 0.10 0.10 0.00 8.09 5.09 1.70 10.58 1.60 2.00 0.60 0.00 0.00 2.20 0.50 0.60 2.80 13.58 1.30 0.10 + 1970 4 0.20 3.00 0.40 0.70 10.21 0.10 0.20 0.60 0.50 0.90 1.70 0.00 0.00 3.70 3.80 13.21 8.01 0.70 2.80 5.91 17.52 21.82 1.70 0.70 0.30 0.10 0.70 1.90 0.30 0.30 -99.99 + 1970 5 6.81 1.50 0.00 0.60 7.71 0.30 5.61 0.50 1.90 0.00 0.00 0.00 1.70 1.60 1.20 0.00 0.10 2.90 1.20 8.21 0.20 0.80 0.40 8.21 5.61 0.30 0.50 0.30 1.30 1.50 4.31 + 1970 6 1.50 0.20 0.00 0.00 0.00 0.20 0.20 0.40 0.00 5.69 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 2.00 3.79 10.18 12.08 0.20 5.89 7.29 3.30 3.30 9.79 -99.99 + 1970 7 6.90 0.80 0.90 0.60 13.90 4.50 0.20 9.30 0.40 5.30 7.00 6.00 2.50 0.40 0.10 0.10 0.50 4.80 0.80 3.00 2.40 2.90 14.80 8.90 0.50 3.60 3.20 3.30 3.30 15.00 0.80 + 1970 8 0.30 0.00 0.10 0.00 0.00 0.00 0.00 0.50 6.41 0.10 1.80 1.80 13.42 2.40 30.33 5.21 0.00 0.00 2.80 7.51 0.20 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.20 2.90 11.91 + 1970 9 9.20 10.50 1.40 1.10 0.80 2.00 21.40 9.20 16.80 6.20 2.10 1.70 8.30 0.70 0.30 9.90 20.00 0.70 7.10 2.00 0.10 0.50 0.00 0.40 10.70 3.10 0.80 10.00 11.00 4.30 -99.99 + 1970 10 21.74 2.50 6.61 16.23 9.92 6.21 1.80 0.10 1.70 0.10 2.20 0.00 0.20 0.00 0.00 0.00 1.20 9.52 0.40 0.00 0.00 0.40 9.32 11.82 6.51 3.41 7.11 11.32 22.34 3.71 26.64 + 1970 11 7.71 24.12 9.81 15.22 0.50 0.00 4.60 5.41 0.70 10.31 11.11 11.61 7.21 0.30 8.91 3.20 5.71 1.40 2.00 5.31 1.30 2.60 31.43 1.70 2.20 10.91 9.71 3.70 1.90 0.50 -99.99 + 1970 12 3.60 17.82 3.00 6.11 7.61 2.10 0.00 0.10 0.00 0.20 0.80 1.90 0.70 0.80 1.00 12.82 4.41 5.91 2.90 0.30 0.20 0.00 1.00 0.20 0.70 0.30 0.30 0.70 0.30 0.10 0.00 + 1971 1 0.50 0.10 0.00 0.60 6.41 15.13 2.81 4.41 7.21 0.00 0.00 0.00 0.70 0.10 0.30 2.20 3.81 10.12 4.91 5.51 0.60 6.41 6.51 11.12 5.11 1.00 4.01 5.61 2.91 0.30 0.00 + 1971 2 0.50 3.10 0.20 0.10 0.00 0.40 0.00 2.10 0.70 3.50 17.82 21.72 12.91 12.41 2.80 6.01 6.61 0.10 7.31 4.50 0.80 0.40 1.00 0.50 0.10 0.20 9.31 2.30 -99.99 -99.99 -99.99 + 1971 3 12.60 0.10 0.00 0.70 0.30 0.00 0.00 0.00 0.50 1.40 3.00 3.50 3.50 0.20 0.00 0.70 0.40 4.40 5.50 0.10 0.00 0.80 4.30 5.70 3.40 0.60 2.60 6.10 4.10 2.20 0.90 + 1971 4 0.00 0.10 0.30 1.80 0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.11 0.20 4.51 0.70 0.50 0.40 0.80 9.42 28.65 3.21 0.00 0.10 0.00 0.00 0.10 2.70 -99.99 + 1971 5 0.00 0.00 0.00 0.00 0.00 4.01 2.81 0.50 1.70 0.10 0.30 0.00 0.00 4.11 5.62 5.11 4.61 0.60 0.30 0.00 0.10 5.82 12.24 0.40 0.20 7.02 3.91 0.60 3.51 4.21 0.50 + 1971 6 0.00 0.00 0.00 0.00 0.00 0.10 0.20 0.40 0.30 0.20 4.70 0.00 1.10 0.40 1.30 0.70 0.10 3.20 5.50 8.10 9.50 0.00 1.50 4.70 7.60 6.00 4.50 0.40 0.20 2.70 -99.99 + 1971 7 0.40 0.40 8.70 2.80 0.00 0.00 0.00 0.10 0.00 0.00 0.10 0.00 0.00 0.20 0.20 0.00 0.00 0.00 0.00 0.20 4.50 8.60 10.50 24.00 7.80 4.00 4.10 0.00 0.00 10.80 7.80 + 1971 8 5.81 0.70 6.21 5.41 10.72 7.21 0.40 4.31 0.70 0.00 0.10 6.31 12.42 0.90 0.40 0.10 0.00 0.00 0.00 0.00 0.10 2.71 0.80 0.40 0.20 6.71 7.62 2.10 6.51 5.11 7.51 + 1971 9 4.01 9.72 1.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.81 7.01 0.20 0.70 1.60 0.30 1.50 0.60 0.20 0.20 0.60 0.00 3.11 2.81 0.10 4.21 5.41 0.40 -99.99 + 1971 10 0.20 0.00 0.00 0.00 5.00 4.00 7.50 1.40 9.11 21.51 3.20 0.20 0.00 0.90 14.91 5.20 20.51 8.21 16.11 13.31 15.81 2.30 6.10 0.80 0.00 0.00 0.00 1.50 2.00 3.20 0.30 + 1971 11 2.40 3.60 3.30 25.52 2.30 4.80 8.51 0.20 0.20 0.10 0.50 2.70 0.30 1.80 5.90 1.10 12.41 0.70 0.30 18.82 0.20 2.70 0.30 1.60 1.00 4.40 2.90 1.80 6.31 2.00 -99.99 + 1971 12 0.50 0.00 5.31 0.60 0.00 0.10 1.40 0.90 1.00 0.10 1.20 7.01 5.01 6.31 0.90 0.40 0.00 11.51 10.31 17.02 3.00 3.50 4.81 0.90 2.00 8.41 0.00 0.60 0.10 0.00 0.00 + 1972 1 2.10 2.30 0.50 0.10 0.00 0.00 2.10 10.49 2.20 12.99 17.49 6.30 7.00 0.40 2.50 4.80 6.50 24.18 3.10 4.10 3.10 3.80 11.09 5.70 5.10 5.60 0.40 0.20 0.20 0.10 0.10 + 1972 2 8.39 6.19 2.10 0.10 2.50 0.60 0.30 2.70 4.00 10.09 4.89 9.19 2.00 1.90 15.48 3.10 0.70 0.00 0.00 0.10 0.10 0.00 0.00 0.00 5.29 0.80 3.40 2.90 2.80 -99.99 -99.99 + 1972 3 1.40 9.12 7.82 5.91 0.20 1.20 0.80 0.10 0.10 0.10 0.00 0.00 0.00 1.20 0.00 5.61 0.50 1.30 3.91 0.00 0.20 0.50 0.00 0.00 4.01 12.03 4.31 1.20 11.43 1.30 7.22 + 1972 4 19.69 14.39 5.10 6.70 9.39 2.40 11.89 9.99 13.09 7.99 0.70 1.30 0.10 5.00 0.60 0.80 0.30 0.00 0.00 0.00 0.60 0.10 0.00 0.00 0.00 0.00 0.40 23.09 12.59 8.29 -99.99 + 1972 5 2.00 0.00 1.00 0.00 6.60 6.30 6.10 5.10 2.10 0.40 9.90 4.10 0.10 0.10 0.00 0.00 0.00 0.10 0.50 3.30 4.50 0.60 2.50 7.70 26.30 10.20 1.20 2.50 12.80 4.80 3.70 + 1972 6 5.90 10.11 4.90 10.01 4.30 1.20 11.61 0.60 1.60 1.50 0.20 1.30 0.00 0.80 0.00 0.00 24.52 3.80 1.90 12.81 4.70 3.40 4.70 7.31 0.40 3.60 9.71 1.60 0.60 1.70 -99.99 + 1972 7 1.00 0.20 3.51 9.82 2.10 4.31 0.10 0.30 2.40 3.00 0.10 6.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 8.61 4.41 8.11 0.00 0.00 0.00 0.60 0.40 2.30 3.81 + 1972 8 1.11 0.10 9.25 3.72 3.52 6.73 11.96 8.04 0.80 0.50 0.30 0.20 0.70 0.00 0.00 9.65 1.31 0.00 1.41 0.00 0.00 0.10 0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 + 1972 9 0.00 0.00 0.00 0.00 0.90 3.02 0.50 1.01 0.40 1.31 0.80 3.22 0.20 0.00 0.00 0.00 0.00 0.00 0.00 6.53 1.91 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -99.99 + 1972 10 0.00 0.00 0.00 0.00 0.00 0.00 0.30 10.90 8.60 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.00 3.10 3.60 0.30 2.40 0.10 1.50 9.70 6.50 7.30 0.50 0.70 + 1972 11 2.80 3.00 0.10 0.40 1.60 5.69 0.90 11.29 21.27 10.59 6.59 4.09 0.10 6.39 5.49 0.50 0.10 9.59 11.59 1.40 0.50 0.40 0.00 1.00 2.50 0.30 10.49 9.99 18.78 15.48 -99.99 + 1972 12 4.50 0.20 9.01 13.41 6.40 6.00 3.20 0.20 9.11 8.41 24.02 8.41 3.90 0.50 0.00 2.50 0.00 0.00 0.00 0.60 0.30 0.40 2.80 0.20 2.00 5.10 3.30 3.90 2.00 7.31 12.71 + 1973 1 8.60 6.80 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.00 0.30 2.10 5.30 14.20 1.90 0.10 3.10 18.00 21.60 9.30 3.70 6.40 1.20 13.50 3.10 1.30 1.80 5.60 5.80 1.80 + 1973 2 0.40 0.40 0.60 3.50 5.81 4.50 8.51 8.41 3.20 1.10 13.01 9.71 6.41 1.60 0.50 0.00 0.00 2.30 2.00 1.20 3.50 8.01 2.20 0.00 0.00 0.10 4.50 7.01 -99.99 -99.99 -99.99 + 1973 3 6.45 6.95 2.88 2.38 3.97 0.30 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.49 0.40 4.07 0.50 0.00 6.55 0.30 14.29 3.57 9.33 + 1973 4 4.48 0.40 18.41 8.36 8.76 2.39 0.90 0.90 0.30 0.10 0.30 0.30 0.00 0.10 0.00 0.00 0.00 0.10 0.10 1.19 2.79 0.30 0.90 0.30 0.00 0.60 0.90 0.00 4.78 7.17 -99.99 + 1973 5 0.10 0.20 7.38 13.27 4.79 3.39 2.39 2.39 9.58 3.09 1.40 15.17 0.30 0.40 0.00 0.00 0.00 0.00 0.20 3.39 7.48 2.20 0.20 1.40 1.80 1.00 3.59 0.40 4.09 1.00 0.40 + 1973 6 4.71 3.30 0.50 0.10 0.00 0.00 0.00 0.50 3.00 0.20 2.80 14.02 1.10 2.10 0.00 3.60 0.70 28.64 0.70 0.00 0.00 0.00 0.30 0.60 0.30 0.30 0.00 3.40 1.20 5.51 -99.99 + 1973 7 12.06 1.21 6.03 0.50 2.71 2.41 0.20 0.00 0.20 7.24 1.01 7.84 7.34 6.53 0.00 0.00 0.70 5.83 3.92 4.22 2.01 1.41 0.20 0.00 0.00 0.00 0.00 1.81 0.20 0.30 0.60 + 1973 8 3.41 3.61 5.02 9.83 6.52 11.04 2.81 7.02 5.82 1.30 0.00 0.00 0.00 0.00 0.00 0.30 0.10 1.50 4.11 0.00 0.00 1.30 0.20 0.00 0.00 3.51 1.50 2.91 3.91 7.52 8.53 + 1973 9 1.70 1.20 6.19 7.89 0.70 3.30 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 1.40 8.09 4.69 0.90 0.00 0.10 2.10 0.40 0.00 5.59 3.50 0.20 20.07 9.79 0.70 0.60 -99.99 + 1973 10 0.50 0.00 0.00 0.10 0.00 0.70 2.31 11.43 4.51 0.40 0.00 0.00 0.10 0.00 0.00 0.30 0.80 14.84 4.01 11.23 7.22 1.10 1.91 1.00 2.61 0.30 0.40 0.00 0.00 0.00 0.20 + 1973 11 0.60 1.50 1.80 14.23 1.40 0.20 3.51 15.44 1.30 5.41 19.04 8.52 4.81 3.11 1.90 0.80 14.33 8.72 0.10 0.20 3.01 0.60 10.02 0.70 0.60 0.60 0.30 5.01 0.00 0.00 -99.99 + 1973 12 0.00 1.20 2.80 1.00 4.30 0.30 11.79 0.10 1.20 11.59 6.60 15.29 2.10 0.60 22.49 3.90 1.00 4.00 22.29 5.40 3.40 8.69 1.00 0.50 8.59 1.10 3.50 2.10 11.39 0.20 0.40 + 1974 1 3.60 0.00 1.40 16.10 8.70 9.50 5.00 13.00 2.50 11.50 10.80 6.10 7.10 6.70 4.50 9.30 29.10 5.80 0.10 0.10 0.20 9.10 6.30 1.90 8.60 10.70 4.40 9.70 26.30 12.70 2.80 + 1974 2 5.00 5.60 1.10 4.50 3.20 0.50 4.50 15.60 9.80 1.80 7.50 2.70 1.30 12.50 11.70 0.80 0.00 0.40 0.90 3.10 2.60 2.70 1.20 0.70 0.50 0.50 0.50 10.00 -99.99 -99.99 -99.99 + 1974 3 1.70 0.20 1.10 0.50 0.20 13.80 0.20 0.00 0.30 0.10 0.20 0.60 1.60 7.90 7.30 5.10 7.50 2.10 6.80 0.00 12.10 0.10 0.00 0.60 2.20 0.10 0.00 0.00 0.00 0.00 0.00 + 1974 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 6.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.59 2.97 0.10 0.20 -99.99 + 1974 5 3.19 1.69 0.40 0.20 0.30 0.00 0.10 2.19 7.48 4.98 2.49 5.38 1.00 0.00 0.00 1.10 6.38 3.49 2.59 0.40 3.39 4.59 4.09 0.10 0.10 0.10 6.78 0.40 0.10 0.00 0.50 + 1974 6 5.90 1.30 0.90 3.00 6.90 7.80 6.90 0.80 2.50 6.40 1.90 0.00 0.00 0.00 0.00 5.10 1.90 1.70 0.90 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.70 11.10 -99.99 + 1974 7 0.00 4.58 1.40 8.67 5.58 0.30 0.50 5.38 0.70 4.58 3.29 2.39 1.20 7.87 8.57 1.10 0.40 2.19 0.70 0.30 2.89 12.76 1.89 0.10 2.99 2.89 3.59 1.59 0.50 0.10 0.00 + 1974 8 3.10 0.70 0.10 0.00 3.70 1.40 2.40 4.80 9.71 4.40 13.01 1.80 0.00 14.11 1.10 2.30 1.00 0.40 0.40 3.80 1.10 6.01 4.40 10.71 2.70 1.90 0.90 1.70 0.00 0.00 1.70 + 1974 9 13.41 7.40 4.40 10.91 9.51 9.01 6.50 3.30 3.30 0.40 0.90 13.71 2.50 9.81 1.30 15.41 0.80 1.30 1.30 11.51 7.81 6.50 2.60 8.21 1.40 1.40 0.00 0.00 0.70 0.10 -99.99 + 1974 10 4.19 2.00 0.00 0.00 3.69 2.60 0.40 0.00 0.80 0.10 0.00 1.10 2.90 0.50 0.30 1.90 11.68 7.19 4.39 1.80 0.10 0.00 0.10 0.50 0.70 4.29 2.60 0.10 1.30 5.59 2.00 + 1974 11 2.50 6.20 2.60 0.10 5.70 0.10 10.90 14.60 10.80 22.30 8.10 6.10 20.10 10.60 1.10 4.30 0.90 1.80 0.10 0.00 4.60 2.90 6.70 14.70 2.80 9.20 6.50 1.60 5.30 4.20 -99.99 + 1974 12 3.09 1.50 7.69 7.09 3.69 5.59 10.78 4.79 16.17 7.79 5.69 1.10 6.49 5.19 13.48 16.87 6.59 1.80 15.47 6.79 8.49 3.89 3.99 3.69 20.57 12.48 7.09 13.38 1.30 4.19 8.79 + 1975 1 0.70 2.50 1.50 14.09 7.49 3.20 1.00 1.90 12.29 12.79 10.19 7.29 20.98 12.19 8.29 3.30 1.90 0.20 20.19 2.10 27.78 15.99 7.59 13.89 5.40 10.09 7.29 3.30 18.39 10.59 5.60 + 1975 2 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.10 0.20 3.81 8.32 0.50 4.61 10.82 3.81 0.10 10.12 5.31 0.30 2.20 1.50 0.70 0.00 0.00 0.00 0.00 -99.99 -99.99 -99.99 + 1975 3 5.02 1.10 2.11 0.30 8.54 7.94 2.01 0.50 0.40 1.91 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.20 0.00 11.45 0.30 0.60 0.70 1.10 0.40 0.10 0.10 0.30 0.00 0.00 + 1975 4 2.29 0.20 1.10 0.50 0.00 3.19 0.30 0.20 1.10 3.89 4.19 1.60 3.39 2.99 1.50 9.77 1.40 0.60 3.99 5.78 6.08 0.00 0.10 0.10 0.00 0.40 0.70 6.98 4.59 7.98 -99.99 + 1975 5 2.50 0.00 0.00 0.00 0.00 0.00 0.00 3.20 4.10 4.00 2.00 5.50 4.20 0.40 0.00 0.00 0.00 0.00 0.30 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 + 1975 6 7.00 2.00 1.30 20.40 3.30 0.00 0.00 0.00 0.00 0.00 0.20 0.10 0.60 0.50 4.20 5.00 3.80 8.00 3.10 0.10 0.00 0.00 0.30 0.00 0.10 0.00 0.00 0.00 0.00 0.00 -99.99 + 1975 7 0.00 0.00 0.70 0.00 0.00 0.00 0.00 0.20 1.99 6.28 1.99 1.99 8.97 11.96 10.07 0.00 1.00 0.00 4.09 0.20 14.75 10.57 3.49 1.30 2.69 1.79 0.00 1.20 6.98 0.40 0.00 + 1975 8 0.00 0.00 0.00 4.01 3.51 0.30 0.40 8.31 1.90 0.00 0.00 1.10 0.00 2.20 1.20 0.40 0.00 0.20 5.61 3.81 2.00 0.00 1.20 0.60 1.50 2.30 0.40 0.50 23.64 0.20 0.00 + 1975 9 0.00 2.40 0.20 1.40 4.70 4.40 1.40 10.69 8.50 1.40 6.00 0.70 0.30 0.10 1.20 13.79 24.89 0.50 4.80 9.99 1.40 10.39 4.60 27.39 10.99 0.70 5.90 9.29 3.00 13.49 -99.99 + 1975 10 6.30 15.00 10.50 16.80 0.70 0.00 0.00 0.50 15.40 0.20 0.00 0.00 0.00 2.50 1.30 0.00 0.00 0.00 0.00 0.00 0.00 9.90 10.50 1.70 0.30 0.90 0.10 0.00 3.30 1.50 5.50 + 1975 11 1.00 15.32 2.00 4.91 2.00 0.10 0.10 0.00 0.20 0.50 5.31 0.00 0.10 3.40 13.22 0.30 0.00 7.01 1.50 0.00 0.00 9.91 5.61 5.11 5.21 19.43 9.61 6.21 8.21 12.12 -99.99 + 1975 12 13.75 0.20 0.70 1.61 1.00 0.90 0.20 0.40 0.70 0.90 1.81 0.00 0.50 0.40 1.30 0.30 0.10 0.20 0.80 0.80 0.90 0.90 4.21 5.72 0.70 1.20 0.50 2.41 1.20 11.14 4.31 + 1976 1 8.69 21.69 3.50 5.50 10.39 8.69 3.60 0.50 7.40 9.39 1.90 4.40 6.00 1.60 1.40 1.10 3.60 10.89 19.99 10.79 9.99 4.30 0.80 0.10 0.40 2.10 1.60 6.30 0.10 0.00 0.00 + 1976 2 0.00 0.30 0.20 0.10 2.30 3.60 4.10 2.20 12.21 8.21 12.21 2.00 0.00 4.91 0.00 0.00 0.30 0.20 0.10 1.20 3.70 12.41 4.51 2.20 2.00 1.10 0.00 1.20 5.01 -99.99 -99.99 + 1976 3 0.10 0.00 0.00 1.10 0.00 0.00 0.00 0.00 9.41 15.01 8.21 1.90 0.00 0.80 1.40 7.21 0.10 0.00 0.20 19.42 8.31 0.40 1.30 9.71 3.90 9.71 0.10 12.11 4.10 7.91 5.90 + 1976 4 7.50 2.90 7.20 3.20 2.30 1.90 0.10 0.30 0.10 13.80 2.10 3.50 12.10 0.00 0.10 0.20 1.10 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 2.60 -99.99 + 1976 5 7.18 4.79 0.80 1.20 0.00 1.80 0.00 0.00 1.60 2.00 8.08 3.29 2.99 2.89 7.08 18.36 4.09 1.10 6.19 2.10 12.97 0.80 0.00 12.57 1.30 0.00 0.60 10.58 11.97 6.49 6.99 + 1976 6 3.79 1.00 0.20 2.00 0.30 0.00 0.00 0.00 4.69 3.39 9.89 0.30 0.90 1.30 1.40 11.18 5.09 3.30 4.49 0.40 3.89 2.80 4.99 0.80 0.60 0.00 0.00 0.00 0.40 0.00 -99.99 + 1976 7 0.00 0.00 0.99 0.30 0.00 0.00 0.00 0.00 10.52 1.09 0.50 4.47 4.66 4.86 12.11 1.09 0.10 15.88 0.50 1.09 0.10 0.79 0.69 0.20 0.00 0.20 0.00 0.10 0.69 2.98 1.39 + 1976 8 4.42 3.88 0.00 0.18 0.18 0.72 0.09 0.00 0.00 0.00 1.44 4.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.34 1.80 0.09 0.45 + 1976 9 0.00 0.00 0.00 0.00 0.30 0.90 0.60 15.64 2.91 7.32 0.60 1.90 3.41 0.20 0.00 0.10 0.00 0.00 3.01 4.21 22.36 6.82 0.10 0.00 16.04 0.10 13.93 14.84 1.40 3.41 -99.99 + 1976 10 1.80 6.88 8.79 0.00 14.93 1.59 2.86 0.53 0.85 10.91 14.72 2.33 4.98 20.76 2.22 0.64 8.90 0.53 1.48 7.63 1.38 14.72 11.54 0.53 4.87 0.00 0.32 0.64 1.17 0.00 7.31 + 1976 11 4.16 5.89 5.89 7.21 3.45 6.19 4.06 1.52 2.74 4.16 0.10 0.00 0.00 5.58 18.28 0.00 12.69 0.00 0.00 0.00 0.30 0.30 1.02 1.52 5.89 19.39 15.74 5.08 8.43 5.38 -99.99 + 1976 12 4.94 0.20 0.40 0.71 7.66 12.70 5.34 3.12 4.94 2.12 0.81 1.51 0.50 2.82 4.74 2.92 1.01 0.00 6.35 4.03 1.11 3.93 0.10 0.10 0.00 1.81 0.71 4.43 14.92 8.47 0.00 + 1977 1 0.00 0.60 4.50 11.90 0.80 1.60 0.70 5.30 1.70 0.10 0.00 0.00 2.90 4.10 0.10 0.00 0.30 7.80 14.00 6.50 5.60 2.20 0.50 3.30 16.70 0.20 0.00 0.00 3.60 4.70 1.50 + 1977 2 7.21 25.62 4.90 5.90 1.10 10.21 1.30 1.20 18.41 7.21 0.60 0.90 4.80 6.81 2.10 0.20 10.71 4.40 0.20 2.30 9.41 1.00 0.00 0.00 0.00 0.00 0.00 1.90 -99.99 -99.99 -99.99 + 1977 3 4.41 11.52 4.01 3.91 0.30 0.70 2.30 0.50 7.11 6.91 3.71 3.20 8.91 2.40 12.92 3.51 7.81 7.81 1.90 1.80 0.40 0.50 0.50 0.00 0.60 3.20 0.20 0.00 0.20 26.54 9.01 + 1977 4 6.23 4.09 0.19 0.39 0.49 0.19 0.10 0.58 1.27 0.58 3.89 4.28 3.41 0.00 0.97 1.75 0.00 0.00 3.70 7.59 19.67 10.03 4.87 4.38 3.60 4.19 15.19 4.38 4.58 0.49 -99.99 + 1977 5 1.10 1.00 9.60 0.20 0.70 10.80 4.80 0.30 1.30 3.20 8.80 11.30 0.70 0.10 0.70 0.40 0.10 0.00 0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 + 1977 6 0.00 0.00 0.10 5.40 3.80 16.70 1.40 1.30 2.40 4.40 2.20 4.70 3.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.20 0.10 0.70 0.20 0.50 3.10 3.90 -99.99 + 1977 7 1.70 3.20 0.30 0.00 0.00 0.00 0.20 1.70 0.00 0.00 0.00 0.00 0.00 0.00 8.80 1.00 14.10 2.00 2.90 0.10 0.80 15.00 7.40 2.40 0.20 0.10 0.10 0.00 0.50 0.10 0.40 + 1977 8 5.60 6.20 9.30 19.80 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 4.30 7.20 3.60 0.00 0.20 0.10 1.60 5.60 0.10 0.60 0.90 21.80 3.60 4.40 0.10 1.60 4.50 8.10 3.40 + 1977 9 7.21 2.20 10.82 9.42 12.92 2.60 6.91 2.60 22.24 11.32 4.41 0.00 0.10 0.60 0.40 0.00 0.00 0.00 0.00 0.80 0.00 0.70 0.00 1.40 7.11 9.42 21.54 8.41 24.44 15.93 -99.99 + 1977 10 2.60 0.10 17.40 2.90 23.90 3.20 30.20 2.80 4.70 3.00 6.70 0.30 0.30 0.40 0.00 0.00 0.00 0.90 1.30 5.40 2.70 10.90 19.00 2.20 1.40 2.70 0.70 1.00 8.40 46.40 4.60 + 1977 11 6.00 8.80 11.00 9.80 12.10 24.50 10.50 9.40 17.50 5.10 9.30 5.60 4.40 6.70 4.00 2.80 0.50 4.00 7.80 0.40 0.10 5.20 9.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 -99.99 + 1977 12 0.20 0.00 0.00 0.00 0.20 0.20 1.50 0.80 9.40 7.60 12.00 0.90 3.70 4.30 0.20 0.20 2.80 1.10 0.00 0.00 2.00 20.00 11.90 4.40 3.10 8.10 1.80 1.90 1.20 0.30 3.70 + 1978 1 3.80 20.10 1.10 6.90 0.90 1.70 0.60 10.50 9.70 6.90 0.50 1.00 0.10 0.40 2.20 0.60 0.20 8.20 3.40 0.70 9.70 4.00 11.70 0.10 2.60 3.90 17.20 4.60 0.90 8.40 8.20 + 1978 2 9.60 0.32 8.64 6.30 4.48 0.96 0.00 0.43 0.00 0.21 1.28 0.00 0.53 0.00 0.00 0.00 0.00 0.00 0.11 1.39 0.85 18.03 6.62 6.62 11.10 3.41 4.16 0.85 -99.99 -99.99 -99.99 + 1978 3 6.53 3.37 0.59 0.00 0.00 10.00 17.32 0.00 3.46 0.40 4.85 5.44 13.66 9.60 4.06 0.79 0.10 1.19 17.42 3.96 5.74 12.47 7.42 11.09 11.78 12.47 1.88 8.41 8.12 0.40 2.97 + 1978 4 5.08 0.60 0.00 0.00 0.00 0.00 0.00 0.20 1.59 0.80 3.09 1.79 1.99 0.20 0.70 0.10 0.30 0.20 1.20 0.80 0.00 0.00 0.00 0.20 0.50 1.40 6.08 4.29 0.50 0.10 -99.99 + 1978 5 0.00 0.39 1.38 0.69 1.08 0.00 0.00 0.00 0.00 1.28 2.86 0.79 1.48 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.69 0.89 0.89 0.00 0.10 0.20 0.00 0.00 0.00 0.00 0.30 + 1978 6 0.30 0.00 0.00 8.40 1.10 3.40 0.70 1.00 0.40 0.00 0.00 0.00 0.00 0.70 1.40 0.00 0.00 0.30 0.10 4.60 6.90 13.90 1.50 1.30 0.10 0.20 5.50 0.70 3.00 2.90 -99.99 + 1978 7 5.79 2.20 8.99 3.00 0.00 0.60 1.40 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.10 0.50 0.70 1.40 6.79 15.08 2.70 1.80 17.48 1.50 7.99 0.00 0.00 2.00 0.90 + 1978 8 0.90 6.79 2.00 0.70 1.10 8.29 1.60 2.40 0.50 0.00 6.39 3.20 5.29 12.79 3.30 1.90 0.20 2.90 4.30 9.59 16.68 0.10 0.30 0.20 0.00 0.00 0.10 0.10 0.10 6.29 0.60 + 1978 9 0.00 2.85 0.57 0.19 7.98 1.80 1.52 8.36 35.62 11.78 0.19 16.43 9.69 8.64 1.42 1.52 0.76 0.57 0.38 0.09 7.22 2.28 6.55 6.08 15.86 3.32 14.82 25.36 5.41 1.90 -99.99 + 1978 10 5.81 3.31 2.71 4.41 2.81 0.10 1.00 2.91 2.01 2.01 1.10 0.20 0.00 5.51 6.62 3.01 0.40 0.20 2.71 0.90 3.11 0.10 12.13 1.00 8.72 0.00 0.00 0.20 1.20 2.71 3.01 + 1978 11 6.60 2.80 8.60 4.40 0.00 0.00 3.50 0.00 0.70 3.20 0.40 17.99 27.19 29.29 18.19 9.60 11.79 2.20 5.20 11.69 11.09 9.60 6.00 3.80 1.50 0.10 0.00 0.00 7.00 1.00 -99.99 + 1978 12 5.80 7.01 8.81 8.91 0.00 0.00 15.81 14.71 5.20 4.40 9.11 4.60 0.40 0.30 0.70 0.00 0.10 0.40 0.10 2.60 4.60 1.10 0.10 10.01 9.11 3.10 10.91 4.30 3.00 1.40 2.40 + 1979 1 9.30 3.49 2.71 1.55 5.14 8.14 6.10 6.98 10.85 1.07 2.03 1.07 1.26 8.04 4.55 0.58 0.19 0.19 11.82 5.33 0.00 0.00 1.55 2.23 1.65 1.16 1.55 4.36 0.48 5.04 4.07 + 1979 2 0.20 4.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.40 0.90 0.80 0.10 0.20 0.90 0.20 0.40 3.30 1.90 0.00 0.00 2.10 3.40 8.70 2.90 -99.99 -99.99 -99.99 + 1979 3 18.00 16.30 5.40 3.00 4.50 14.40 1.70 21.40 5.90 12.90 7.60 1.20 0.70 0.30 1.40 0.30 0.80 0.20 0.00 3.70 3.50 0.40 0.00 20.70 12.20 2.60 0.30 2.30 0.50 1.50 1.30 + 1979 4 3.51 0.30 1.40 0.90 0.00 1.60 2.01 0.50 5.21 12.83 6.62 8.52 0.20 3.11 0.00 0.00 0.00 1.00 3.61 2.81 1.50 12.83 4.51 0.80 0.10 0.00 0.80 0.60 2.61 0.30 -99.99 + 1979 5 0.39 0.39 0.30 0.69 1.38 1.67 0.39 0.30 0.00 6.88 1.08 1.38 0.10 4.43 1.57 8.26 4.92 0.59 0.49 1.28 2.56 2.46 2.75 1.38 1.28 1.87 4.13 7.08 1.57 3.74 0.10 + 1979 6 0.00 0.00 0.88 1.66 0.10 7.21 4.48 3.12 0.00 0.10 0.10 4.09 2.92 2.43 0.19 0.00 0.00 0.00 0.00 3.21 4.48 7.01 2.24 0.97 1.27 0.00 5.16 2.05 2.24 0.00 -99.99 + 1979 7 0.09 0.19 0.00 0.00 0.00 4.78 0.66 8.24 0.19 0.00 0.00 3.18 0.47 1.12 8.61 3.46 5.06 0.56 1.59 2.25 0.37 0.19 0.75 6.65 5.34 1.69 1.78 12.08 1.59 7.68 2.34 + 1979 8 0.68 0.19 0.19 4.07 24.12 20.83 0.39 6.20 0.00 1.45 3.49 17.05 14.53 3.88 5.04 8.82 1.45 0.29 1.84 8.14 5.43 9.30 1.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 13.76 + 1979 9 12.83 5.23 0.86 0.38 0.86 0.76 3.23 3.33 0.76 4.28 3.04 2.85 2.38 0.29 0.00 7.98 14.35 0.48 9.60 2.38 0.57 10.36 1.14 15.21 7.51 3.14 1.14 0.00 0.00 0.19 -99.99 + 1979 10 0.90 1.50 17.79 8.49 0.00 3.20 3.60 5.60 0.40 4.50 7.80 0.00 12.79 6.30 1.00 0.80 11.29 17.19 2.70 1.20 0.00 0.80 0.00 1.70 6.50 0.60 3.70 2.40 11.29 25.48 7.20 + 1979 11 2.74 22.21 13.31 12.82 9.20 1.76 7.24 9.98 1.47 9.98 11.94 0.00 5.09 3.13 1.08 2.45 14.97 2.54 0.20 3.33 4.11 5.58 5.58 22.79 29.55 1.17 5.19 7.63 5.28 7.83 -99.99 + 1979 12 9.20 5.90 8.30 8.40 2.10 12.09 34.18 9.60 15.89 2.80 0.50 10.19 0.60 0.50 2.60 10.09 12.29 0.70 0.00 0.30 0.10 0.10 1.10 0.20 11.29 28.19 1.50 3.70 0.60 0.30 0.30 + 1980 1 0.00 7.20 22.80 6.00 0.90 0.10 0.00 0.40 4.10 2.00 0.40 0.10 5.00 0.00 0.00 0.00 0.00 0.00 4.40 2.90 8.50 1.20 1.00 0.10 0.00 0.00 8.10 2.70 10.20 3.30 1.00 + 1980 2 5.01 0.90 0.60 7.71 1.60 0.70 8.91 2.50 7.21 1.70 13.11 11.01 0.70 7.61 0.40 2.50 1.60 9.51 2.10 3.80 7.81 0.60 0.00 0.00 0.00 0.00 0.30 0.20 0.00 -99.99 -99.99 + 1980 3 0.20 0.20 0.00 3.89 2.50 6.99 1.00 1.30 4.49 2.79 8.28 0.30 0.60 0.00 0.00 12.48 3.89 0.40 0.20 5.49 3.59 1.10 5.99 9.88 4.19 5.69 2.20 2.59 0.00 3.59 5.99 + 1980 4 2.20 0.80 0.00 0.00 0.00 0.10 0.20 0.00 0.00 0.00 0.00 0.00 1.90 3.50 0.00 0.60 0.00 0.00 0.00 0.00 0.30 0.40 0.00 0.00 0.00 0.00 0.60 0.00 0.30 0.10 -99.99 + 1980 5 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.40 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.02 2.91 0.00 0.00 0.00 2.41 1.61 0.40 1.81 1.00 0.90 1.51 2.41 + 1980 6 0.10 8.03 0.80 7.22 10.43 1.91 9.23 0.70 0.80 0.80 2.01 0.10 0.60 23.47 2.31 5.12 0.10 7.42 11.03 2.21 2.71 5.22 6.42 2.71 5.12 0.00 4.21 1.50 1.10 3.61 -99.99 + 1980 7 0.00 0.80 10.21 4.30 0.50 0.10 0.10 1.20 0.00 0.50 1.70 1.60 0.30 1.30 0.20 0.90 14.41 4.90 4.90 0.00 7.21 17.01 4.60 1.10 12.21 17.41 0.10 0.10 0.00 15.81 0.10 + 1980 8 0.60 9.90 7.20 10.80 0.40 0.30 3.70 0.00 0.60 5.50 10.70 0.30 7.10 13.60 0.70 3.70 2.90 0.60 14.30 6.60 0.10 0.00 0.00 0.40 0.00 0.00 3.10 5.70 40.60 0.30 0.20 + 1980 9 2.20 3.60 2.50 8.99 6.69 9.29 4.00 2.90 6.49 8.29 24.37 7.39 13.88 4.40 5.69 4.50 4.79 7.09 0.70 0.10 0.70 5.29 4.50 1.80 8.69 20.38 0.30 2.40 4.10 5.09 -99.99 + 1980 10 0.50 1.60 16.78 1.40 10.09 28.57 9.09 3.70 1.20 0.20 0.00 0.30 1.80 0.40 0.80 2.10 0.10 5.89 0.10 8.09 14.48 14.68 28.67 5.79 3.00 7.49 1.20 6.39 0.00 0.70 0.00 + 1980 11 0.40 0.00 0.00 0.30 1.40 1.10 0.60 0.30 0.00 0.80 0.00 2.40 21.56 6.39 8.78 13.67 4.39 9.58 13.07 12.17 10.58 1.60 7.09 13.87 4.39 6.99 3.19 0.30 0.00 0.50 -99.99 + 1980 12 3.30 0.20 0.40 1.20 0.70 0.00 0.20 0.80 23.61 15.51 5.60 19.51 16.31 12.51 0.60 9.50 11.11 3.90 10.10 1.20 4.10 10.50 17.61 9.80 10.70 1.10 2.90 3.50 3.20 11.11 6.60 + 1981 1 18.20 17.90 2.90 0.10 6.00 2.50 1.00 6.20 1.10 0.30 5.80 0.30 17.60 5.00 0.90 17.20 0.70 10.30 2.10 5.10 1.70 2.30 2.10 2.00 5.50 0.60 0.00 1.90 1.20 0.00 0.10 + 1981 2 5.99 26.47 5.79 1.40 2.80 8.89 8.09 0.70 0.30 0.30 3.20 3.90 0.00 0.30 0.60 0.00 0.00 0.00 0.10 0.30 3.00 0.10 0.00 0.00 0.00 0.00 4.49 3.50 -99.99 -99.99 -99.99 + 1981 3 6.40 1.10 0.10 0.00 18.29 16.99 13.49 1.50 11.99 15.69 2.50 0.20 0.30 2.60 0.40 0.00 3.10 1.60 6.40 6.70 4.70 0.40 8.09 15.99 7.00 1.20 6.50 7.70 0.00 0.00 0.00 + 1981 4 0.00 0.00 0.00 0.00 0.00 0.40 1.20 0.00 0.00 2.80 2.20 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.00 7.20 0.40 0.00 1.50 0.70 3.80 0.10 -99.99 + 1981 5 0.00 9.20 6.20 0.80 4.70 5.40 9.30 0.00 3.60 1.10 0.00 3.90 0.80 0.60 1.70 4.70 0.90 7.20 0.10 7.50 0.80 6.20 3.80 0.50 0.00 1.30 5.60 0.20 1.10 1.20 3.80 + 1981 6 0.20 11.10 8.40 4.10 5.80 2.90 10.70 11.60 2.00 7.40 0.90 10.90 12.70 0.90 1.90 0.80 0.40 3.10 0.10 0.00 0.10 0.20 0.20 0.90 0.10 0.20 0.00 0.00 1.50 2.80 -99.99 + 1981 7 2.30 1.90 0.60 2.10 9.62 4.11 0.10 0.80 0.00 14.63 2.10 0.00 0.60 0.50 3.81 3.21 5.11 1.80 2.30 1.10 19.44 9.72 0.30 2.30 1.80 0.20 2.10 1.80 0.00 0.00 0.00 + 1981 8 0.00 2.81 6.92 0.00 0.10 0.00 0.20 1.60 0.00 0.90 1.20 1.20 1.20 0.10 0.60 0.30 3.71 3.11 9.62 0.40 0.40 0.00 0.50 3.21 0.10 0.00 0.00 0.00 0.40 0.00 0.00 + 1981 9 0.00 0.00 6.80 17.01 0.80 0.10 2.10 0.40 2.90 13.91 0.30 0.50 0.00 18.91 0.70 17.01 21.81 3.90 23.11 6.80 2.40 2.20 32.91 3.40 7.40 42.92 11.40 3.20 3.60 4.60 -99.99 + 1981 10 32.15 14.52 8.61 2.50 0.90 8.21 6.41 19.63 9.71 4.61 2.60 1.90 1.30 0.60 1.80 0.70 0.50 14.42 2.00 1.00 0.10 0.90 3.61 3.71 0.10 9.41 7.51 13.42 11.82 6.31 7.31 + 1981 11 18.30 6.70 8.50 0.00 0.00 0.00 0.00 1.30 7.70 10.60 0.80 1.00 1.00 0.80 9.10 6.20 5.20 8.30 15.10 4.10 12.60 13.50 3.90 3.30 10.80 14.70 6.80 1.10 12.90 3.00 -99.99 + 1981 12 0.10 0.60 7.69 0.70 1.00 0.60 0.10 0.00 0.10 0.00 0.10 0.40 8.19 2.00 0.00 0.00 0.00 0.00 9.98 11.38 0.80 0.00 0.10 0.70 0.90 0.00 2.10 0.60 1.90 6.09 0.20 + 1982 1 1.87 29.53 29.86 13.39 6.04 0.00 0.00 0.55 0.00 0.00 0.00 0.11 0.00 0.00 0.66 1.21 1.10 3.51 5.16 7.46 12.29 4.61 0.66 1.54 14.16 0.33 3.29 4.17 3.62 3.29 1.10 + 1982 2 6.01 0.00 0.20 7.91 6.11 4.70 6.81 15.81 8.61 4.30 2.60 8.31 2.90 0.00 0.00 0.00 0.30 1.00 0.00 0.10 2.70 0.10 0.20 8.41 8.81 1.70 2.50 12.91 -99.99 -99.99 -99.99 + 1982 3 8.40 16.30 5.50 0.00 8.80 4.90 5.90 4.00 24.90 6.80 20.60 4.30 5.20 6.90 10.60 5.80 0.20 0.00 3.70 4.80 2.30 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.60 + 1982 4 1.10 0.20 5.10 2.20 3.30 6.40 3.00 0.60 1.00 0.00 0.00 0.00 0.20 0.10 0.30 0.00 0.00 0.00 0.00 0.00 0.30 3.20 0.20 0.00 0.00 0.00 0.00 0.60 0.90 4.10 -99.99 + 1982 5 4.00 28.87 5.09 2.00 7.89 0.30 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 2.30 0.20 0.80 1.00 0.20 0.00 11.19 5.99 2.30 2.60 2.40 1.10 3.70 0.30 0.00 0.00 0.90 + 1982 6 0.00 0.00 0.20 0.00 1.60 7.51 0.00 0.00 3.10 2.70 20.72 0.30 0.50 0.00 14.92 0.00 0.00 0.00 1.20 0.60 0.00 1.00 0.00 2.50 12.11 4.00 8.41 4.10 0.40 6.61 -99.99 + 1982 7 0.80 2.80 1.20 4.90 3.60 1.10 0.50 2.70 0.90 0.60 0.20 0.70 0.20 9.90 8.40 0.90 0.10 0.00 0.00 0.00 0.00 0.00 0.00 2.20 0.00 0.00 0.00 0.00 0.00 0.00 7.10 + 1982 8 3.20 0.10 0.00 0.50 2.80 0.70 2.10 1.60 0.80 0.90 3.60 4.20 1.80 0.00 7.29 5.60 15.19 9.09 9.49 2.40 9.79 4.30 9.99 6.99 5.50 2.30 0.00 12.99 8.99 0.10 0.60 + 1982 9 0.10 0.30 2.10 21.71 6.00 8.00 3.80 1.10 6.90 8.70 3.80 1.20 0.10 0.00 0.90 0.10 0.20 1.80 9.81 9.81 0.80 5.50 3.20 23.31 8.20 11.91 25.51 9.61 2.40 9.10 -99.99 + 1982 10 21.08 0.19 3.63 6.49 1.43 0.67 0.95 0.00 1.53 2.48 1.34 12.12 4.96 0.00 4.39 8.01 17.36 6.77 16.12 4.10 1.72 1.53 3.34 1.91 3.72 3.43 0.00 0.19 14.79 23.75 6.11 + 1982 11 1.50 0.20 0.70 1.80 26.41 5.70 7.00 1.70 8.70 12.61 16.41 3.30 11.61 2.70 13.01 11.41 14.41 14.11 8.00 9.60 6.90 12.81 19.81 8.20 0.60 0.40 2.90 0.30 0.00 0.00 -99.99 + 1982 12 0.00 0.00 1.10 11.31 2.60 0.10 22.11 4.30 9.90 0.60 0.20 0.20 1.90 12.31 11.71 10.30 2.80 28.51 18.31 10.61 1.20 0.90 10.51 1.80 4.60 6.00 5.20 1.60 3.30 8.70 15.71 + 1983 1 11.57 15.50 8.99 11.26 14.88 6.51 5.99 9.40 2.58 3.82 15.29 7.03 10.54 3.82 1.34 4.44 9.20 2.38 0.93 3.31 1.24 0.10 10.44 0.72 1.65 9.61 8.89 9.51 6.51 6.10 22.32 + 1983 2 0.20 3.11 0.00 17.74 2.81 0.00 1.20 0.50 3.81 0.00 0.30 0.30 0.10 0.30 0.00 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.50 8.92 6.81 0.70 -99.99 -99.99 -99.99 + 1983 3 4.81 17.03 1.50 1.20 5.31 0.90 0.00 0.00 0.10 1.60 1.60 5.11 7.61 1.00 8.22 6.01 4.91 17.53 9.62 11.72 9.62 6.01 4.51 3.91 0.30 4.91 0.10 3.71 9.62 6.61 1.90 + 1983 4 0.80 0.10 5.10 3.20 0.90 0.20 1.50 0.30 0.30 0.40 0.20 1.90 0.80 0.10 4.00 8.60 1.40 1.90 1.70 2.10 0.00 5.50 3.60 1.60 0.10 0.50 0.90 1.80 0.30 0.00 -99.99 + 1983 5 0.80 1.20 0.00 0.00 21.72 4.50 2.10 6.81 3.00 9.21 5.61 9.71 7.91 2.40 2.20 2.30 1.90 0.50 2.70 5.51 2.40 0.80 0.00 0.80 0.10 0.00 2.80 0.80 0.70 2.40 0.70 + 1983 6 18.20 1.40 9.70 5.20 0.10 0.00 0.80 4.80 0.20 10.10 0.60 1.60 9.30 3.00 2.50 3.40 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.40 0.40 4.70 0.00 0.00 -99.99 + 1983 7 15.90 2.10 0.00 1.10 0.20 1.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.10 0.00 0.20 0.00 0.50 0.00 0.00 0.00 0.60 4.40 5.60 0.10 0.10 0.30 0.20 2.30 0.20 + 1983 8 0.90 0.80 6.77 0.00 0.10 0.10 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.10 2.79 0.10 7.36 0.10 0.00 1.59 1.29 4.38 9.45 0.00 0.00 0.20 0.00 0.00 0.00 0.00 3.58 + 1983 9 3.00 18.00 1.20 9.00 5.50 0.30 4.10 12.90 11.50 3.00 0.00 0.00 3.50 11.90 11.10 2.60 8.70 10.50 13.60 5.40 1.90 11.90 0.60 0.10 0.10 0.90 0.30 0.90 5.10 2.10 -99.99 + 1983 10 6.01 5.31 16.52 17.02 8.01 8.41 13.32 10.11 13.02 13.92 21.23 8.21 4.91 14.32 20.12 11.41 12.21 13.02 1.10 0.00 0.00 3.50 3.60 1.10 4.00 2.90 3.20 0.20 4.41 1.40 4.71 + 1983 11 1.92 2.12 0.30 0.10 0.30 0.61 0.51 0.30 0.00 0.20 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.71 2.43 0.00 0.00 1.52 0.51 6.16 7.38 6.97 3.84 1.62 0.00 0.71 -99.99 + 1983 12 0.70 0.90 1.80 6.60 0.20 0.10 6.60 6.10 0.30 0.00 5.70 14.81 19.91 1.40 0.00 3.30 8.40 0.70 2.10 5.10 0.30 6.80 7.80 14.31 6.20 10.91 14.11 2.50 4.30 10.61 15.61 + 1984 1 9.95 15.81 1.68 8.27 3.56 6.91 1.89 0.10 3.56 11.10 11.83 28.69 14.77 11.94 9.22 20.11 9.84 2.30 0.00 0.00 13.30 7.23 15.81 4.40 3.04 2.20 0.94 7.23 1.99 5.55 1.68 + 1984 2 14.62 7.51 12.92 20.43 14.62 11.82 13.42 0.30 0.70 1.60 0.90 0.00 0.60 0.10 0.00 4.21 1.40 0.20 0.30 2.90 5.41 0.80 3.61 1.40 0.50 0.00 0.00 1.20 0.90 -99.99 -99.99 + 1984 3 10.98 0.10 8.29 0.60 0.20 0.00 0.10 1.00 0.00 1.20 6.09 1.00 0.30 0.10 0.00 0.00 0.00 0.00 0.00 0.10 0.70 0.10 10.98 12.18 3.69 2.00 2.40 1.20 6.59 0.20 0.40 + 1984 4 0.00 0.00 0.00 0.30 0.00 0.40 0.00 0.00 1.00 7.30 1.90 0.60 0.40 1.60 1.50 0.10 10.10 12.40 1.90 4.20 1.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -99.99 + 1984 5 0.00 0.00 0.00 0.35 0.00 0.00 0.12 0.00 0.00 0.24 0.00 0.00 0.00 1.54 0.12 1.54 0.47 0.00 0.12 0.59 2.25 0.24 0.24 2.25 3.07 1.66 0.00 0.00 0.71 0.71 2.60 + 1984 6 7.81 0.00 6.81 2.20 5.01 0.70 0.00 0.00 0.00 0.00 1.10 4.11 2.30 0.10 0.00 2.91 0.10 0.10 0.60 1.50 11.82 0.50 2.80 3.01 0.80 1.90 0.10 0.00 0.00 0.00 -99.99 + 1984 7 0.10 0.00 0.00 0.00 0.00 1.10 0.00 0.00 0.30 2.81 3.51 0.50 0.70 0.70 0.00 0.60 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 16.14 4.41 0.20 4.81 1.20 + 1984 8 2.20 5.71 0.10 0.00 2.20 4.81 0.00 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.80 1.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.30 12.33 1.00 9.02 6.01 + 1984 9 24.93 6.11 3.81 0.10 0.00 0.00 0.10 9.71 1.80 1.80 0.70 4.81 12.92 0.50 1.00 3.30 0.20 3.91 3.00 9.41 7.51 6.21 1.50 0.10 0.00 6.01 13.52 5.21 12.12 6.11 -99.99 + 1984 10 1.20 3.40 11.29 0.20 0.70 1.30 6.39 2.10 1.00 5.60 0.40 12.19 5.89 1.40 0.00 3.60 23.58 18.68 12.49 6.29 26.68 2.50 4.40 35.27 2.40 1.40 6.09 12.59 12.69 5.79 1.70 + 1984 11 12.80 2.80 23.30 0.00 0.00 2.60 2.90 14.50 16.90 2.00 13.80 0.70 3.50 1.40 1.70 1.40 1.40 0.70 0.00 1.00 16.20 4.20 9.50 11.10 4.20 13.30 24.50 2.10 2.70 5.10 -99.99 + 1984 12 7.31 2.00 4.11 9.81 6.51 10.01 8.71 5.21 0.90 0.20 0.00 0.00 4.21 1.80 0.20 7.71 7.61 8.21 19.52 7.31 4.81 10.81 8.41 5.81 4.71 0.00 0.40 5.91 4.31 1.90 0.00 + 1985 1 0.20 0.00 0.00 0.50 0.00 0.10 0.20 0.40 0.00 0.00 0.00 0.00 0.60 0.60 0.50 4.79 2.80 0.00 0.20 1.50 16.27 0.80 0.50 1.30 0.10 0.10 8.19 3.59 0.30 11.58 6.19 + 1985 2 3.61 1.70 0.60 0.00 0.00 0.40 2.01 0.00 0.00 0.00 0.00 0.00 0.10 0.10 0.00 0.30 0.80 6.92 6.12 0.10 0.10 14.04 2.51 0.00 0.20 0.00 0.00 0.00 -99.99 -99.99 -99.99 + 1985 3 0.40 0.40 11.39 1.00 0.20 2.00 0.30 0.70 2.50 0.20 0.70 1.60 1.20 1.70 1.40 0.80 0.50 0.00 0.00 0.00 0.10 0.80 3.60 6.49 0.50 0.50 0.70 4.20 21.38 9.99 13.38 + 1985 4 14.44 5.97 5.28 7.37 3.48 1.59 1.49 1.00 0.40 8.66 2.09 6.67 4.08 1.79 3.98 1.49 0.00 1.99 0.40 0.10 0.10 0.00 0.00 0.30 0.40 1.79 0.10 9.66 1.39 2.89 -99.99 + 1985 5 0.30 0.00 0.00 0.00 2.20 0.90 0.00 0.10 0.60 0.30 0.00 0.00 0.00 7.20 2.70 0.20 0.90 5.50 0.10 0.00 0.00 0.00 15.10 4.50 11.60 0.90 1.50 0.60 0.00 0.00 0.00 + 1985 6 0.00 0.00 0.00 0.00 0.40 1.90 2.30 6.30 0.60 2.50 7.40 1.30 2.10 0.40 0.00 0.00 4.70 0.40 1.70 2.20 4.40 4.40 12.00 1.10 4.50 1.20 2.80 1.20 0.10 0.50 -99.99 + 1985 7 0.19 0.10 0.78 9.32 5.53 0.39 5.24 2.91 0.00 3.88 15.05 6.51 4.27 0.10 13.79 7.48 20.00 4.85 3.98 4.85 10.00 12.23 10.49 2.04 9.22 20.78 1.75 14.08 0.58 0.00 0.00 + 1985 8 22.50 8.20 6.80 0.80 0.20 1.20 2.90 6.70 2.30 2.10 12.30 6.30 4.80 24.20 23.30 4.20 2.60 7.10 6.20 11.80 10.40 1.90 23.40 6.60 0.70 14.00 17.90 1.60 3.10 3.70 17.00 + 1985 9 0.20 18.00 0.10 5.60 1.30 5.10 18.10 1.10 0.90 0.00 0.00 6.50 10.40 16.20 5.40 7.40 5.00 36.60 1.40 41.30 27.90 23.10 2.60 0.10 5.20 1.40 0.00 0.00 1.00 30.60 -99.99 + 1985 10 4.09 12.77 11.50 8.77 12.87 3.12 5.95 4.48 2.92 6.04 0.19 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.10 0.10 0.00 0.68 0.00 + 1985 11 1.30 1.00 1.20 16.94 2.61 11.33 5.71 11.33 6.72 0.70 0.10 0.00 2.31 7.42 10.33 1.70 0.00 0.00 0.10 0.30 0.40 0.20 0.10 0.30 0.00 0.00 1.80 1.80 0.00 32.18 -99.99 + 1985 12 8.69 10.39 4.30 1.80 3.90 10.49 17.48 3.30 0.40 2.90 2.50 11.79 0.30 3.00 2.50 4.70 8.19 6.89 14.98 31.27 4.20 4.20 3.80 0.40 1.70 0.00 0.10 0.30 0.80 12.09 12.19 + 1986 1 1.00 0.50 0.10 8.20 0.40 0.00 1.10 4.20 19.30 8.20 7.20 11.90 16.10 5.80 0.00 0.00 11.30 11.60 8.20 12.10 10.50 11.60 1.30 0.00 0.50 3.20 2.10 3.30 3.30 0.90 0.40 + 1986 2 0.18 0.54 0.54 0.00 1.61 1.52 0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.27 0.09 0.45 0.00 0.09 0.09 1.34 2.96 0.18 0.00 0.00 0.00 0.00 0.18 0.00 -99.99 -99.99 -99.99 + 1986 3 0.00 0.00 11.63 14.56 5.98 1.41 0.11 2.93 3.69 0.54 5.22 0.11 6.52 4.35 5.87 3.48 4.24 5.65 13.15 10.76 15.76 18.58 6.09 2.72 1.96 7.71 3.15 3.15 5.54 1.85 1.41 + 1986 4 1.15 1.25 0.10 0.31 0.00 0.42 0.21 0.00 0.42 0.00 0.10 0.83 2.61 2.61 6.36 1.67 0.10 0.83 17.62 0.83 1.15 4.17 2.19 0.10 0.42 1.98 4.28 3.75 17.62 2.40 -99.99 + 1986 5 0.00 1.20 4.60 2.20 9.70 10.99 14.59 1.00 17.39 9.50 6.50 11.99 5.10 3.30 1.10 0.40 19.19 1.00 1.00 8.40 7.50 5.10 2.30 9.99 11.09 13.99 4.70 1.50 0.10 6.00 4.10 + 1986 6 0.70 1.90 0.60 0.80 0.00 0.00 0.10 16.40 5.00 12.30 0.00 11.10 0.50 0.00 0.00 7.60 8.30 0.00 0.00 0.00 0.00 0.80 0.40 1.50 0.00 0.00 0.00 0.00 0.00 0.00 -99.99 + 1986 7 0.31 0.62 3.59 1.64 0.62 0.31 2.97 0.00 0.31 0.10 0.00 0.00 0.51 3.59 1.23 1.74 0.72 0.92 4.00 0.41 0.82 0.10 0.00 5.44 1.13 6.87 7.90 17.23 0.51 19.49 0.82 + 1986 8 15.37 4.63 2.07 3.35 13.10 13.00 1.67 0.00 0.00 0.00 0.00 3.64 21.87 12.41 6.11 0.30 0.99 2.56 0.89 0.00 3.25 0.00 0.00 0.00 5.71 0.89 0.49 0.00 0.10 0.00 6.70 + 1986 9 0.20 17.20 0.00 0.90 6.20 0.10 0.00 0.00 0.00 0.00 0.60 0.00 0.10 0.10 0.00 0.20 0.10 0.00 0.50 1.30 6.60 0.50 0.00 0.00 1.50 1.70 4.20 3.10 0.20 0.60 -99.99 + 1986 10 3.86 0.00 0.29 0.87 1.55 4.83 0.19 6.18 0.68 0.58 0.00 0.00 0.77 0.77 0.10 0.00 3.38 10.14 13.42 15.16 12.65 12.26 2.32 20.95 0.77 23.27 6.95 9.85 15.16 6.86 0.39 + 1986 11 0.00 6.54 1.44 18.86 1.06 13.57 13.09 12.22 14.24 2.60 2.79 1.83 6.35 11.26 20.21 4.43 8.47 3.08 3.75 3.95 9.43 17.51 4.04 39.93 3.75 4.62 0.38 1.44 1.35 4.91 -99.99 + 1986 12 6.80 26.81 10.80 24.61 3.00 5.90 10.40 14.51 2.00 15.31 2.40 10.40 1.80 16.11 4.40 10.20 15.51 8.50 7.10 0.00 0.00 0.00 2.00 8.70 2.30 5.10 6.10 16.21 13.00 21.91 6.90 + 1987 1 12.88 0.00 11.78 7.89 2.90 0.00 0.00 0.00 0.00 0.30 0.50 4.39 1.40 0.70 0.30 0.00 0.80 9.59 16.38 1.30 0.80 0.00 0.00 0.00 0.10 0.10 0.40 0.00 0.00 0.00 0.00 + 1987 2 4.30 3.30 0.00 10.70 9.10 1.00 6.80 0.40 20.60 1.30 0.70 0.00 0.00 0.00 0.00 0.00 0.00 1.60 0.30 0.00 0.00 0.40 0.00 0.00 1.80 12.80 5.80 4.20 -99.99 -99.99 -99.99 + 1987 3 22.20 0.00 5.20 3.10 12.00 5.10 6.40 0.00 0.00 0.00 0.00 0.00 3.90 1.90 0.40 10.30 3.10 1.10 0.50 0.60 1.90 0.90 0.00 13.60 3.50 25.90 12.80 0.20 1.10 3.60 5.40 + 1987 4 5.26 0.10 0.31 0.10 4.23 0.72 5.57 4.13 3.20 13.83 0.10 5.16 0.21 0.10 0.10 0.00 0.10 2.27 9.39 1.45 0.00 0.52 0.00 0.00 0.00 0.10 0.00 0.00 0.21 6.81 -99.99 + 1987 5 7.92 1.10 0.00 0.00 0.00 0.00 0.00 0.00 0.20 6.32 4.81 1.10 6.02 1.60 0.00 5.52 1.81 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 22.37 1.60 4.31 + 1987 6 0.10 8.19 1.80 0.20 27.47 11.29 1.30 0.40 0.10 3.10 3.70 2.50 1.30 5.10 1.30 0.10 0.00 0.00 0.00 0.10 13.99 3.40 3.50 0.00 0.20 0.30 11.99 1.00 0.50 3.40 -99.99 + 1987 7 0.30 0.00 0.70 0.30 0.60 0.00 0.40 0.10 17.42 22.52 1.40 0.80 0.00 2.50 7.41 3.00 3.00 3.70 1.70 0.10 0.00 0.00 0.90 0.10 4.50 11.61 0.70 2.50 1.20 3.60 2.10 + 1987 8 0.19 0.48 1.16 0.10 0.19 0.77 0.10 0.10 0.00 0.29 5.50 17.95 2.22 1.25 26.92 12.26 3.96 0.00 8.49 22.87 0.00 0.77 1.16 0.00 1.93 0.97 1.16 3.86 0.29 0.00 11.97 + 1987 9 0.09 0.74 2.23 10.57 2.97 5.66 2.78 4.17 16.69 5.38 15.39 4.36 2.41 6.86 1.48 0.28 1.76 0.00 8.53 10.75 15.02 4.82 3.80 2.23 0.93 0.74 0.09 0.00 0.00 0.28 -99.99 + 1987 10 0.00 0.00 0.00 1.07 15.34 3.91 16.60 3.61 2.34 0.10 5.47 3.42 3.42 1.76 11.14 12.99 15.43 4.69 13.28 7.23 14.46 2.25 0.10 2.15 5.08 7.23 4.49 0.00 0.00 1.95 0.20 + 1987 11 0.28 0.00 0.00 0.00 0.00 0.00 1.86 3.35 4.65 9.49 10.42 13.30 0.74 10.42 10.98 4.74 3.07 11.16 4.84 1.12 3.16 1.02 0.65 0.37 0.19 0.37 0.09 2.33 1.40 0.00 -99.99 + 1987 12 0.00 0.00 0.00 0.00 0.00 0.28 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 4.38 4.29 5.13 4.29 20.61 10.63 3.08 0.09 0.75 4.20 15.01 5.03 23.03 16.32 4.38 12.96 8.86 + 1988 1 17.48 7.26 6.11 3.26 4.11 0.84 4.42 7.79 6.74 7.90 14.63 10.74 0.84 4.53 1.26 4.00 2.74 19.05 5.05 4.84 6.21 4.32 15.90 2.74 6.32 0.21 0.00 3.79 1.89 10.95 17.69 + 1988 2 19.32 16.68 4.37 0.71 2.95 2.03 14.44 10.48 17.49 2.95 2.54 5.80 5.59 8.44 14.75 0.61 2.03 0.61 1.22 0.71 0.51 0.61 0.00 0.10 0.81 0.81 0.10 0.10 0.00 -99.99 -99.99 + 1988 3 0.00 7.24 0.00 0.00 2.35 0.61 0.92 1.53 2.35 2.65 5.92 5.10 0.10 7.45 25.71 0.10 0.00 26.02 0.20 1.94 0.41 11.22 10.41 10.10 11.84 0.82 12.04 5.61 6.94 2.55 3.47 + 1988 4 4.94 0.20 0.00 0.00 0.00 0.00 2.17 2.07 1.78 3.75 1.68 0.49 0.00 4.05 11.07 5.34 10.08 22.53 0.30 4.74 0.59 0.20 0.00 0.20 1.38 0.30 0.00 0.00 0.00 4.94 -99.99 + 1988 5 3.73 2.07 6.22 0.83 0.31 0.00 0.62 1.45 0.00 0.00 0.62 1.24 0.31 0.00 0.00 0.00 0.31 0.83 0.21 0.10 0.00 0.00 10.88 7.87 0.00 5.08 0.00 0.10 12.95 1.04 1.04 + 1988 6 1.31 4.85 3.34 0.20 0.30 9.50 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.20 0.00 0.10 0.30 1.21 1.31 0.00 0.00 0.20 3.03 0.00 0.00 0.00 0.20 2.22 -99.99 + 1988 7 3.95 5.82 0.83 2.91 3.12 4.15 6.75 4.57 24.30 5.82 2.80 11.32 4.36 0.83 1.45 13.09 1.14 4.47 0.52 4.78 8.62 12.77 11.11 10.39 11.11 5.19 4.67 11.53 6.75 3.12 1.87 + 1988 8 0.95 1.69 0.53 0.63 4.97 1.06 0.00 7.93 1.06 6.35 18.30 4.34 23.70 5.40 0.21 0.00 21.79 9.42 10.16 0.53 0.00 0.63 4.02 7.62 2.01 11.00 1.38 9.10 6.03 9.10 7.19 + 1988 9 13.81 12.25 2.49 17.44 0.00 19.21 5.50 1.56 1.14 1.87 10.07 0.93 0.21 0.00 0.00 0.00 0.21 0.93 0.10 0.42 3.53 19.93 9.55 0.52 15.47 3.84 6.96 3.53 0.52 0.21 -99.99 + 1988 10 9.67 6.56 6.45 7.42 11.61 22.25 4.19 9.24 4.19 0.00 1.83 3.01 1.40 0.00 0.00 0.00 0.00 25.36 13.65 5.16 4.41 2.04 7.95 7.20 27.51 0.54 1.07 0.11 0.00 0.00 0.00 + 1988 11 0.00 0.00 0.00 3.76 0.00 0.42 0.10 14.43 12.13 5.33 0.84 4.50 1.57 0.10 0.00 1.88 6.06 0.10 9.83 0.10 0.31 0.10 1.67 1.36 0.00 0.00 11.40 0.21 20.39 2.20 -99.99 + 1988 12 0.00 0.73 24.23 6.06 3.45 0.31 2.82 6.27 5.33 1.36 0.00 0.31 0.10 0.21 1.88 0.63 3.55 19.42 3.55 3.03 6.16 9.71 5.01 4.70 15.35 8.77 2.09 0.42 0.10 0.84 0.21 + 1989 1 0.30 0.10 7.96 8.36 13.70 0.91 2.02 11.89 2.22 5.04 24.08 4.84 15.42 4.63 0.60 2.42 1.31 0.00 0.30 11.59 2.32 6.05 0.71 3.73 5.84 5.64 17.13 0.20 0.30 0.30 0.00 + 1989 2 2.19 11.85 14.48 15.36 2.63 9.76 2.52 0.22 6.69 3.29 18.32 8.23 9.00 16.02 2.30 1.43 6.69 11.41 6.69 9.10 5.81 5.70 2.63 8.78 1.21 2.19 5.05 5.05 -99.99 -99.99 -99.99 + 1989 3 0.50 3.23 1.41 2.42 3.13 4.13 0.20 13.91 20.77 0.91 1.31 11.80 6.75 6.55 1.31 0.10 7.86 11.90 13.61 7.26 13.31 9.48 17.14 8.57 5.44 1.92 6.55 0.50 14.42 0.40 0.40 + 1989 4 0.60 0.90 0.40 2.31 4.31 6.92 3.81 1.60 5.72 3.81 13.44 1.30 9.93 1.70 0.20 0.40 0.00 0.00 0.10 0.10 3.41 0.50 0.20 0.30 0.60 2.01 0.10 1.60 0.30 5.31 -99.99 + 1989 5 0.70 4.39 0.50 0.00 0.00 0.00 0.00 0.30 0.30 3.49 8.28 0.30 0.00 0.10 5.39 0.40 2.69 3.09 0.10 0.00 0.00 0.00 0.40 5.69 0.00 0.00 0.00 0.00 0.10 0.40 2.49 + 1989 6 0.30 1.41 0.00 0.40 2.21 1.81 0.70 0.10 0.70 1.71 1.61 20.83 5.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 1.11 18.62 0.91 4.63 6.54 0.91 10.06 -99.99 + 1989 7 0.20 0.00 0.00 0.00 0.00 0.40 0.00 0.00 1.89 2.28 0.70 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.60 0.20 0.30 0.10 0.00 0.00 12.61 4.47 9.73 8.54 1.79 0.20 0.20 + 1989 8 0.88 0.88 1.07 1.46 6.54 1.07 2.83 9.18 5.08 17.67 2.25 17.47 7.61 17.18 4.39 7.03 8.20 1.76 18.94 13.86 1.76 0.49 7.71 7.22 5.76 2.73 0.00 3.42 3.32 14.25 0.98 + 1989 9 1.82 0.00 0.61 0.30 0.30 0.81 1.72 0.00 0.00 0.00 0.00 1.42 4.45 0.61 12.84 0.20 5.97 6.17 10.82 19.61 4.45 6.88 0.00 0.00 1.42 1.92 0.00 0.00 0.00 0.00 -99.99 + 1989 10 0.00 0.00 0.00 8.74 5.43 2.51 1.11 0.20 0.70 1.11 2.21 4.72 8.54 1.00 11.36 4.42 10.45 3.12 10.15 10.15 2.11 1.11 5.23 15.48 9.35 3.72 18.09 4.12 5.93 8.74 4.32 + 1989 11 6.16 5.55 8.18 5.65 0.30 3.03 2.93 1.11 5.15 7.57 0.91 3.84 0.10 0.00 0.00 0.00 1.11 0.71 0.00 0.00 0.00 0.00 0.40 0.91 0.00 0.00 0.00 0.00 0.00 0.00 -99.99 + 1989 12 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.10 2.91 43.29 5.11 0.10 1.40 4.71 4.61 6.31 10.02 13.53 1.80 0.00 0.00 0.00 0.00 0.00 3.51 + 1990 1 3.20 5.90 6.40 3.90 5.50 4.50 5.40 3.30 17.50 2.30 3.20 1.80 4.80 17.90 10.00 18.40 13.20 9.90 7.20 1.10 8.50 15.90 10.50 14.30 19.50 10.90 0.20 6.40 8.30 10.40 7.50 + 1990 2 10.64 8.15 8.55 7.95 9.54 16.80 6.76 5.87 2.49 11.63 18.29 5.07 12.03 5.77 0.99 10.34 12.53 9.35 4.67 3.78 1.69 0.20 18.39 24.46 22.07 8.05 5.47 7.06 -99.99 -99.99 -99.99 + 1990 3 2.50 1.00 6.41 5.31 19.22 14.02 8.51 19.12 20.52 10.11 1.90 3.80 5.41 11.51 3.60 1.20 0.70 6.21 1.50 7.81 7.41 3.10 5.61 5.01 0.10 0.00 0.70 1.10 0.10 0.00 0.00 + 1990 4 12.61 2.20 0.30 0.70 2.40 0.90 0.00 1.40 5.41 1.90 1.00 8.01 2.30 7.71 7.11 7.91 5.71 9.01 2.40 0.10 0.00 0.00 0.00 0.00 4.81 0.10 3.10 0.70 0.00 0.00 -99.99 + 1990 5 0.00 0.00 0.00 0.00 0.80 3.90 4.60 4.90 5.40 2.30 0.00 0.00 0.00 6.90 9.00 12.00 0.00 0.00 0.00 0.20 0.30 1.10 0.10 0.20 0.00 0.00 0.00 1.00 1.60 0.00 8.20 + 1990 6 3.71 1.30 4.21 4.21 5.31 24.74 6.61 2.40 0.70 0.90 0.00 0.00 0.00 0.00 0.00 0.10 1.00 6.01 0.80 7.21 3.31 1.90 0.60 8.41 0.20 17.03 1.40 1.90 5.31 11.82 -99.99 + 1990 7 1.20 0.80 5.79 14.38 0.00 8.39 10.09 6.49 1.80 2.30 0.10 2.80 0.00 0.30 5.99 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.69 0.90 3.59 0.40 0.00 + 1990 8 0.00 0.00 0.49 1.86 0.10 2.35 0.59 10.79 3.83 2.94 7.26 3.83 1.67 12.95 24.91 1.28 0.00 1.28 2.75 0.10 3.14 0.69 4.12 1.57 2.94 2.94 3.04 6.67 5.98 5.39 1.96 + 1990 9 3.91 5.11 1.40 1.30 8.22 9.82 0.40 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.51 15.63 16.73 1.60 8.02 3.91 0.40 1.40 1.90 0.00 0.00 0.30 10.12 4.91 0.30 -99.99 + 1990 10 7.70 33.01 8.80 11.60 31.21 17.31 0.20 2.20 8.00 7.80 7.20 0.50 1.70 5.40 15.91 3.20 16.91 0.10 0.10 0.10 0.00 0.00 0.10 2.60 4.70 2.70 11.00 13.81 15.31 10.10 0.70 + 1990 11 0.30 0.10 0.00 0.00 0.00 0.10 0.10 0.00 1.30 1.60 3.20 5.91 2.10 4.51 7.91 6.01 7.71 6.01 2.10 0.70 0.00 1.40 10.52 1.00 2.90 0.00 0.00 0.00 0.00 0.10 -99.99 + 1990 12 0.00 0.85 0.11 0.11 0.21 13.42 3.06 5.92 0.63 1.27 5.60 0.00 0.00 0.00 0.11 0.21 0.00 0.85 12.68 2.11 12.57 26.73 6.02 19.12 20.71 16.90 5.49 16.06 4.75 2.32 3.70 + 1991 1 31.13 6.12 8.16 16.74 14.49 8.05 9.55 5.15 10.09 5.69 4.51 0.00 0.21 0.00 0.00 0.75 0.97 8.48 5.37 3.54 0.32 1.29 1.61 0.00 0.11 0.64 0.00 2.15 3.65 0.32 0.11 + 1991 2 0.10 0.00 2.45 0.00 0.00 0.41 0.92 1.33 1.53 0.10 4.29 0.00 0.00 10.94 0.00 0.00 0.20 0.00 6.85 2.56 12.17 18.61 15.74 0.92 2.35 3.88 5.73 0.41 -99.99 -99.99 -99.99 + 1991 3 0.10 4.34 1.09 14.31 0.49 0.69 1.28 6.71 2.27 0.49 1.18 3.95 2.86 1.38 7.60 7.89 1.97 41.24 4.74 7.40 0.30 0.89 0.00 0.00 0.00 0.00 0.00 0.00 0.30 1.58 10.06 + 1991 4 27.48 3.33 8.29 6.26 3.13 13.44 5.46 0.71 20.71 6.37 12.23 16.07 0.00 0.00 0.00 0.00 0.61 0.30 0.40 2.22 0.51 0.30 1.21 1.01 0.00 0.00 0.00 1.52 4.65 0.00 -99.99 + 1991 5 0.00 0.30 1.70 0.00 0.10 1.70 0.00 0.30 0.00 1.00 0.60 6.80 2.00 0.00 0.00 0.30 0.10 1.70 1.60 1.10 0.60 0.10 0.80 0.00 0.40 0.10 0.00 0.00 0.00 0.00 0.00 + 1991 6 11.28 2.26 0.69 0.00 0.00 0.00 0.00 11.38 11.08 0.88 9.22 12.65 5.20 0.59 4.32 0.78 1.27 1.77 0.98 0.98 3.43 2.94 1.86 5.20 3.04 0.39 2.35 0.10 9.42 2.84 -99.99 + 1991 7 9.35 0.00 0.00 0.00 0.00 0.00 6.64 13.68 0.30 0.40 7.84 8.55 1.91 6.74 9.35 1.21 3.32 2.41 1.51 1.11 0.10 5.53 3.62 0.91 0.10 0.30 1.31 1.41 0.00 0.00 2.01 + 1991 8 0.90 0.50 1.11 5.73 2.41 0.70 0.20 20.30 1.61 0.80 2.01 0.50 0.80 0.80 1.11 6.23 1.31 5.02 0.20 0.10 3.01 2.71 2.21 0.10 0.00 0.00 0.20 0.00 0.00 0.00 0.00 + 1991 9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.04 5.11 4.07 8.55 4.17 3.65 2.40 4.69 0.63 25.65 12.72 22.10 8.34 0.31 0.00 0.73 0.21 1.67 11.68 -99.99 + 1991 10 6.07 10.34 5.27 15.72 3.98 10.94 11.34 0.10 0.30 0.10 0.00 0.10 0.00 0.10 19.30 10.74 2.79 0.00 0.50 1.19 0.10 0.10 0.10 0.10 0.60 0.30 0.00 0.10 16.81 14.92 17.90 + 1991 11 17.70 19.59 5.06 0.53 3.27 19.80 18.22 3.48 1.79 27.07 4.95 32.97 2.21 0.00 0.42 1.69 8.43 4.21 1.16 4.53 4.32 2.32 2.21 8.95 2.84 1.58 8.32 5.16 1.16 1.26 -99.99 + 1991 12 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31 1.64 1.13 1.43 2.25 5.63 16.17 21.18 10.64 15.66 25.18 33.36 2.15 0.31 6.55 0.41 0.92 0.72 0.61 2.56 17.40 + 1992 1 14.36 29.87 11.75 1.25 2.89 10.69 50.58 8.57 0.10 0.48 0.10 0.19 0.10 0.00 0.39 0.00 0.00 0.58 1.45 0.10 0.00 0.00 0.00 5.30 0.39 0.00 0.00 0.00 0.00 0.00 0.67 + 1992 2 0.90 10.52 12.62 2.60 0.20 0.10 5.21 5.61 7.51 2.30 0.20 9.72 6.91 9.62 3.71 1.30 10.02 0.00 0.20 3.21 19.13 19.73 7.81 2.60 4.51 6.91 2.70 2.70 14.22 -99.99 -99.99 + 1992 3 4.56 5.72 4.45 6.04 5.51 20.14 4.77 7.74 21.31 6.15 17.91 12.83 3.18 2.23 1.59 0.85 9.54 6.78 6.25 5.72 7.21 3.39 1.17 2.12 2.54 0.32 0.11 6.15 6.68 5.19 14.95 + 1992 4 1.81 0.00 0.00 3.62 5.13 0.30 0.30 0.00 0.60 1.11 2.71 3.32 5.13 5.93 0.30 2.61 8.95 0.40 0.40 3.32 0.20 3.22 9.75 7.44 11.26 8.55 4.63 3.72 8.35 6.23 -99.99 + 1992 5 1.39 0.60 0.70 4.97 5.77 6.56 6.26 5.96 2.09 2.78 16.40 2.09 0.00 0.20 0.00 0.00 0.00 0.00 0.40 7.65 1.09 0.00 0.00 0.00 0.40 0.00 0.00 1.19 0.00 0.20 0.70 + 1992 6 4.83 0.60 0.00 0.20 0.10 0.00 0.00 5.63 5.43 0.00 0.00 0.00 3.22 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 2.92 1.31 0.70 1.01 0.10 4.52 5.63 -99.99 + 1992 7 0.00 10.03 7.72 0.00 0.10 0.30 1.20 0.00 0.00 4.41 5.62 1.81 1.00 0.10 3.51 4.71 9.03 1.60 2.81 3.11 1.10 1.40 16.85 1.20 4.71 12.84 1.20 0.00 0.10 0.00 8.72 + 1992 8 1.10 20.28 6.59 17.48 1.70 0.00 0.00 10.59 7.99 5.40 15.39 15.69 0.30 3.10 10.49 11.59 1.20 1.50 0.20 1.20 2.40 22.68 4.40 9.19 5.69 11.29 7.79 1.30 12.29 13.59 3.40 + 1992 9 8.30 4.40 1.30 0.80 8.40 25.61 8.30 8.90 4.30 6.50 11.31 8.20 8.20 11.71 1.40 0.70 0.50 0.30 5.00 8.70 3.20 0.30 2.20 14.81 0.20 8.00 1.50 0.10 14.91 1.10 -99.99 + 1992 10 1.77 16.06 0.73 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.61 3.44 0.00 0.00 1.56 0.10 0.10 0.10 3.44 5.63 6.57 5.42 1.04 13.76 12.41 7.19 0.00 1.77 26.17 + 1992 11 28.72 9.16 6.01 4.48 0.19 8.87 0.10 14.03 10.02 8.30 8.11 1.62 0.00 5.34 3.63 1.24 3.24 8.78 4.48 3.63 13.17 11.45 4.96 7.63 5.15 10.02 18.32 1.24 4.48 10.11 -99.99 + 1992 12 24.16 8.15 7.76 4.67 4.37 14.02 0.89 2.09 0.10 6.76 3.48 4.08 2.19 0.40 5.07 0.80 23.56 2.78 0.80 0.10 1.09 0.00 0.60 0.30 3.38 0.10 0.00 0.00 0.00 0.10 0.00 + 1993 1 6.75 1.01 16.52 10.47 2.42 0.30 11.08 20.85 9.77 13.09 15.00 6.45 9.26 19.84 15.81 8.46 8.36 14.50 16.92 7.55 9.97 8.76 29.20 6.75 1.71 1.11 9.06 1.81 1.01 2.11 0.00 + 1993 2 1.93 0.32 0.54 0.11 3.54 1.39 0.11 0.21 0.00 0.43 0.00 0.00 0.43 5.04 1.39 0.21 0.75 5.14 0.21 1.50 0.43 0.32 1.18 6.96 5.68 0.75 0.11 0.32 -99.99 -99.99 -99.99 + 1993 3 0.30 0.41 0.61 1.01 0.10 0.10 0.20 0.00 0.20 5.27 1.22 6.49 0.91 1.62 5.27 19.68 13.29 2.43 0.91 6.70 0.51 9.23 3.75 0.41 0.00 1.72 3.35 2.84 27.29 2.74 1.12 + 1993 4 0.39 0.10 14.70 11.15 16.67 1.48 1.18 16.48 11.44 0.10 0.20 0.99 1.38 0.00 4.24 4.54 11.05 17.36 7.60 10.16 2.66 4.74 3.06 0.10 5.43 0.00 0.00 0.00 0.00 0.20 -99.99 + 1993 5 0.29 0.59 0.00 0.00 0.00 0.20 9.02 0.10 0.00 0.59 0.00 0.59 18.14 14.22 4.41 20.00 15.29 0.39 1.86 3.43 0.10 0.10 0.10 0.00 0.00 0.00 0.00 1.57 7.65 11.27 0.29 + 1993 6 12.97 2.05 0.20 0.98 0.00 0.00 0.39 0.00 6.83 7.71 3.22 0.00 5.56 0.10 0.88 2.34 7.80 3.71 2.54 0.59 0.98 0.00 0.10 0.00 12.09 0.20 0.00 0.00 0.00 0.10 -99.99 + 1993 7 0.41 7.67 3.38 0.92 1.33 1.13 4.81 9.10 2.05 0.92 0.82 0.20 1.94 6.34 14.22 6.14 0.31 1.74 3.07 0.41 0.92 6.85 2.86 3.48 4.60 1.43 2.76 9.10 2.15 4.60 1.84 + 1993 8 5.18 13.87 2.93 4.59 0.59 6.35 2.15 5.37 1.56 8.30 3.52 0.39 0.78 5.27 0.78 0.20 0.59 1.37 0.10 0.29 0.49 0.29 0.68 0.10 0.00 0.00 0.00 0.39 0.39 0.00 0.00 + 1993 9 0.00 0.00 0.00 0.00 0.00 0.00 0.19 16.17 2.01 13.01 1.34 0.10 1.53 1.44 0.38 0.10 0.48 3.92 14.16 2.39 1.34 1.91 4.69 1.82 0.19 0.19 0.00 0.57 2.39 2.77 -99.99 + 1993 10 7.18 1.97 7.87 0.30 13.47 4.92 6.20 2.75 9.24 0.10 0.20 0.10 0.00 0.59 0.49 0.39 0.00 0.79 7.67 1.08 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.10 0.00 + 1993 11 0.00 0.10 7.92 0.20 0.30 6.04 7.62 14.36 6.54 0.89 5.54 8.22 2.77 0.00 10.40 0.69 0.00 0.00 0.00 0.30 0.10 0.00 0.00 0.89 5.45 0.10 0.00 0.10 14.95 7.23 -99.99 + 1993 12 13.34 15.15 24.78 6.32 2.91 15.95 11.34 22.47 8.43 8.53 2.31 15.75 1.40 18.26 10.33 1.71 8.13 22.88 2.31 2.11 8.23 4.82 5.12 1.20 0.70 0.90 6.92 14.65 7.42 3.81 2.21 + 1994 1 8.71 1.39 11.39 4.06 13.37 2.08 0.69 3.27 5.35 0.20 11.29 8.02 15.25 3.86 0.20 0.00 4.55 11.98 7.03 6.44 4.16 14.45 2.48 14.06 9.21 17.42 3.17 4.75 7.43 1.98 20.20 + 1994 2 12.10 0.10 5.70 6.40 6.40 4.00 1.80 8.00 0.50 3.20 0.00 0.00 0.10 0.00 1.00 0.00 0.20 0.70 0.00 0.00 0.10 1.20 2.50 1.20 9.20 11.20 13.60 2.20 -99.99 -99.99 -99.99 + 1994 3 4.09 9.77 6.08 15.46 7.88 9.77 16.15 9.87 5.38 5.68 5.48 16.25 14.96 4.09 8.87 5.78 3.49 2.19 1.50 0.30 13.36 19.54 12.16 3.59 0.40 0.90 10.87 6.98 3.69 11.07 6.08 + 1994 4 5.38 5.48 18.63 8.97 4.48 9.57 6.18 8.97 2.99 0.10 2.59 0.20 0.00 0.00 0.00 0.20 0.20 1.69 0.50 0.00 6.28 5.08 4.58 2.29 6.38 0.90 2.79 5.18 2.09 0.10 -99.99 + 1994 5 1.01 0.71 8.48 6.87 8.48 2.73 0.50 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.20 0.00 0.50 0.61 + 1994 6 0.20 7.51 5.14 1.38 1.88 3.46 1.68 3.46 1.68 0.00 0.00 0.00 0.00 0.30 4.45 4.55 10.77 11.76 2.87 9.98 3.16 0.99 6.72 8.00 0.49 5.24 1.48 2.67 0.30 0.00 -99.99 + 1994 7 0.00 0.00 1.37 10.80 0.39 6.87 0.79 0.00 11.78 6.28 5.99 2.75 0.00 2.55 0.00 0.00 0.00 0.00 0.00 1.37 1.47 0.00 1.37 8.74 9.32 1.96 0.10 0.00 0.39 0.98 15.12 + 1994 8 0.88 7.35 11.17 2.06 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.88 7.35 0.39 3.72 1.18 0.78 0.00 19.20 7.93 6.46 3.62 5.97 12.34 12.14 0.69 0.29 0.10 + 1994 9 0.00 0.40 11.39 1.68 2.28 2.08 4.76 5.85 10.20 8.42 4.36 4.06 1.19 0.00 0.10 0.00 0.00 3.17 3.86 0.30 0.00 0.10 0.00 0.20 0.69 1.39 0.69 1.98 0.89 4.46 -99.99 + 1994 10 7.34 6.12 0.41 2.14 1.43 4.08 0.71 0.10 0.20 0.00 0.00 0.00 0.00 0.00 0.51 0.00 0.00 0.00 7.44 4.99 4.49 12.74 2.65 9.68 4.69 3.57 2.55 2.14 7.65 9.58 4.79 + 1994 11 0.50 6.62 10.03 2.11 1.81 0.90 0.30 7.93 5.42 2.81 4.52 16.76 19.67 23.28 7.53 8.33 15.25 21.67 5.92 3.41 1.61 4.72 1.00 0.60 3.11 1.30 0.20 0.10 0.20 0.10 -99.99 + 1994 12 1.38 4.43 5.02 5.61 12.41 10.54 16.45 5.52 10.93 55.36 37.33 2.96 0.20 0.30 3.94 2.27 8.77 10.05 6.80 0.00 0.30 1.58 7.19 2.66 10.05 7.49 10.24 14.97 9.85 4.83 0.49 + 1995 1 0.71 0.91 2.22 9.60 3.64 6.36 5.76 16.77 9.60 6.36 0.30 0.81 1.31 3.54 13.74 14.55 14.85 3.94 8.38 3.54 18.89 8.89 3.33 2.32 1.52 0.81 11.01 2.83 0.51 25.15 7.98 + 1995 2 1.89 14.33 7.46 2.49 8.06 4.18 0.00 0.00 1.29 4.68 14.93 5.17 9.55 11.34 4.98 8.46 3.68 15.23 9.25 5.08 17.02 12.04 1.19 3.48 1.39 6.77 9.95 19.30 -99.99 -99.99 -99.99 + 1995 3 7.76 2.39 1.19 13.92 2.19 7.66 2.59 1.79 9.74 9.15 0.60 0.80 2.68 7.06 8.55 15.41 7.46 7.66 2.29 0.00 0.00 0.00 5.97 13.03 7.06 6.56 3.28 1.89 4.77 3.58 1.59 + 1995 4 0.20 1.21 3.12 15.09 3.92 0.80 0.30 0.00 2.01 0.00 1.01 0.00 0.00 0.00 0.00 1.81 5.13 0.60 1.01 0.80 0.80 5.33 3.32 2.11 0.00 0.00 0.00 0.00 0.50 0.20 -99.99 + 1995 5 1.92 1.01 0.00 0.00 0.00 1.11 0.61 0.61 2.63 0.00 2.63 2.42 1.11 0.20 0.20 0.81 1.31 3.54 1.92 0.10 1.72 1.41 0.10 13.74 2.63 4.55 12.22 4.44 4.75 0.91 1.31 + 1995 6 1.34 4.40 2.39 0.29 1.15 0.86 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.84 1.34 4.59 15.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -99.99 + 1995 7 0.00 0.76 0.47 0.38 6.82 2.37 0.00 2.18 0.00 1.04 15.81 0.00 1.33 11.17 3.41 4.17 3.31 0.57 9.37 12.69 0.76 4.35 2.08 0.47 0.00 1.99 0.00 3.22 0.00 0.00 1.89 + 1995 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.20 2.89 0.60 0.00 0.00 0.00 0.00 1.50 0.00 0.00 0.50 1.00 2.89 8.27 6.28 2.49 0.60 2.19 0.50 0.10 0.00 + 1995 9 7.86 12.44 2.09 8.76 2.09 1.29 7.96 0.60 0.20 0.60 1.19 5.17 1.29 0.00 0.00 0.00 0.60 0.00 0.00 0.30 1.29 1.19 20.59 3.58 10.35 9.15 2.79 1.69 0.00 13.73 -99.99 + 1995 10 8.50 18.78 6.03 12.46 17.80 8.70 6.53 0.69 2.27 0.49 9.69 20.56 0.79 3.06 1.68 22.74 2.37 2.37 6.62 0.00 25.31 23.53 0.99 20.17 25.11 21.75 2.77 0.49 2.47 2.08 1.98 + 1995 11 0.00 0.00 0.00 0.00 0.00 1.99 1.78 1.26 4.81 0.42 12.35 0.10 0.00 1.99 14.33 0.10 0.00 0.42 0.00 5.02 3.24 3.14 15.90 13.08 6.91 0.52 0.31 0.10 0.31 0.10 -99.99 + 1995 12 0.43 4.46 3.30 0.11 0.85 1.49 0.53 0.00 0.00 0.00 0.00 0.00 0.21 0.21 0.85 0.11 0.11 0.53 0.00 0.00 11.37 8.72 3.83 2.02 0.00 0.00 0.00 0.00 0.00 0.11 8.08 + 1996 1 7.08 1.18 11.78 15.52 6.61 8.93 3.80 14.16 5.03 0.20 9.68 11.37 9.39 5.20 0.52 0.67 0.63 3.61 1.29 0.08 0.30 0.02 0.00 0.00 0.09 4.41 3.97 0.00 0.00 0.00 0.00 + 1996 2 0.00 0.00 0.00 9.11 23.54 6.50 4.55 9.45 12.80 7.50 26.60 1.04 0.02 0.00 2.84 4.23 18.26 1.27 1.00 1.22 4.10 0.82 5.92 11.13 0.34 0.29 0.00 0.00 0.00 -99.99 -99.99 + 1996 3 0.00 0.00 0.00 0.00 0.00 0.15 0.00 2.79 1.15 0.39 27.23 17.71 0.06 0.03 7.79 15.02 0.14 0.02 0.00 0.11 0.46 0.39 0.00 0.00 0.04 0.00 1.38 0.02 0.00 0.00 0.03 + 1996 4 0.23 0.57 0.00 0.06 0.00 0.00 0.41 1.00 3.19 4.48 2.88 3.33 5.59 4.55 8.18 15.47 15.86 7.39 2.32 5.17 11.13 5.49 2.14 3.52 3.31 3.98 0.02 1.90 5.33 13.38 -99.99 + 1996 5 1.65 0.00 0.11 0.29 2.57 2.16 0.07 0.00 0.00 0.49 0.48 0.32 0.00 0.00 0.00 0.00 0.33 1.25 6.09 2.96 8.85 8.61 3.01 1.50 0.67 6.82 0.06 10.56 3.19 6.17 0.00 + 1996 6 3.90 0.52 8.20 5.46 2.05 0.00 0.00 1.87 10.35 4.90 11.37 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.73 0.06 8.28 1.56 0.52 2.89 -99.99 + 1996 7 3.11 14.44 7.48 3.23 0.16 0.43 0.16 1.52 0.06 0.41 1.62 0.06 1.44 0.00 0.00 0.00 0.00 0.00 0.00 0.06 9.75 13.86 1.46 0.06 3.53 0.27 0.00 11.60 0.21 0.66 2.27 + 1996 8 1.31 0.00 0.00 0.00 4.43 4.84 0.00 4.55 6.96 1.15 0.06 0.00 0.00 0.00 1.02 0.26 0.06 0.00 1.64 12.51 6.47 10.59 0.06 2.72 5.89 5.73 1.10 0.00 0.25 0.09 0.00 + 1996 9 3.86 0.06 0.00 0.00 0.03 0.06 0.00 0.06 0.00 0.07 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.49 0.00 1.09 4.68 1.12 8.06 5.03 27.99 3.46 1.65 -99.99 + 1996 10 1.01 1.99 19.88 2.61 1.84 0.28 1.10 0.53 3.06 0.39 44.62 8.67 0.79 20.25 19.66 8.15 5.17 9.16 1.64 3.86 1.71 0.07 1.65 19.34 11.24 20.38 22.02 15.93 0.58 12.58 2.97 + 1996 11 8.39 13.64 14.64 6.23 25.79 9.70 0.45 5.39 0.97 0.22 5.83 0.07 3.85 0.21 2.02 4.46 0.67 0.06 2.39 0.52 5.63 0.71 1.31 23.42 0.44 0.28 1.45 20.36 9.16 2.81 -99.99 + 1996 12 14.34 5.98 21.39 0.39 0.12 0.00 8.88 1.38 0.46 0.00 0.02 0.43 0.57 1.21 1.75 1.27 8.49 24.83 1.06 0.00 0.00 0.00 0.00 0.02 0.31 5.03 0.32 0.10 0.44 1.47 0.77 + 1997 1 0.79 1.00 0.17 0.11 0.00 0.07 0.00 0.04 0.00 2.39 8.61 1.26 1.14 0.41 0.13 1.21 6.02 2.19 0.21 0.06 0.00 0.06 1.98 2.78 0.54 0.12 0.03 0.11 0.00 0.00 0.17 + 1997 2 4.73 0.74 30.13 0.41 3.50 3.91 0.45 16.62 18.39 11.64 10.16 10.58 1.75 0.99 5.91 15.44 28.82 14.05 19.47 18.46 0.30 13.70 13.15 4.07 1.48 7.01 19.09 6.43 -99.99 -99.99 -99.99 + 1997 3 12.41 1.61 0.06 0.34 3.15 3.86 7.82 0.06 0.02 0.00 0.48 1.57 5.79 3.36 3.13 2.12 3.89 5.91 0.86 0.06 0.00 14.93 4.80 0.51 6.45 5.04 10.62 0.65 0.00 0.00 0.12 + 1997 4 0.00 2.89 1.18 6.72 0.82 1.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.23 0.00 0.29 0.50 0.03 22.07 0.45 0.18 0.74 8.26 3.69 0.00 0.00 -99.99 + 1997 5 0.06 0.00 13.86 19.95 3.44 1.16 3.88 0.34 0.06 14.75 7.90 8.36 2.90 0.00 0.00 6.58 0.65 3.15 7.38 2.72 0.00 0.00 0.00 0.00 0.15 0.00 0.06 0.00 0.00 0.00 0.00 + 1997 6 0.06 0.00 0.00 0.00 4.36 2.97 3.04 0.55 2.90 7.01 9.27 4.93 8.57 0.35 0.06 0.00 2.30 9.54 9.30 6.44 2.76 0.65 0.00 5.28 2.22 1.96 1.56 1.31 0.00 5.93 -99.99 + 1997 7 4.75 4.21 4.02 0.00 0.14 1.93 1.01 0.00 0.00 1.25 1.44 3.44 1.64 2.21 3.17 0.00 0.00 0.00 0.00 10.59 0.00 0.34 8.57 5.09 0.85 10.20 6.62 0.71 8.96 7.62 4.36 + 1997 8 0.72 0.00 0.00 0.00 0.00 0.00 0.00 1.98 0.15 0.09 0.75 0.00 3.16 0.24 0.06 1.17 0.15 0.00 1.32 1.84 3.24 0.00 4.01 0.42 2.15 1.79 7.42 3.58 2.32 0.04 10.18 + 1997 9 1.21 32.20 15.59 4.77 0.23 3.19 0.51 0.00 0.00 0.00 4.21 4.20 4.91 10.88 19.96 24.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.46 0.13 1.14 -99.99 + 1997 10 0.00 0.00 0.03 0.69 2.65 7.04 0.48 3.93 18.96 1.66 0.00 0.31 0.22 9.29 12.41 20.72 3.42 0.13 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.24 1.37 0.16 + 1997 11 0.71 2.37 0.00 0.66 12.79 1.08 3.35 5.04 5.84 6.23 8.28 5.75 0.87 3.94 4.80 7.76 24.61 5.85 6.96 18.47 3.56 3.50 11.48 4.74 1.77 0.83 0.43 3.57 0.76 0.00 -99.99 + 1997 12 0.10 0.04 0.21 0.58 18.33 3.91 9.38 10.28 18.16 20.28 3.33 2.15 0.18 0.12 0.95 0.00 0.58 13.86 4.58 0.34 0.20 4.71 9.94 21.20 17.48 2.50 8.09 0.48 4.36 15.98 1.12 + 1998 1 18.73 13.84 8.47 8.31 0.25 10.25 2.77 15.62 2.57 0.53 1.73 0.72 17.40 6.90 1.67 4.56 6.87 2.33 0.17 4.82 1.36 7.63 0.62 0.08 0.00 0.06 0.00 0.00 0.06 0.17 1.32 + 1998 2 0.33 0.47 2.84 1.39 0.43 10.29 2.19 5.58 10.28 19.47 22.01 0.30 1.85 8.01 4.40 0.31 0.07 0.49 1.91 6.05 3.22 4.29 0.40 0.00 0.82 3.90 7.21 4.47 -99.99 -99.99 -99.99 + 1998 3 8.15 13.38 1.78 1.71 2.86 20.85 2.07 0.03 1.48 18.39 0.29 1.28 0.00 0.00 0.09 0.75 0.37 0.07 0.00 0.00 0.00 0.00 6.78 0.16 15.94 5.33 0.76 0.09 16.37 0.40 0.00 + 1998 4 1.36 12.62 4.76 4.25 1.10 5.53 9.16 13.35 0.50 0.16 0.25 0.11 0.40 0.17 0.10 0.57 0.00 0.00 4.51 0.59 11.73 10.38 0.06 4.77 7.66 4.57 1.79 0.99 2.56 0.00 -99.99 + 1998 5 0.00 0.00 0.06 3.32 4.91 13.54 5.99 0.23 0.06 0.00 2.04 0.00 0.00 0.76 0.00 0.06 0.00 0.00 0.00 0.27 0.05 0.06 0.00 0.13 0.15 0.34 1.96 8.19 12.87 5.08 3.71 + 1998 6 0.24 3.85 0.13 0.00 2.59 6.08 1.75 20.59 8.35 14.99 0.75 0.00 1.37 0.82 6.24 0.83 0.00 2.64 0.00 0.04 0.92 7.07 20.38 3.27 5.12 12.65 2.81 0.08 1.70 0.00 -99.99 + 1998 7 0.00 0.00 0.00 0.72 0.00 0.00 0.56 8.27 0.10 9.82 8.76 18.66 0.08 1.25 0.44 9.82 5.65 3.01 31.78 4.08 9.67 10.83 0.59 0.34 4.08 7.11 1.58 5.23 2.51 1.73 4.39 + 1998 8 0.00 17.98 3.83 1.84 7.32 3.14 15.16 1.34 0.00 0.10 6.27 1.04 6.44 7.36 1.79 21.66 0.28 0.00 4.46 15.85 1.20 0.63 4.22 0.00 2.51 0.00 0.09 0.00 0.06 0.00 10.38 + 1998 9 15.86 2.55 0.00 0.00 0.00 1.77 15.47 15.64 12.93 1.68 6.24 1.82 0.00 0.18 0.85 0.00 8.69 0.14 0.00 0.06 0.06 0.12 0.00 0.06 0.00 0.00 4.41 0.03 0.07 3.61 -99.99 + 1998 10 0.05 0.05 0.02 0.94 0.61 0.26 0.06 1.35 14.43 2.73 3.75 9.22 6.34 9.23 16.03 20.73 2.54 3.19 1.38 51.27 8.02 32.73 12.92 20.89 5.00 23.83 14.42 14.59 5.33 1.62 0.35 + 1998 11 1.22 29.48 0.55 2.61 4.68 1.07 7.29 15.07 6.85 3.42 7.74 8.43 0.82 0.24 0.00 0.00 1.44 1.19 2.15 4.85 21.23 3.29 15.23 0.77 16.64 3.93 24.69 2.45 0.76 1.21 -99.99 + 1998 12 1.23 0.80 0.19 0.54 0.00 0.39 10.52 3.31 2.01 8.81 11.86 5.58 18.06 6.46 1.22 0.54 9.96 4.55 0.06 0.00 1.87 8.88 0.82 13.95 4.05 20.18 3.63 0.55 5.42 1.22 2.30 + 1999 1 16.86 10.72 12.49 11.43 21.82 1.30 6.80 0.20 0.06 0.06 13.42 0.93 7.70 14.13 16.22 0.80 3.33 21.44 3.87 2.92 0.82 9.67 8.55 28.93 4.52 1.04 6.63 2.70 1.09 0.26 0.04 + 1999 2 0.00 0.95 7.02 3.09 0.46 0.66 0.00 0.00 0.00 0.09 0.04 0.83 3.42 0.98 2.19 2.79 6.44 10.71 2.68 9.08 6.73 0.00 0.56 0.39 1.20 1.22 13.29 10.68 -99.99 -99.99 -99.99 + 1999 3 4.42 11.10 1.70 0.20 0.08 0.23 0.03 0.20 0.42 0.00 3.38 1.37 0.18 1.77 4.21 0.27 2.46 0.54 0.43 14.68 0.53 8.39 3.70 1.05 0.16 0.08 0.00 43.57 0.97 0.27 0.61 + 1999 4 0.00 1.10 2.96 3.72 12.67 5.08 1.64 0.34 2.92 1.48 20.96 4.63 1.59 2.59 3.76 0.00 4.25 2.63 1.56 20.23 16.46 5.31 0.24 0.04 0.00 0.00 0.00 0.00 0.00 0.00 -99.99 + 1999 5 0.00 0.00 0.00 0.00 1.34 0.28 11.20 5.74 13.17 11.71 10.90 3.51 3.91 0.08 0.28 0.00 0.00 0.00 0.00 3.60 5.58 4.76 5.40 1.32 6.83 1.99 6.44 5.10 0.03 0.00 0.00 + 1999 6 0.08 18.02 2.64 3.04 2.53 0.87 2.86 0.03 0.00 0.00 0.17 4.24 2.56 0.48 1.53 2.90 0.00 1.75 27.95 0.75 0.11 0.04 0.00 0.00 0.00 16.49 0.56 5.03 1.21 0.48 -99.99 + 1999 7 2.37 7.28 5.11 0.17 0.14 0.99 2.70 0.08 2.69 3.27 0.00 0.49 4.30 0.37 12.83 4.74 0.98 7.32 14.18 4.51 1.77 0.00 0.24 0.12 0.08 0.08 0.00 0.00 0.08 0.00 0.00 + 1999 8 4.48 2.22 0.60 0.00 9.83 2.12 0.61 0.18 0.00 0.00 0.00 6.09 5.08 4.65 3.83 3.88 4.57 0.21 0.00 0.00 0.08 0.00 0.00 0.64 8.40 5.04 0.06 0.00 5.95 1.98 0.37 + 1999 9 0.35 0.10 1.34 0.63 3.54 17.99 2.78 11.42 0.00 2.26 11.38 2.08 2.52 0.00 6.47 11.72 5.64 4.08 23.49 11.34 1.67 6.03 11.57 3.86 0.31 0.95 3.76 12.20 3.29 6.77 -99.99 + 1999 10 6.63 0.96 0.38 0.08 0.00 4.09 2.97 3.58 1.03 6.32 1.09 0.03 0.37 0.12 0.00 1.46 0.00 0.37 0.37 0.15 15.59 5.29 8.72 3.53 0.00 0.22 6.09 0.37 1.60 6.02 15.18 + 1999 11 12.07 3.29 0.50 35.99 10.41 0.44 4.19 0.00 0.00 0.00 0.00 0.00 0.00 0.49 3.44 1.26 0.52 0.00 0.13 0.00 1.32 0.80 6.01 5.38 7.23 7.55 34.78 27.81 6.93 8.67 -99.99 + 1999 12 7.15 30.51 13.58 0.74 18.93 8.79 11.20 24.91 6.36 7.42 11.01 8.34 3.42 6.16 0.81 17.19 0.26 0.96 0.00 18.18 11.06 12.20 20.98 21.22 1.75 4.75 1.38 1.30 12.23 3.17 4.04 + 2000 1 0.36 8.37 1.28 11.18 8.94 7.31 9.36 2.41 0.14 5.99 15.19 1.51 0.06 0.00 0.08 0.00 0.00 0.00 2.02 0.00 0.33 0.00 0.15 0.00 0.15 0.27 5.01 16.61 3.75 12.60 23.70 + 2000 2 3.04 2.68 6.16 1.96 3.55 5.19 13.39 6.31 13.23 2.48 8.66 4.29 4.39 3.59 12.57 4.13 8.07 2.16 0.08 8.32 0.00 2.25 6.38 4.08 0.14 29.82 6.67 5.12 1.48 -99.99 -99.99 + 2000 3 8.72 19.75 0.49 0.19 3.62 7.41 5.97 16.85 2.23 0.93 0.08 1.20 2.12 0.31 0.43 0.08 0.00 0.48 0.06 0.08 0.65 0.00 23.08 2.80 1.04 0.25 0.00 0.00 0.64 0.49 3.20 + 2000 4 1.44 1.87 0.57 0.00 0.00 0.00 1.18 0.00 0.00 4.02 5.87 3.94 0.45 0.00 0.06 0.53 5.62 0.13 8.75 4.70 0.00 1.21 2.36 5.72 9.77 19.67 0.00 0.00 0.38 0.00 -99.99 + 2000 5 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 1.38 0.00 0.00 0.00 0.00 0.00 2.44 20.05 2.00 1.62 1.36 2.70 0.00 5.06 2.77 4.17 2.94 3.91 0.75 1.12 0.17 0.14 6.45 + 2000 6 3.62 3.19 6.31 0.14 3.05 2.37 7.31 0.75 9.13 5.77 1.49 5.75 0.00 0.00 0.00 0.00 0.00 0.00 0.36 12.83 5.45 5.66 0.90 1.61 0.00 0.00 0.00 0.17 0.00 0.00 -99.99 + 2000 7 0.00 0.06 0.00 0.00 9.91 0.17 0.41 8.03 9.56 0.12 0.00 0.85 0.33 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.38 3.05 2.45 3.88 14.15 + 2000 8 4.86 4.72 0.08 0.00 1.00 0.34 0.81 8.79 8.01 0.08 0.26 11.03 18.67 2.90 2.62 5.53 0.60 1.61 1.60 0.00 4.21 0.00 0.00 0.00 7.75 4.61 1.13 0.52 0.06 8.54 21.58 + 2000 9 3.47 0.06 0.00 15.35 10.69 7.64 1.58 2.09 3.55 28.52 2.58 0.08 3.63 2.81 2.09 0.62 11.93 1.96 32.22 2.14 10.67 2.54 1.48 16.99 1.46 8.57 20.43 9.91 5.66 0.56 -99.99 + 2000 10 4.46 8.19 7.66 13.15 0.20 5.15 6.56 2.35 24.03 6.56 1.27 0.29 3.32 0.00 3.92 2.26 20.22 3.26 2.80 4.94 0.08 9.77 11.63 46.13 4.66 11.57 0.86 14.72 4.09 0.67 8.47 + 2000 11 6.20 0.00 4.15 11.25 4.32 12.97 1.90 0.06 0.14 6.52 23.40 3.45 0.13 1.20 12.82 5.30 1.23 5.38 0.80 0.06 2.94 5.86 0.06 4.46 26.14 5.00 7.21 19.97 3.71 12.08 -99.99 + 2000 12 18.26 0.61 18.45 18.63 10.87 3.97 24.36 20.86 6.57 8.69 9.47 24.06 0.89 0.08 0.41 0.58 4.71 0.00 11.67 6.39 0.00 0.00 0.52 0.55 0.00 0.49 1.29 0.80 0.57 1.71 22.41 + 2001 1 7.20 1.62 6.76 0.44 2.65 7.70 2.02 0.22 0.13 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 7.89 3.03 14.61 14.84 1.99 4.07 3.69 1.90 2.74 2.80 4.56 0.35 + 2001 2 5.89 6.21 0.85 11.75 17.31 10.97 0.00 0.11 1.64 18.40 0.36 0.00 0.05 1.17 0.00 0.05 0.17 1.69 0.11 1.72 0.11 0.78 0.13 0.70 8.23 6.91 5.12 0.00 -99.99 -99.99 -99.99 + 2001 3 0.00 0.06 0.48 0.02 0.15 9.26 0.59 5.89 1.55 1.99 8.34 0.11 0.05 0.48 0.05 0.04 0.11 0.17 0.00 0.00 0.17 1.92 0.78 0.14 0.08 2.10 16.76 0.99 0.42 11.38 1.34 + 2001 4 1.58 1.66 1.43 0.88 7.40 11.94 0.68 1.20 5.74 0.18 0.00 0.00 0.56 1.10 0.14 0.20 2.46 0.05 0.09 0.00 9.01 11.72 0.40 2.75 2.13 0.21 7.53 5.90 3.17 0.09 -99.99 + 2001 5 0.00 0.63 0.13 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 1.08 1.96 12.32 1.83 1.97 0.21 0.09 0.00 0.00 0.00 0.00 0.00 3.94 0.50 0.42 1.92 5.74 3.93 0.80 + 2001 6 4.34 0.04 0.00 0.00 2.11 5.41 1.75 4.51 7.49 0.43 0.11 0.00 0.00 4.22 2.11 0.00 0.00 4.22 13.41 0.17 0.06 0.00 0.17 0.11 0.04 11.79 3.59 6.04 7.55 1.04 -99.99 + 2001 7 0.25 1.91 10.49 0.00 0.32 3.79 0.49 0.67 4.70 14.38 4.25 5.81 1.98 3.06 0.05 0.00 0.05 0.00 0.05 5.50 2.06 0.40 5.10 4.15 0.37 1.10 0.11 0.05 0.09 8.34 0.05 + 2001 8 7.84 3.41 0.17 2.92 0.30 1.34 5.51 3.09 1.73 3.05 7.45 6.98 10.60 10.97 5.56 6.32 0.00 4.86 12.39 2.06 4.50 0.00 0.05 0.45 3.14 0.12 0.00 0.06 7.41 3.20 0.00 + 2001 9 5.97 2.88 1.21 2.66 0.09 4.04 1.47 0.11 0.30 0.04 1.80 14.28 0.56 4.14 3.20 0.97 0.09 0.04 0.27 1.66 0.00 0.05 0.35 0.31 1.58 0.78 6.82 8.06 5.55 16.74 -99.99 + 2001 10 7.45 4.90 7.55 8.72 9.57 9.98 18.88 10.30 4.39 0.45 3.89 2.57 0.20 10.40 5.62 1.01 13.01 1.95 12.53 9.88 11.76 3.86 7.34 1.29 4.80 6.65 1.80 1.42 2.47 6.23 0.60 + 2001 11 0.00 1.16 1.97 2.68 10.56 2.68 7.70 0.83 1.97 0.91 10.99 0.59 1.35 0.41 0.63 0.99 2.77 4.27 1.77 6.23 10.02 0.61 1.49 5.51 3.49 10.56 7.85 12.88 10.37 9.61 -99.99 + 2001 12 4.82 0.53 18.52 18.25 6.28 11.17 1.28 0.05 0.00 0.00 0.00 0.16 0.04 0.00 0.09 0.17 0.09 0.60 0.57 1.42 1.62 2.51 4.20 2.82 0.22 4.20 7.67 0.26 1.80 0.23 1.26 + 2002 1 0.00 0.00 0.00 6.57 0.44 0.18 0.19 0.12 0.00 0.64 4.67 3.69 1.35 6.18 0.00 11.71 2.50 11.78 10.52 4.24 6.22 17.67 11.76 0.76 25.76 6.95 5.67 8.00 14.73 3.11 29.81 + 2002 2 17.23 7.29 6.27 16.19 6.92 10.78 5.18 13.71 5.49 22.62 1.30 2.44 0.00 0.08 0.00 0.28 1.20 9.88 23.82 1.99 14.12 9.66 5.90 9.24 16.77 14.96 16.55 0.61 -99.99 -99.99 -99.99 + 2002 3 0.24 0.83 0.16 0.00 12.93 2.74 0.06 6.81 22.30 4.79 0.27 0.08 0.00 1.44 12.13 4.70 2.60 0.08 2.23 9.75 5.12 0.40 0.00 3.80 0.39 0.00 0.00 0.08 0.00 2.52 5.13 + 2002 4 7.30 2.01 3.34 0.00 0.00 0.00 0.00 0.00 0.08 0.00 1.96 0.00 1.76 0.00 0.00 0.91 0.00 0.41 0.13 14.57 10.41 0.28 0.06 1.96 12.26 2.09 3.36 8.41 2.40 10.67 -99.99 + 2002 5 2.73 1.74 0.77 0.00 0.00 0.00 4.83 0.00 1.30 0.00 0.00 0.86 10.23 1.00 0.67 0.00 3.01 8.08 13.50 6.38 11.43 6.52 18.25 15.82 2.87 6.36 0.00 0.00 7.74 8.59 0.08 + 2002 6 6.45 7.12 3.57 1.50 0.28 0.00 0.85 7.03 17.09 12.81 6.26 15.17 12.40 9.62 7.96 11.96 0.08 1.66 0.14 2.50 5.37 2.61 0.32 1.61 0.82 1.63 0.00 0.33 2.16 15.87 -99.99 + 2002 7 3.88 3.29 0.48 3.56 1.77 1.93 4.88 0.65 4.60 1.60 4.00 3.20 0.00 1.00 0.76 0.00 0.00 3.96 4.51 5.62 1.34 6.54 0.87 1.38 0.08 0.06 0.20 8.27 10.66 11.31 1.70 + 2002 8 0.06 19.82 0.00 0.08 0.00 4.73 0.54 0.42 0.14 1.75 5.53 5.15 8.41 6.64 0.08 0.00 5.36 8.33 0.04 0.08 0.00 0.18 1.10 0.60 0.00 0.08 0.00 2.02 12.01 16.68 0.00 + 2002 9 0.00 0.00 0.00 0.79 6.04 5.54 17.38 4.39 20.32 0.76 0.08 0.00 0.00 0.16 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 1.11 1.29 0.00 0.00 0.31 1.66 -99.99 + 2002 10 0.00 6.76 0.81 3.70 0.62 0.08 4.37 0.85 0.00 2.05 33.88 3.28 2.31 0.69 0.05 0.18 0.37 0.20 0.86 19.03 49.35 8.09 3.21 26.97 7.05 27.31 3.32 6.13 1.54 0.07 4.25 + 2002 11 13.96 17.90 1.60 3.18 19.92 5.09 9.05 6.15 11.05 0.96 7.68 6.97 7.63 10.23 2.56 0.00 1.74 1.16 6.15 5.66 9.76 2.40 7.56 2.52 7.44 12.31 22.30 7.74 2.87 14.91 -99.99 + 2002 12 11.90 1.30 9.31 0.70 0.06 0.43 0.06 0.00 0.00 0.00 0.00 0.00 1.80 0.17 2.90 0.31 0.06 0.13 0.00 0.00 14.66 11.92 17.85 5.29 2.28 6.71 2.93 0.00 6.12 0.06 6.83 + 2003 1 10.32 5.31 0.22 0.00 0.08 0.00 0.00 1.13 0.00 0.00 0.70 6.29 2.25 6.25 1.89 11.06 1.20 17.95 7.45 17.29 1.67 0.96 1.42 18.39 4.42 0.83 11.67 3.39 0.04 0.00 6.59 + 2003 2 8.00 10.02 8.07 0.67 0.24 4.37 0.08 9.21 0.39 12.57 0.00 0.43 0.33 0.06 0.07 0.00 0.00 0.00 0.00 0.00 0.08 1.72 0.92 0.00 0.22 0.92 2.83 16.74 -99.99 -99.99 -99.99 + 2003 3 12.62 2.53 7.83 7.70 1.07 2.79 15.18 15.97 6.11 2.15 2.90 0.06 0.00 0.00 0.00 0.14 0.12 0.06 0.00 0.00 0.08 0.08 0.08 0.04 0.00 0.38 0.08 0.00 0.00 0.14 11.25 + 2003 4 2.23 0.24 2.84 0.12 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 2.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.26 0.09 0.00 1.42 12.25 1.81 9.48 7.51 6.40 1.56 -99.99 + 2003 5 2.87 5.85 16.61 17.97 2.40 1.75 4.54 0.29 2.89 1.55 3.70 4.22 0.44 0.07 4.40 13.80 5.48 6.60 2.22 3.12 9.82 2.50 4.82 2.75 0.06 0.06 0.52 3.74 0.34 0.00 0.06 + 2003 6 4.44 0.00 0.73 0.21 4.38 0.32 1.22 3.73 10.65 2.94 2.18 0.64 0.10 0.00 0.00 0.00 4.28 2.92 2.29 0.00 0.12 0.82 0.13 0.00 0.00 4.62 9.20 0.38 0.07 6.55 -99.99 + 2003 7 1.73 0.00 0.00 0.00 0.00 1.77 1.59 0.09 2.04 6.92 0.08 0.00 0.81 0.00 0.00 0.00 0.00 0.00 0.00 13.76 3.72 1.65 5.34 8.82 0.51 0.43 2.40 13.55 15.93 2.46 7.49 + 2003 8 0.36 0.00 0.00 0.11 0.66 0.00 0.00 0.00 1.46 0.18 0.06 0.81 0.09 0.00 0.00 0.00 7.57 0.54 0.15 5.71 8.19 0.13 0.00 0.00 0.00 0.00 0.00 0.96 0.00 0.00 0.00 + 2003 9 0.00 0.00 0.00 0.00 2.32 3.59 16.03 3.91 4.41 2.57 4.55 0.89 0.48 1.18 0.24 0.07 0.55 8.54 1.42 2.00 17.56 1.30 0.48 0.00 5.18 0.25 1.04 6.67 2.82 0.51 -99.99 + 2003 10 0.07 0.39 0.39 1.93 7.97 8.71 1.04 2.29 9.90 0.39 2.25 0.07 0.17 0.00 0.00 0.00 0.07 0.16 0.00 2.78 2.11 0.39 0.27 0.32 1.50 0.06 0.31 6.82 5.57 0.83 1.17 + 2003 11 18.79 5.22 3.52 1.83 1.06 0.00 0.00 0.19 0.15 2.22 13.83 4.60 16.26 9.87 1.87 2.24 3.12 6.14 4.83 0.43 0.74 1.59 0.27 4.80 10.26 15.51 2.26 24.56 32.81 2.88 -99.99 + 2003 12 1.49 0.72 0.04 0.32 0.26 0.00 0.00 1.06 1.21 8.92 1.80 11.65 8.91 0.73 0.31 0.88 0.00 0.40 19.03 14.13 0.46 7.22 2.87 7.40 10.48 11.23 3.11 0.71 0.04 0.05 31.23 + 2004 1 0.74 9.50 0.24 6.78 2.87 2.23 9.82 17.15 3.63 5.28 8.32 15.17 6.54 7.27 6.74 0.10 0.21 7.11 7.71 2.10 4.45 0.74 10.29 2.98 0.78 0.11 6.48 2.51 4.17 12.05 27.59 + 2004 2 14.80 17.98 1.77 6.66 2.34 6.50 9.60 0.00 1.54 0.03 0.04 1.62 0.34 0.06 0.17 2.42 0.00 0.16 0.14 0.05 0.00 0.04 2.97 0.32 0.66 0.86 0.06 0.00 0.12 -99.99 -99.99 + 2004 3 0.05 8.49 6.82 3.81 0.33 0.45 0.15 0.11 0.03 0.34 0.62 2.72 7.90 8.36 6.53 3.26 0.71 21.96 12.21 15.37 7.66 3.28 0.30 1.17 0.34 0.65 0.81 0.50 0.00 0.00 0.33 + 2004 4 2.98 7.00 3.91 6.63 3.12 1.22 0.10 2.30 0.08 0.36 0.51 0.64 8.11 8.85 4.28 0.00 20.60 5.77 8.09 7.54 2.52 3.79 0.80 0.14 0.10 0.67 0.10 0.44 0.17 0.00 -99.99 + 2004 5 0.19 1.38 18.94 3.38 5.93 0.64 0.25 2.26 0.15 2.98 0.00 0.10 0.46 0.06 0.00 0.13 0.06 1.40 0.00 0.65 1.45 0.00 0.07 0.13 0.07 0.00 0.87 4.46 1.64 0.00 1.87 + 2004 6 0.93 16.62 1.74 1.22 1.85 0.37 0.00 2.20 2.34 11.15 0.52 0.32 0.57 0.27 0.17 5.80 0.79 0.81 0.79 1.17 0.91 11.04 12.03 1.11 1.62 15.82 4.89 4.96 13.28 2.23 -99.99 + 2004 7 4.28 10.20 1.52 1.56 2.71 0.18 0.11 0.00 0.75 0.58 0.35 0.06 6.65 0.20 1.07 5.95 2.03 0.44 0.98 6.58 1.91 1.13 3.77 12.24 0.19 0.15 1.40 0.30 2.56 0.00 0.91 + 2004 8 0.00 3.57 14.97 1.90 5.16 0.18 0.07 38.07 13.53 23.43 3.59 11.83 0.09 0.89 15.29 4.95 3.18 9.54 5.95 0.78 0.00 4.27 1.14 1.03 0.07 17.55 0.12 3.61 4.90 0.52 0.00 + 2004 9 2.10 0.83 2.79 1.68 0.10 0.00 0.00 0.00 0.00 15.11 3.44 13.58 17.81 2.71 6.14 12.38 10.28 2.31 18.35 8.82 2.17 4.64 0.16 2.82 0.93 2.15 1.55 1.27 0.00 1.71 -99.99 + 2004 10 10.83 3.62 32.07 2.94 13.72 7.16 0.11 0.10 0.00 0.00 0.00 2.84 3.46 2.54 6.69 1.76 2.35 6.08 8.61 26.40 3.94 3.61 10.31 9.34 6.88 3.29 5.62 3.12 2.38 0.00 0.00 + 2004 11 0.00 3.32 6.14 3.86 12.96 3.28 2.00 2.80 3.84 0.25 2.97 0.48 0.55 1.44 6.75 7.90 0.62 0.12 1.01 5.14 15.26 3.94 1.07 0.80 6.50 0.41 6.71 0.05 1.13 3.82 -99.99 + 2004 12 0.23 3.36 1.66 1.12 1.09 1.21 0.81 0.65 1.70 1.14 0.58 0.00 7.20 7.01 95.15 8.77 8.18 0.07 1.39 4.11 17.83 2.04 6.80 10.48 3.25 0.41 13.14 7.02 3.37 10.27 1.53 + 2005 1 12.88 4.28 6.28 1.97 5.02 10.13 41.49 13.45 12.38 1.33 6.56 4.71 0.99 2.95 3.91 6.36 8.99 4.17 6.60 5.04 0.85 0.06 0.50 0.26 0.50 0.06 0.00 0.10 0.33 1.14 0.36 + 2005 2 1.18 1.06 0.88 11.78 0.30 0.06 3.27 8.31 7.19 0.29 28.05 6.56 1.20 0.00 0.07 1.24 1.18 1.29 0.16 0.86 2.36 0.64 0.65 1.65 0.24 0.09 0.36 6.24 -99.99 -99.99 -99.99 + 2005 3 0.19 0.19 2.65 0.22 0.84 0.38 0.05 0.08 1.39 1.43 1.79 0.05 0.14 22.02 7.40 5.65 7.43 1.41 0.04 1.78 14.81 1.63 6.29 1.99 0.08 0.06 7.38 0.90 0.00 0.00 6.36 + 2005 4 1.55 0.06 0.73 2.09 13.63 5.02 0.05 2.11 3.79 0.00 1.82 0.30 9.56 3.49 5.65 1.68 30.24 20.48 0.25 0.00 0.12 0.00 0.00 0.00 3.56 2.98 16.17 3.86 0.12 1.36 -99.99 + 2005 5 6.98 8.42 1.28 1.01 3.44 3.34 1.71 0.68 0.08 0.07 0.00 0.00 0.00 0.00 0.00 0.63 1.20 27.99 5.63 4.63 5.30 7.33 6.01 6.33 19.66 1.55 7.36 2.41 0.00 0.07 11.97 + 2005 6 19.31 8.38 4.75 4.56 0.22 0.00 0.00 0.00 0.13 0.00 0.08 0.87 3.30 11.25 4.36 6.04 0.23 2.79 0.07 4.07 3.82 0.12 0.55 4.36 0.07 0.07 0.12 1.18 7.20 4.04 -99.99 + 2005 7 0.09 2.66 3.59 0.05 3.45 0.19 0.66 1.23 0.10 0.09 0.00 0.29 0.22 5.94 0.10 5.29 2.60 3.07 1.64 0.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.32 0.29 0.00 0.00 + 2005 8 0.00 3.62 3.40 1.46 0.51 0.36 0.00 0.00 2.03 0.12 4.62 11.61 3.07 0.65 0.93 2.91 28.22 0.92 0.15 0.56 6.97 3.11 19.83 5.02 5.66 5.37 1.05 17.40 0.06 0.21 21.53 + 2005 9 0.00 0.07 0.05 0.41 0.07 0.52 6.39 4.69 2.12 0.00 0.00 6.12 4.55 3.99 0.92 0.74 3.91 1.77 10.89 0.25 1.43 7.92 2.29 9.52 1.98 16.68 3.18 5.94 15.21 6.05 -99.99 + 2005 10 0.69 0.14 0.06 0.00 0.00 0.39 12.54 1.05 4.99 21.65 20.29 1.75 0.10 0.05 0.00 0.25 0.00 11.44 8.83 3.99 2.12 10.30 20.93 15.63 4.75 8.34 0.22 4.88 11.24 4.53 7.37 + 2005 11 4.78 11.24 7.90 4.36 6.12 2.29 11.08 3.97 7.06 5.32 6.81 1.60 1.02 3.16 2.18 0.00 0.10 0.00 0.10 0.16 0.12 0.09 2.00 4.55 2.12 0.76 0.13 1.28 3.49 4.86 -99.99 + 2005 12 22.50 4.75 1.61 5.53 5.30 0.39 15.49 2.34 5.82 0.44 0.31 0.00 0.28 0.56 2.35 0.16 0.10 4.64 0.31 1.35 4.09 4.15 0.21 0.04 0.21 0.06 0.13 0.50 31.29 6.36 6.50 + 2006 1 0.42 5.22 0.08 0.18 0.10 0.13 0.10 0.04 9.81 12.17 1.63 5.52 7.03 1.85 8.16 7.96 3.04 14.86 7.05 5.71 0.05 0.01 0.04 0.00 0.07 0.25 0.24 0.21 0.14 0.16 0.02 + 2006 2 0.00 0.08 0.07 0.00 0.02 0.25 7.72 0.22 0.02 0.66 9.19 2.70 10.43 16.08 1.86 4.42 0.27 0.43 1.36 0.56 0.87 0.72 2.81 0.42 0.36 0.17 2.04 0.07 -99.99 -99.99 -99.99 + 2006 3 0.08 0.41 2.80 1.09 1.07 4.96 10.57 1.53 5.76 5.47 21.77 13.03 16.49 3.11 0.04 0.42 0.00 0.10 0.32 0.15 0.04 0.00 0.00 8.77 17.17 23.03 7.99 2.79 10.92 8.34 6.35 + 2006 4 3.76 3.15 0.69 0.11 3.64 1.84 7.44 0.88 2.27 10.45 2.19 2.61 3.66 0.12 0.95 3.41 0.61 0.94 1.86 1.17 0.00 4.84 0.00 7.09 0.90 0.08 0.02 0.00 0.00 15.65 -99.99 + 2006 5 1.51 7.40 1.07 13.31 0.00 3.79 1.73 0.00 0.03 0.00 0.06 0.08 0.14 9.34 6.65 5.32 12.94 5.55 3.56 3.56 11.04 1.42 5.61 1.92 7.67 2.59 2.24 4.88 0.21 0.00 0.30 + 2006 6 0.00 0.00 0.09 0.03 0.00 0.09 0.00 0.03 0.00 0.26 8.35 0.18 0.00 0.00 0.41 0.95 3.56 13.12 0.02 18.11 10.75 0.24 0.09 0.34 0.10 0.08 0.05 1.22 4.97 4.40 -99.99 + 2006 7 0.19 7.54 0.16 0.47 0.23 1.41 1.54 19.31 0.70 4.44 0.16 1.01 0.03 0.00 0.00 0.00 0.00 0.00 2.12 1.80 0.26 1.90 0.37 0.09 0.05 0.03 2.93 0.93 8.53 4.85 8.09 + 2006 8 1.75 1.97 1.22 3.35 2.11 1.18 0.03 2.81 1.13 0.03 0.00 0.00 0.03 0.16 1.85 0.29 6.68 19.78 2.84 12.41 0.47 3.27 0.20 0.03 4.69 4.27 7.10 3.75 0.58 11.90 5.66 + 2006 9 4.28 20.76 1.24 10.31 15.09 0.44 0.08 0.07 0.03 0.00 12.24 2.01 2.84 14.42 0.13 1.49 1.29 16.38 12.25 23.89 0.17 0.95 5.01 9.30 4.28 4.32 9.56 3.37 6.93 11.54 -99.99 + 2006 10 3.38 8.36 2.03 3.20 6.41 4.70 4.82 7.64 0.55 4.73 10.34 0.12 0.09 0.14 0.11 2.30 7.47 0.86 8.15 3.00 9.69 3.85 4.38 3.48 33.56 6.90 6.17 1.35 7.38 7.48 0.23 + 2006 11 0.09 0.10 0.49 0.01 0.00 1.01 9.42 2.69 0.29 19.94 6.21 7.67 5.50 5.38 37.73 10.96 13.64 8.29 23.02 10.68 2.09 12.37 13.44 12.30 7.48 4.06 7.39 1.14 0.24 24.15 -99.99 + 2006 12 3.09 17.51 11.21 11.25 4.15 12.09 4.58 3.02 10.46 22.97 10.01 18.58 26.64 11.77 3.43 4.42 2.87 0.15 0.11 0.08 0.18 0.33 0.00 0.02 0.63 0.23 6.38 2.99 11.64 1.43 19.60 + 2007 1 17.64 7.91 10.16 3.71 2.22 9.77 19.78 15.92 4.82 17.18 15.16 4.63 12.34 1.08 3.49 6.70 19.69 8.91 13.59 6.41 2.19 0.18 1.51 0.16 0.47 0.23 0.83 0.44 0.17 0.92 1.05 + 2007 2 0.56 0.06 0.32 0.40 0.08 0.18 0.06 0.90 2.03 11.00 6.48 1.38 4.68 0.23 7.62 0.24 0.07 0.65 7.89 5.66 13.83 4.01 5.10 1.07 0.78 13.98 19.18 6.92 -99.99 -99.99 -99.99 + 2007 3 0.34 10.03 1.41 7.79 15.95 2.09 0.95 5.56 3.07 0.27 17.86 1.53 0.55 1.29 1.09 3.07 11.11 4.86 0.54 0.05 3.73 0.09 0.00 0.07 0.00 0.04 0.08 4.21 1.41 0.04 0.00 + 2007 4 0.06 0.00 0.00 0.08 0.02 0.12 0.00 0.45 0.95 0.03 0.00 0.00 0.00 0.00 0.28 0.30 0.47 0.47 0.54 1.20 6.78 2.92 11.37 11.27 0.43 0.00 0.00 0.00 0.00 0.00 -99.99 + 2007 5 0.00 0.00 0.00 0.00 5.12 4.35 8.25 1.00 15.25 2.43 5.73 1.46 0.52 3.61 2.76 11.93 5.26 7.84 4.03 0.25 0.60 0.64 1.24 3.58 2.15 1.18 1.71 0.09 1.55 0.63 3.25 + 2007 6 1.41 19.71 12.41 0.03 0.00 0.00 0.18 0.09 0.00 0.00 0.15 8.57 3.63 4.75 9.88 3.43 0.08 2.99 16.86 1.92 3.91 2.17 5.58 7.13 0.08 4.51 2.82 16.06 0.55 9.19 -99.99 + 2007 7 4.84 4.58 2.03 1.15 9.99 5.75 1.40 0.21 1.28 0.13 3.32 0.74 28.22 0.73 8.76 0.44 1.42 4.01 1.97 0.26 3.70 0.17 1.29 4.62 11.02 2.33 1.44 0.15 0.32 0.04 3.29 + 2007 8 2.97 0.05 6.18 9.44 14.91 4.04 1.20 0.00 2.14 6.08 23.11 7.06 3.79 5.61 1.09 0.87 8.31 22.61 0.51 0.03 0.16 0.00 0.15 0.50 0.89 0.10 0.28 0.39 0.90 1.13 0.77 + 2007 9 3.38 0.65 0.00 2.22 0.92 0.09 0.27 0.21 1.35 0.21 0.51 0.08 3.52 0.29 13.02 16.28 0.78 7.29 1.29 6.50 0.54 2.57 14.29 7.41 0.11 0.05 0.27 0.44 0.17 0.08 -99.99 + 2007 10 0.05 1.19 14.70 0.05 0.10 0.17 0.42 17.16 1.13 1.31 1.02 0.78 0.43 1.29 8.07 0.87 0.45 0.07 0.02 0.04 0.02 0.29 0.11 0.02 0.21 7.12 19.66 4.63 4.41 0.42 3.17 + 2007 11 2.65 0.28 0.05 1.72 0.58 0.78 5.34 1.57 4.18 2.97 0.08 4.43 2.68 0.81 0.11 0.30 24.29 3.62 2.86 5.19 10.61 0.05 9.91 2.71 0.42 1.12 5.35 12.90 8.77 13.19 -99.99 + 2007 12 6.64 3.96 5.65 5.16 9.87 6.31 3.26 21.62 0.29 0.13 0.64 0.77 0.14 0.00 0.00 0.05 0.03 0.02 0.14 0.08 3.26 2.56 11.33 0.61 3.98 6.12 17.32 9.71 4.43 2.01 12.67 + 2008 1 8.03 0.10 4.15 12.41 11.26 9.69 3.02 28.08 9.29 8.71 1.88 17.94 12.22 9.05 9.76 7.10 8.36 8.12 3.56 10.42 12.39 10.11 12.53 7.67 9.60 5.94 0.02 7.02 10.02 14.95 10.70 + 2008 2 1.36 8.92 3.79 5.67 4.12 5.58 2.27 0.60 0.06 0.10 0.02 0.17 0.09 0.05 0.06 0.11 0.03 0.10 0.26 6.91 10.27 8.71 4.17 1.46 14.79 4.94 0.85 4.85 18.37 -99.99 -99.99 + 2008 3 6.10 5.10 4.60 0.81 1.31 6.58 8.69 8.90 10.21 7.98 6.75 5.06 8.10 4.08 0.88 0.28 0.09 0.19 2.63 6.92 0.40 3.37 0.41 0.31 2.33 8.41 14.04 3.67 11.92 1.18 9.32 + 2008 4 5.31 0.46 0.38 1.00 1.56 0.79 2.99 0.93 3.75 4.41 5.43 1.43 0.26 2.66 1.18 0.00 1.08 0.44 0.00 0.00 0.00 7.20 5.28 1.61 5.24 0.68 0.35 1.65 3.88 8.06 -99.99 + 2008 5 0.46 1.39 1.89 4.30 0.00 0.00 0.00 0.15 1.16 2.15 0.23 0.00 0.00 0.00 0.00 2.17 0.10 0.00 0.00 0.00 0.00 6.46 0.03 0.00 0.00 0.00 2.62 9.63 0.10 0.62 0.00 + 2008 6 5.26 1.36 0.05 1.95 4.13 0.67 0.05 0.03 0.16 0.16 1.75 0.09 0.30 0.58 0.04 0.75 5.91 6.34 1.46 0.61 30.44 7.94 0.18 9.41 4.18 2.01 7.27 2.59 1.97 4.47 -99.99 + 2008 7 3.49 4.65 5.69 0.35 6.76 5.81 3.13 0.23 24.06 5.14 1.08 0.07 0.72 0.97 0.88 5.88 5.46 6.44 0.97 0.00 0.60 0.55 0.02 0.00 1.85 0.11 0.00 1.93 3.09 16.03 19.57 + 2008 8 10.91 4.62 12.57 0.03 10.30 24.05 1.29 9.05 22.02 4.51 9.93 10.78 3.90 1.96 6.87 9.40 8.64 7.73 6.61 2.47 5.03 0.11 9.71 2.08 3.00 5.59 1.92 0.28 0.10 0.58 10.00 + 2008 9 7.87 4.02 5.29 0.57 11.60 1.72 1.12 0.21 10.69 10.22 3.77 4.07 0.89 9.25 22.98 8.35 0.19 4.52 1.50 0.22 0.23 0.09 0.14 0.00 0.00 0.03 2.90 2.94 13.37 12.34 -99.99 + 2008 10 6.38 2.63 9.65 13.25 0.03 15.04 14.01 0.47 39.46 15.12 0.18 0.26 0.95 2.70 4.71 1.54 2.68 1.90 13.96 6.34 8.18 9.28 18.63 9.76 27.86 6.41 2.53 1.46 2.90 0.33 1.22 + 2008 11 0.02 0.12 0.21 0.05 0.55 2.75 12.40 12.95 2.80 11.47 5.58 2.48 4.53 3.72 0.02 3.50 4.43 0.44 1.81 0.40 0.80 9.48 5.23 0.33 0.55 4.43 6.07 2.26 0.99 0.93 -99.99 + 2008 12 5.06 3.21 17.58 2.84 1.34 0.22 4.81 1.72 0.41 0.12 3.17 33.94 4.67 0.53 3.41 9.83 9.10 9.10 21.72 4.30 1.01 0.45 0.32 0.07 0.02 0.00 0.20 0.09 0.02 0.08 0.00 + 2009 1 1.53 0.04 0.00 2.85 0.02 2.15 0.87 0.09 0.05 16.20 14.24 0.92 0.57 22.70 6.43 8.10 9.01 11.85 7.33 4.97 20.42 1.72 3.59 10.35 2.64 2.54 2.95 0.14 3.83 7.41 0.00 + 2009 2 0.60 6.34 0.57 1.68 1.52 0.34 0.27 4.66 0.04 2.41 0.65 4.05 0.81 0.96 0.05 0.80 0.02 0.59 0.07 1.33 0.87 0.28 0.27 0.57 1.09 6.10 0.07 5.23 -99.99 -99.99 -99.99 + 2009 3 1.76 5.14 16.00 4.47 2.44 2.17 16.32 10.91 4.18 1.17 6.39 0.61 3.87 0.17 2.58 1.96 0.06 0.19 0.03 0.12 0.21 1.92 0.61 8.65 11.94 6.62 1.83 0.00 1.09 0.34 0.07 + 2009 4 0.02 0.07 10.73 2.33 0.00 4.00 19.66 6.95 3.19 0.64 0.29 0.08 0.37 1.40 0.08 0.00 0.00 0.06 0.00 1.27 0.28 5.70 5.05 3.46 2.32 13.16 4.20 1.90 7.43 4.70 -99.99 + 2009 5 7.58 1.89 5.75 5.63 12.23 8.98 8.62 4.26 7.61 0.24 0.00 0.00 0.78 0.66 6.06 3.27 9.74 4.69 2.59 0.91 1.58 2.02 2.22 1.03 4.33 3.58 1.32 0.21 0.03 0.00 0.00 + 2009 6 0.00 0.00 0.00 0.77 1.44 0.88 0.02 0.05 0.03 0.03 0.56 1.17 1.50 6.21 3.66 19.48 8.74 7.67 4.28 2.01 2.33 0.24 0.03 0.00 0.00 0.18 0.46 1.01 0.49 0.21 -99.99 + 2009 7 4.02 6.34 10.57 0.66 3.95 3.69 0.74 0.12 0.00 0.00 15.97 1.25 9.20 2.66 3.23 3.47 3.48 2.58 1.78 1.93 14.80 5.48 5.48 0.20 9.90 4.37 1.74 6.74 0.63 0.31 10.65 + 2009 8 2.99 1.07 8.86 1.94 0.55 0.71 0.93 0.45 15.28 0.17 5.33 0.36 0.88 43.39 4.58 7.58 2.05 10.92 36.83 10.40 4.79 18.13 14.27 1.40 14.83 5.29 9.92 3.22 2.08 20.29 14.36 + 2009 9 5.49 20.06 5.30 3.52 1.17 10.82 11.14 6.72 0.10 0.06 0.10 0.09 0.02 0.00 0.09 0.05 0.00 0.10 1.02 1.44 5.52 1.22 1.24 0.57 0.06 0.15 1.30 1.64 4.07 0.59 -99.99 + 2009 10 4.05 8.86 4.14 2.11 4.12 0.89 0.68 0.14 11.99 0.55 0.09 0.00 2.32 2.21 0.18 0.02 0.46 9.21 1.95 7.57 0.06 0.84 3.19 20.36 3.18 5.26 9.86 0.04 3.18 16.37 13.72 + 2009 11 33.32 11.29 9.45 7.88 2.32 9.94 2.45 0.13 10.91 0.66 6.32 8.39 18.33 7.26 5.91 14.67 12.74 22.40 32.60 1.78 10.06 13.73 12.68 14.35 10.03 7.58 2.34 3.09 0.27 0.12 -99.99 + 2009 12 14.86 10.58 1.53 14.71 10.64 4.79 4.95 6.29 5.07 0.23 0.22 0.11 0.33 0.97 0.32 1.27 0.89 0.93 3.03 12.09 2.32 6.30 0.74 0.27 6.50 10.77 2.06 0.39 3.88 0.92 0.20 + 2010 1 0.86 1.24 0.13 2.32 0.09 0.06 0.03 0.07 0.30 0.59 2.95 0.84 1.67 4.75 15.93 1.58 7.92 0.55 1.90 3.36 16.20 0.33 4.27 0.48 0.00 1.12 1.14 2.21 0.19 0.70 0.52 + 2010 2 8.72 1.23 4.62 2.47 5.58 0.76 0.67 0.18 0.04 0.12 0.12 0.19 1.47 1.74 4.37 2.47 2.27 1.02 0.15 0.73 1.42 0.18 3.19 19.15 16.24 9.31 0.39 0.88 -99.99 -99.99 -99.99 + 2010 3 2.28 0.12 0.04 0.15 0.12 0.02 0.02 0.05 0.05 0.13 0.35 0.10 0.17 0.25 0.83 1.24 0.19 4.54 2.10 0.42 6.62 3.98 1.72 7.94 17.93 9.08 0.67 4.31 29.73 22.70 0.81 + 2010 4 0.42 4.15 2.58 18.79 10.60 9.51 1.16 0.31 0.07 0.00 0.00 0.00 0.00 0.02 0.02 0.02 0.46 1.31 0.76 0.02 0.00 0.00 1.20 2.12 4.33 0.11 11.67 0.75 0.53 0.73 -99.99 + 2010 5 1.76 0.85 0.00 2.26 2.53 0.57 0.06 0.00 0.33 0.00 1.85 0.16 9.47 0.94 4.52 0.15 0.02 4.70 0.49 0.04 0.03 0.15 0.00 0.23 1.20 1.30 2.51 0.59 3.76 0.12 5.88 + 2010 6 1.17 0.02 0.00 0.00 1.29 5.77 5.87 8.86 0.13 0.05 0.16 2.66 0.88 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.02 1.09 0.10 0.00 0.03 0.78 5.92 0.03 9.41 -99.99 + 2010 7 6.20 0.73 15.28 7.81 0.63 5.95 0.70 2.81 9.26 16.29 0.30 0.27 9.62 19.47 15.24 2.23 2.75 5.70 7.65 5.97 17.09 0.38 0.00 1.00 2.63 1.79 0.34 0.53 0.74 2.13 1.29 + 2010 8 3.07 0.68 0.35 0.53 1.32 4.66 0.10 2.96 8.13 2.92 1.11 1.07 0.00 0.05 0.00 15.91 0.24 2.44 8.61 2.45 3.86 5.76 12.11 0.88 0.00 0.12 1.65 3.26 0.01 0.03 0.10 + 2010 9 0.12 0.00 0.03 1.29 0.83 26.58 1.32 1.16 8.42 7.16 1.23 6.92 16.48 7.23 0.87 0.37 0.59 7.92 6.99 0.48 7.26 18.55 3.43 0.02 0.05 0.15 0.31 20.31 6.62 4.73 -99.99 + 2010 10 7.37 10.19 0.34 5.32 5.12 1.36 0.27 0.00 0.00 0.05 0.12 0.02 0.05 0.33 0.19 0.06 1.56 3.96 0.87 6.95 7.04 15.03 0.48 0.12 22.50 5.62 6.03 8.45 16.79 0.29 0.05 + 2010 11 20.19 9.74 15.08 8.50 4.08 8.05 22.44 7.70 0.53 18.84 18.50 2.96 8.56 1.31 3.16 4.17 6.04 6.91 0.59 1.61 1.33 0.90 0.05 0.09 0.32 0.31 0.36 0.84 0.67 0.40 -99.99 + 2010 12 0.26 0.74 5.36 0.68 3.14 4.09 0.32 0.55 2.17 0.75 0.00 0.14 0.09 0.21 3.12 1.49 2.09 0.82 0.19 0.30 0.00 0.18 0.14 0.97 0.39 21.15 8.88 3.87 1.78 0.14 0.95 + 2011 1 0.24 0.09 9.74 9.99 3.83 0.32 2.00 6.46 2.42 22.47 8.15 10.59 6.14 9.44 16.38 0.16 1.54 0.93 0.08 0.18 0.35 0.19 0.61 0.74 0.29 1.05 0.07 0.03 0.17 1.01 10.99 + 2011 2 5.43 12.67 15.77 17.65 4.24 26.83 4.95 8.58 13.65 0.65 13.94 16.41 4.14 4.46 4.20 1.63 4.60 14.66 0.94 2.55 3.26 8.40 3.35 2.86 1.75 2.19 0.18 0.21 -99.99 -99.99 -99.99 + 2011 3 0.02 0.08 0.14 0.36 0.02 0.02 0.02 7.28 9.93 5.73 10.88 9.78 6.09 5.19 8.67 2.27 0.45 0.43 3.48 0.89 0.17 0.39 0.05 0.17 0.05 0.07 0.11 0.02 3.64 16.05 5.31 + 2011 4 5.27 2.01 2.03 14.24 13.71 3.76 0.00 0.02 0.00 2.33 1.76 2.58 2.65 0.35 0.42 0.00 0.02 0.29 0.00 0.02 0.02 1.29 2.86 0.24 0.00 0.00 0.03 0.00 0.03 0.00 -99.99 + 2011 5 0.00 0.00 0.03 2.26 14.76 7.15 18.34 1.41 4.50 3.82 5.64 2.95 3.14 2.56 4.54 7.64 2.67 2.17 3.90 1.18 22.47 16.72 6.53 1.65 6.92 0.49 4.51 6.41 1.04 0.48 0.46 + 2011 6 0.04 0.00 0.02 0.00 11.64 4.59 6.61 5.71 2.54 2.10 1.82 5.15 0.07 2.43 0.60 4.24 24.61 5.90 0.84 2.37 15.58 11.65 1.20 8.04 1.46 2.49 0.26 0.30 2.95 0.22 -99.99 + 2011 7 0.00 0.02 0.02 0.53 6.95 9.92 3.41 6.40 2.85 1.72 0.42 0.91 0.00 0.02 16.34 14.68 9.47 3.20 2.95 1.44 0.81 1.72 0.00 0.03 0.00 0.00 4.87 1.83 0.02 0.59 4.17 + 2011 8 4.26 2.83 6.43 2.57 0.04 14.13 3.00 0.06 23.58 25.66 7.20 8.86 1.54 2.87 5.32 4.37 0.34 0.93 2.34 2.06 0.24 0.00 2.76 10.78 3.25 7.50 1.92 1.17 0.54 1.62 0.08 + 2011 9 4.68 11.99 1.57 9.07 12.56 8.57 7.75 6.32 4.38 5.16 21.00 4.98 7.06 0.09 0.03 12.54 6.54 1.84 7.28 2.12 12.48 1.79 4.35 0.23 12.55 1.84 0.31 0.88 0.10 14.42 -99.99 + 2011 10 19.60 1.83 1.21 4.71 11.61 10.40 3.39 18.50 14.89 6.28 19.76 2.67 0.12 3.74 6.92 4.59 30.63 3.59 1.02 10.77 2.20 9.70 8.16 7.58 5.14 7.06 2.09 8.33 7.32 5.03 6.66 + 2011 11 0.44 3.63 4.20 2.68 0.21 0.21 0.16 0.64 8.46 0.10 6.43 0.25 0.02 0.00 0.08 5.59 12.10 2.07 0.71 1.99 9.07 0.95 10.69 13.38 6.99 15.40 1.47 25.78 17.97 13.40 -99.99 + 2011 12 4.19 5.65 8.68 7.80 8.79 13.30 18.78 11.68 6.05 6.50 3.75 10.39 14.58 3.57 12.34 6.18 2.07 6.41 8.82 7.80 0.96 4.45 3.25 5.64 2.78 4.56 10.93 12.10 6.89 17.49 8.11 + 2012 1 4.21 16.53 9.48 27.33 1.15 3.86 1.03 2.17 0.07 1.38 2.43 0.26 0.19 0.00 0.09 0.07 5.89 5.08 14.52 13.92 7.28 2.88 12.20 5.20 12.63 7.30 3.32 0.72 2.75 0.02 0.00 + 2012 2 0.00 0.02 3.61 12.29 0.69 0.08 0.16 8.56 4.76 6.85 1.65 0.42 0.07 0.08 0.25 1.13 10.60 1.61 4.05 10.74 11.73 3.47 1.44 0.32 1.01 5.04 2.01 0.25 0.02 -99.99 -99.99 + 2012 3 0.90 2.03 5.56 0.50 0.12 13.74 4.77 0.53 2.19 0.39 0.17 0.08 0.00 0.00 5.60 7.45 0.17 0.36 2.93 0.00 0.00 0.07 0.02 0.04 0.00 0.03 0.00 0.03 0.00 0.06 0.07 + 2012 4 0.13 7.02 1.45 0.15 0.38 1.37 0.60 3.83 10.91 2.96 2.77 0.51 0.64 0.16 0.00 16.97 3.21 2.33 1.01 1.88 2.89 4.46 0.77 1.97 3.39 1.76 1.15 0.03 5.48 0.13 -99.99 + 2012 5 0.42 0.00 1.01 0.12 0.00 0.60 9.46 0.68 8.54 14.59 1.57 0.26 13.84 2.29 1.42 4.67 5.66 1.16 0.03 0.00 0.03 0.00 0.05 0.00 0.00 0.03 0.00 0.03 0.07 6.96 1.90 + 2012 6 0.05 0.03 0.00 0.00 10.62 0.82 13.48 5.79 2.36 3.11 2.58 0.15 0.18 7.57 26.95 14.87 0.75 2.42 0.05 0.27 24.90 27.94 8.69 0.25 0.00 7.63 11.45 8.88 7.70 3.65 -99.99 + 2012 7 4.98 5.04 8.38 8.05 4.47 9.28 2.63 4.73 3.58 4.71 1.06 0.00 2.32 0.50 1.07 0.24 22.14 11.49 2.24 0.05 0.56 6.61 16.23 2.37 0.10 0.54 2.59 4.27 3.40 1.29 16.77 + 2012 8 5.49 0.12 2.88 2.68 6.21 3.02 0.06 0.00 0.00 0.03 0.00 6.11 3.81 0.66 21.18 23.05 4.36 0.19 2.35 2.72 7.45 4.16 4.32 3.34 5.76 6.93 17.95 5.51 6.85 0.07 3.73 + 2012 9 3.14 0.10 2.19 0.11 0.07 3.09 0.94 0.00 8.31 10.04 8.18 0.73 4.02 0.48 4.82 6.42 8.25 4.41 9.26 19.11 0.38 0.06 3.09 25.11 4.60 1.85 2.56 4.81 20.28 2.39 -99.99 + 2012 10 6.74 17.54 3.24 7.77 1.54 0.13 0.13 0.03 0.04 4.29 39.86 1.66 7.64 2.10 7.71 4.75 22.20 13.25 2.90 0.14 0.15 0.21 0.43 0.02 0.11 0.04 7.74 5.82 1.41 10.74 12.24 + 2012 11 5.77 4.39 2.04 1.33 1.56 0.86 4.39 7.46 5.70 3.37 3.99 9.26 12.35 2.44 1.73 4.39 3.11 31.22 5.75 2.84 8.39 19.36 1.56 7.63 5.05 0.71 0.02 0.12 0.35 4.86 -99.99 + 2012 12 0.26 10.64 6.68 4.23 3.17 16.29 0.17 2.66 0.02 0.03 0.65 2.73 0.30 15.08 0.37 7.09 0.56 0.13 17.22 27.94 4.48 26.56 3.25 11.65 4.57 19.66 10.19 4.95 5.55 17.88 5.07 + 2013 1 7.26 2.75 0.94 0.49 3.36 10.35 24.26 0.35 0.12 1.69 1.36 1.79 8.14 1.60 0.92 1.90 1.31 0.43 0.29 0.33 4.81 0.53 0.36 3.29 18.70 25.41 2.90 14.24 11.26 13.87 8.81 + 2013 2 0.27 5.50 4.93 8.05 4.26 0.37 1.76 4.47 7.78 6.70 0.00 6.48 25.13 0.65 0.43 0.74 0.00 0.09 0.24 0.00 0.02 0.00 0.12 1.08 0.10 0.10 0.33 0.02 -99.99 -99.99 -99.99 + 2013 3 0.02 0.12 0.00 0.10 0.00 4.58 2.95 2.93 3.02 0.70 0.51 0.07 0.65 5.66 3.35 6.85 7.77 1.43 2.78 0.24 1.44 7.58 0.70 0.06 0.03 0.23 0.47 0.10 0.04 0.08 0.00 + 2013 4 0.00 0.00 0.03 0.38 0.04 0.00 0.00 0.00 0.02 0.95 6.94 1.53 13.49 2.91 6.21 10.35 15.20 1.61 0.00 4.31 1.49 0.91 8.42 3.77 2.29 3.04 1.22 3.57 0.19 0.31 -99.99 + 2013 5 0.22 3.10 10.87 0.45 1.14 0.36 1.69 5.24 6.70 8.11 2.85 9.35 10.44 0.88 0.95 0.25 9.48 21.95 0.00 1.28 0.02 0.48 0.49 0.02 0.26 15.41 9.43 1.15 1.05 0.52 0.16 + 2013 6 0.30 0.37 0.00 0.05 0.16 0.02 0.00 0.18 0.03 0.51 15.01 1.15 0.48 15.87 6.12 0.26 0.02 0.00 0.04 2.20 6.11 5.59 0.34 0.00 0.11 3.08 7.67 3.16 0.46 2.99 -99.99 + 2013 7 1.38 13.23 6.56 0.47 0.05 0.87 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.02 0.22 0.02 0.05 0.02 0.00 0.00 0.00 5.55 8.99 7.86 7.68 0.23 15.13 4.11 6.83 4.16 14.74 + 2013 8 3.86 0.93 3.03 1.02 0.20 1.56 0.15 10.98 0.38 2.26 2.99 0.93 0.00 13.94 10.51 2.40 6.61 0.97 0.14 5.75 1.70 0.08 1.75 0.39 0.08 0.23 0.13 0.29 0.24 1.04 0.67 + 2013 9 0.84 0.66 0.04 0.42 0.26 25.14 7.62 2.10 1.00 0.28 4.99 6.68 1.41 12.22 14.38 4.99 2.95 10.93 3.22 0.40 0.19 0.16 0.35 0.66 0.14 2.15 0.31 0.00 0.00 1.66 -99.99 + 2013 10 5.63 17.56 19.28 1.50 0.69 3.50 4.92 1.64 0.98 0.00 0.00 0.00 0.66 0.75 0.13 15.45 3.04 23.19 12.84 5.41 21.21 7.79 2.77 8.41 7.00 11.45 8.47 5.73 2.31 8.51 5.38 + 2013 11 1.33 27.77 1.11 1.50 5.58 3.04 3.95 2.81 1.93 11.03 2.13 0.80 6.71 0.41 0.11 0.36 9.08 3.82 13.15 0.27 0.05 0.35 0.14 0.05 0.28 1.25 0.16 3.29 0.98 0.51 -99.99 + 2013 12 0.22 0.32 2.83 15.68 2.43 3.74 3.12 6.94 0.00 0.58 11.08 6.57 2.48 14.28 8.51 1.67 4.59 17.14 3.77 17.59 11.11 4.11 18.86 7.48 1.58 13.39 9.61 3.45 37.27 16.56 5.17 + 2014 1 15.55 7.22 8.02 5.12 12.23 5.06 3.51 0.89 1.65 9.54 0.47 4.69 8.82 16.01 9.62 5.06 2.76 13.07 3.18 2.82 12.93 8.08 3.43 12.63 26.69 13.81 9.03 4.01 0.62 0.41 14.07 + 2014 2 11.20 0.65 9.04 5.27 4.00 1.56 9.70 9.76 2.92 7.49 3.35 21.29 3.72 23.74 2.85 5.05 6.96 5.16 13.36 4.99 3.64 8.33 15.35 6.38 5.72 16.19 2.70 1.14 -99.99 -99.99 -99.99 + 2014 3 10.71 7.68 1.35 0.37 9.20 26.19 4.77 1.13 5.30 0.18 0.06 0.25 0.25 0.33 0.22 0.51 3.03 2.68 4.69 14.84 8.22 3.45 0.36 1.42 3.48 0.75 2.04 5.25 0.66 0.04 8.62 + 2014 4 1.68 2.71 11.29 2.45 7.28 3.64 4.86 2.31 0.83 0.61 1.61 0.54 2.06 0.08 0.02 1.03 0.26 0.02 0.06 0.00 0.27 3.95 2.03 0.18 8.03 0.59 2.15 0.05 0.07 8.65 -99.99 + 2014 5 0.82 0.00 2.45 2.12 5.40 6.21 12.90 5.87 8.33 6.52 6.52 4.03 0.39 0.30 0.00 0.52 8.11 3.76 18.49 4.04 0.06 2.19 0.47 4.43 8.63 2.23 1.60 4.81 0.00 0.00 0.07 + 2014 6 6.72 2.00 5.05 7.69 0.62 1.57 17.35 1.48 5.56 2.58 0.02 0.81 0.75 0.88 0.15 0.11 0.05 0.03 0.00 0.00 0.03 0.11 0.47 2.51 7.34 0.39 0.00 0.31 0.02 0.03 -99.99 + 2014 7 0.07 1.62 4.74 8.89 2.46 1.23 2.98 1.19 0.00 0.15 0.46 13.96 0.17 8.33 4.11 4.60 0.01 0.26 12.89 0.08 0.02 0.00 0.03 0.00 0.00 6.43 6.16 0.33 1.24 1.31 2.80 + 2014 8 3.38 22.81 4.90 0.00 8.74 2.56 1.40 7.18 8.29 17.68 5.17 8.20 0.97 2.57 0.59 3.15 1.73 0.93 0.36 4.41 1.91 0.65 1.39 0.03 0.00 0.03 5.84 8.16 6.49 0.17 4.10 + 2014 9 0.00 0.00 0.00 0.52 2.26 0.10 0.03 0.00 0.00 0.02 0.03 0.05 0.00 0.12 2.36 0.07 0.06 0.19 0.29 0.12 0.00 2.06 4.51 0.87 1.82 0.10 0.84 1.12 0.03 3.48 -99.99 + 2014 10 0.27 2.91 36.67 1.22 18.65 3.23 3.32 8.60 6.75 3.90 1.34 0.33 0.49 0.03 4.87 15.18 8.01 6.34 4.45 10.34 3.03 2.87 3.73 3.47 2.91 11.23 19.85 11.08 4.65 1.32 7.64 + 2014 11 16.75 7.19 5.09 1.02 9.24 36.41 1.81 12.25 1.12 5.06 11.03 4.63 8.67 5.41 0.06 2.86 0.51 0.50 0.64 0.11 18.14 2.94 0.97 1.70 1.56 0.25 0.27 0.08 1.03 0.16 -99.99 + 2014 12 3.74 0.48 0.25 2.52 2.29 17.36 11.18 1.14 17.82 10.96 4.85 2.34 5.07 3.55 2.60 12.31 6.19 8.73 7.94 2.19 33.45 21.93 6.12 6.01 2.35 5.25 0.46 0.18 0.30 2.07 9.83 + 2015 1 19.05 7.62 0.00 0.24 9.30 8.97 16.53 9.31 19.07 11.05 16.66 5.24 3.88 24.27 8.67 9.76 3.24 0.26 0.31 6.09 0.22 1.17 9.99 1.68 7.41 1.85 8.68 7.39 7.16 1.63 0.28 + 2015 2 0.02 0.37 0.28 0.02 0.13 0.10 0.13 0.41 0.27 0.00 0.25 1.27 3.31 0.00 16.95 1.81 2.32 6.94 3.99 2.91 2.84 22.10 9.42 6.50 13.51 3.12 3.49 20.18 -99.99 -99.99 -99.99 + 2015 3 5.94 4.58 6.49 0.12 1.41 6.67 8.42 1.26 5.95 0.89 9.85 23.19 0.19 0.00 0.12 0.24 0.09 0.04 0.52 0.24 0.00 0.68 1.37 1.21 14.97 0.60 16.42 9.83 5.97 15.86 6.29 + 2015 4 2.66 7.28 1.12 0.22 0.22 0.04 0.05 0.02 0.06 6.85 6.94 2.47 1.17 6.00 0.16 0.00 0.06 0.02 0.21 0.02 0.02 0.04 0.00 5.09 0.04 0.10 6.44 11.16 4.31 0.58 -99.99 + 2015 5 0.00 19.90 7.34 4.35 18.24 1.94 0.24 6.99 3.86 11.89 1.11 0.72 0.00 0.00 5.48 3.89 11.87 3.24 0.94 0.21 1.08 0.11 6.27 0.50 0.16 0.13 13.73 5.06 0.75 12.40 2.69 + 2015 6 19.53 1.57 0.53 3.29 3.38 2.85 0.05 0.00 0.00 0.00 0.00 0.02 0.42 0.02 0.76 4.46 0.37 0.85 1.96 2.29 2.63 0.12 0.07 1.75 7.52 4.03 16.25 1.43 1.25 0.02 -99.99 + 2015 7 1.39 0.78 15.84 2.48 3.97 14.86 4.21 0.53 4.63 2.40 7.62 4.38 1.91 0.07 0.03 14.79 5.37 10.56 1.51 3.86 0.78 1.11 0.91 0.17 0.65 7.42 12.51 5.01 0.97 0.43 8.87 + 2015 8 2.51 4.55 5.71 2.41 16.28 0.05 0.08 2.16 1.01 4.75 0.05 0.00 2.77 2.12 0.12 0.34 0.00 0.36 9.90 3.08 0.50 14.29 6.13 0.06 15.50 7.68 2.36 1.65 1.05 0.24 3.94 + 2015 9 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 + 2015 10 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 + 2015 11 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 + 2015 12 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 -99.99 diff --git a/data/mnist-test.npz b/data/mnist-test.npz new file mode 100644 index 0000000..0ef69fa Binary files /dev/null and b/data/mnist-test.npz differ diff --git a/data/mnist-train.npz b/data/mnist-train.npz new file mode 100644 index 0000000..b16e9ab Binary files /dev/null and b/data/mnist-train.npz differ diff --git a/data/mnist-valid.npz b/data/mnist-valid.npz new file mode 100644 index 0000000..d4fe806 Binary files /dev/null and b/data/mnist-valid.npz differ diff --git a/mlp/__init__.py b/mlp/__init__.py new file mode 100644 index 0000000..b41e667 --- /dev/null +++ b/mlp/__init__.py @@ -0,0 +1,6 @@ +# -*- coding: utf-8 -*- +"""Machine Learning Practical package.""" + +__authors__ = ['Pawel Swietojanski', 'Steve Renals', 'Matt Graham'] + +DEFAULT_SEED = 123456 # Default random number generator seed if none provided. diff --git a/mlp/data_providers.py b/mlp/data_providers.py new file mode 100644 index 0000000..cd486a5 --- /dev/null +++ b/mlp/data_providers.py @@ -0,0 +1,206 @@ +# -*- coding: utf-8 -*- +"""Data providers. + +This module provides classes for loading datasets and iterating over batches of +data points. +""" + +import pickle +import gzip +import numpy as np +import os +from mlp import DEFAULT_SEED + + +class DataProvider(object): + """Generic data provider.""" + + def __init__(self, inputs, targets, batch_size, max_num_batches=-1, + shuffle_order=True, rng=None): + """Create a new data provider object. + + Args: + inputs (ndarray): Array of data input features of shape + (num_data, input_dim). + targets (ndarray): Array of data output targets of shape + (num_data, output_dim) or (num_data,) if output_dim == 1. + batch_size (int): Number of data points to include in each batch. + max_num_batches (int): Maximum number of batches to iterate over + in an epoch. If `max_num_batches * batch_size > num_data` then + only as many batches as the data can be split into will be + used. If set to -1 all of the data will be used. + shuffle_order (bool): Whether to randomly permute the order of + the data before each epoch. + rng (RandomState): A seeded random number generator. + """ + self.inputs = inputs + self.targets = targets + self.batch_size = batch_size + assert max_num_batches != 0 and not max_num_batches < -1, ( + 'max_num_batches should be -1 or > 0') + self.max_num_batches = max_num_batches + # maximum possible number of batches is equal to number of whole times + # batch_size divides in to the number of data points which can be + # found using integer division + possible_num_batches = self.inputs.shape[0] // batch_size + if self.max_num_batches == -1: + self.num_batches = possible_num_batches + else: + self.num_batches = min(self.max_num_batches, possible_num_batches) + self.shuffle_order = shuffle_order + if rng is None: + rng = np.random.RandomState(DEFAULT_SEED) + self.rng = rng + self.reset() + + def __iter__(self): + """Implements Python iterator interface. + + This should return an object implementing a `next` method which steps + through a sequence returning one element at a time and raising + `StopIteration` when at the end of the sequence. Here the object + returned is the DataProvider itself. + """ + return self + + def reset(self): + """Resets the provider to the initial state to use in a new epoch.""" + self._curr_batch = 0 + if self.shuffle_order: + self.shuffle() + + def shuffle(self): + """Randomly shuffles order of data.""" + new_order = self.rng.permutation(self.inputs.shape[0]) + self.inputs = self.inputs[new_order] + self.targets = self.targets[new_order] + + def next(self): + """Returns next data batch or raises `StopIteration` if at end.""" + if self._curr_batch + 1 > self.num_batches: + # no more batches in current iteration through data set so reset + # the dataset for another pass and indicate iteration is at end + self.reset() + raise StopIteration() + # create an index slice corresponding to current batch number + batch_slice = slice(self._curr_batch * self.batch_size, + (self._curr_batch + 1) * self.batch_size) + inputs_batch = self.inputs[batch_slice] + targets_batch = self.targets[batch_slice] + self._curr_batch += 1 + return inputs_batch, targets_batch + + +class MNISTDataProvider(DataProvider): + """Data provider for MNIST handwritten digit images.""" + + def __init__(self, which_set='train', batch_size=100, max_num_batches=-1, + shuffle_order=True, rng=None): + """Create a new MNIST data provider object. + + Args: + which_set: One of 'train', 'valid' or 'eval'. Determines which + portion of the MNIST data this object should provide. + batch_size (int): Number of data points to include in each batch. + max_num_batches (int): Maximum number of batches to iterate over + in an epoch. If `max_num_batches * batch_size > num_data` then + only as many batches as the data can be split into will be + used. If set to -1 all of the data will be used. + shuffle_order (bool): Whether to randomly permute the order of + the data before each epoch. + rng (RandomState): A seeded random number generator. + """ + # check a valid which_set was provided + assert which_set in ['train', 'valid', 'eval'], ( + 'Expected which_set to be either train, valid or eval. ' + 'Got {0}'.format(which_set) + ) + self.which_set = which_set + self.num_classes = 10 + # construct path to data using os.path.join to ensure the correct path + # separator for the current platform / OS is used + # MLP_DATA_DIR environment variable should point to the data directory + data_path = os.path.join( + os.environ['MLP_DATA_DIR'], 'mnist-{0}.npz'.format(which_set)) + assert os.path.isfile(data_path), ( + 'Data file does not exist at expected path: ' + data_path + ) + # load data from compressed numpy file + loaded = np.load(data_path) + inputs, targets = loaded['inputs'], loaded['targets'] + inputs = inputs.astype(np.float32) + # pass the loaded data to the parent class __init__ + super(MNISTDataProvider, self).__init__( + inputs, targets, batch_size, max_num_batches, shuffle_order, rng) + + # def next(self): + # """Returns next data batch or raises `StopIteration` if at end.""" + # inputs_batch, targets_batch = super(MNISTDataProvider, self).next() + # return inputs_batch, self.to_one_of_k(targets_batch) + # + def __next__(self): + return self.next() + + def to_one_of_k(self, int_targets): + """Converts integer coded class target to 1 of K coded targets. + + Args: + int_targets (ndarray): Array of integer coded class targets (i.e. + where an integer from 0 to `num_classes` - 1 is used to + indicate which is the correct class). This should be of shape + (num_data,). + + Returns: + Array of 1 of K coded targets i.e. an array of shape + (num_data, num_classes) where for each row all elements are equal + to zero except for the column corresponding to the correct class + which is equal to one. + """ + raise NotImplementedError() + + +class MetOfficeDataProvider(DataProvider): + """South Scotland Met Office weather data provider.""" + + def __init__(self, window_size, batch_size=10, max_num_batches=-1, + shuffle_order=True, rng=None): + """Create a new Met Offfice data provider object. + + Args: + window_size (int): Size of windows to split weather time series + data into. The constructed input features will be the first + `window_size - 1` entries in each window and the target outputs + the last entry in each window. + batch_size (int): Number of data points to include in each batch. + max_num_batches (int): Maximum number of batches to iterate over + in an epoch. If `max_num_batches * batch_size > num_data` then + only as many batches as the data can be split into will be + used. If set to -1 all of the data will be used. + shuffle_order (bool): Whether to randomly permute the order of + the data before each epoch. + rng (RandomState): A seeded random number generator. + """ + self.window_size = window_size + assert window_size > 1, 'window_size must be at least 2.' + data_path = os.path.join( + os.environ['MLP_DATA_DIR'], 'HadSSP_daily_qc.txt') + assert os.path.isfile(data_path), ( + 'Data file does not exist at expected path: ' + data_path + ) + # load raw data from text file + # ... + # filter out all missing datapoints and flatten to a vector + # ... + # normalise data to zero mean, unit standard deviation + # ... + # convert from flat sequence to windowed data + # ... + # inputs are first (window_size - 1) entries in windows + # inputs = ... + # targets are last entry in windows + # targets = ... + # initialise base class with inputs and targets arrays + # super(MetOfficeDataProvider, self).__init__( + # inputs, targets, batch_size, max_num_batches, shuffle_order, rng) + def __next__(self): + return self.next() \ No newline at end of file diff --git a/notebooks/01_Introduction.ipynb b/notebooks/01_Introduction.ipynb new file mode 100644 index 0000000..7e65b1b --- /dev/null +++ b/notebooks/01_Introduction.ipynb @@ -0,0 +1,535 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "nbpresent": { + "id": "b167e6e2-05e0-4a4b-a6cc-47cab1c728b4" + } + }, + "source": [ + "# Introduction\n", + "\n", + "## Getting started with Jupyter notebooks\n", + "\n", + "The majority of your work in this course will be done using Jupyter notebooks so we will here introduce some of the basics of the notebook system. If you are already comfortable using notebooks or just would rather get on with some coding feel free to [skip straight to the exercises below](#Exercises).\n", + "\n", + "*Note: Jupyter notebooks are also known as IPython notebooks. The Jupyter system now supports languages other than Python [hence the name was changed to make it more language agnostic](https://ipython.org/#jupyter-and-the-future-of-ipython) however IPython notebook is still commonly used.*\n", + "\n", + "### Jupyter basics: the server, dashboard and kernels\n", + "\n", + "In launching this notebook you will have already come across two of the other key components of the Jupyter system - the notebook *server* and *dashboard* interface.\n", + "\n", + "We began by starting a notebook server instance in the terminal by running\n", + "\n", + "```\n", + "jupyter notebook\n", + "```\n", + "\n", + "This will have begun printing a series of log messages to terminal output similar to\n", + "\n", + "```\n", + "$ jupyter notebook\n", + "[I 08:58:24.417 NotebookApp] Serving notebooks from local directory: ~/mlpractical\n", + "[I 08:58:24.417 NotebookApp] 0 active kernels\n", + "[I 08:58:24.417 NotebookApp] The Jupyter Notebook is running at: http://localhost:8888/\n", + "```\n", + "\n", + "The last message included here indicates the URL the application is being served at. The default behaviour of the `jupyter notebook` command is to open a tab in a web browser pointing to this address after the server has started up. The server can be launched without opening a browser window by running `jupyter notebook --no-browser`. This can be useful for example when running a notebook server on a remote machine over SSH. Descriptions of various other command options can be found by displaying the command help page using\n", + "\n", + "```\n", + "juptyer notebook --help\n", + "```\n", + "\n", + "While the notebook server is running it will continue printing log messages to terminal it was started from. Unless you detach the process from the terminal session you will need to keep the session open to keep the notebook server alive. If you want to close down a running server instance from the terminal you can use `Ctrl+C` - this will bring up a confirmation message asking you to confirm you wish to shut the server down. You can either enter `y` or skip the confirmation by hitting `Ctrl+C` again.\n", + "\n", + "When the notebook application first opens in your browser you are taken to the notebook *dashboard*. This will appear something like this\n", + "\n", + "\n", + "\n", + "The dashboard above is showing the `Files` tab, a list of files in the directory the notebook server was launched from. We can navigate in to a sub-directory by clicking on a directory name and back up to the parent directory by clicking the `..` link. An important point to note is that the top-most level that you will be able to navigate to is the directory you run the server from. This is a security feature and generally you should try to limit the access the server has by launching it in the highest level directory which gives you access to all the files you need to work with.\n", + "\n", + "As well as allowing you to launch existing notebooks, the `Files` tab of the dashboard also allows new notebooks to be created using the `New` drop-down on the right. It can also perform basic file-management tasks such as renaming and deleting files (select a file by checking the box alongside it to bring up a context menu toolbar).\n", + "\n", + "In addition to opening notebook files, we can also edit text files such as `.py` source files, directly in the browser by opening them from the dashboard. The in-built text-editor is less-featured than a full IDE but is useful for quick edits of source files and previewing data files.\n", + "\n", + "The `Running` tab of the dashboard gives a list of the currently running notebook instances. This can be useful to keep track of which notebooks are still running and to shutdown (or reopen) old notebook processes when the corresponding tab has been closed.\n", + "\n", + "### The notebook interface\n", + "\n", + "The top of your notebook window should appear something like this:\n", + "\n", + "\n", + "\n", + "The name of the current notebook is displayed at the top of the page and can be edited by clicking on the text of the name. Displayed alongside this is an indication of the last manual *checkpoint* of the notebook file. On-going changes are auto-saved at regular intervals; the check-point mechanism is mainly meant as a way to recover an earlier version of a notebook after making unwanted changes. Note the default system only currently supports storing a single previous checkpoint despite the `Revert to checkpoint` dropdown under the `File` menu perhaps suggesting otherwise.\n", + "\n", + "As well as having options to save and revert to checkpoints, the `File` menu also allows new notebooks to be created in same directory as the current notebook, a copy of the current notebook to be made and the ability to export the current notebook to various formats.\n", + "\n", + "The `Edit` menu contains standard clipboard functions as well as options for reorganising notebook *cells*. Cells are the basic units of notebooks, and can contain formatted text like the one you are reading at the moment or runnable code as we will see below. The `Edit` and `Insert` drop down menus offer various options for moving cells around the notebook, merging and splitting cells and inserting new ones, while the `Cell` menu allow running of code cells and changing cell types.\n", + "\n", + "The `Kernel` menu offers some useful commands for managing the Python process (kernel) running in the notebook. In particular it provides options for interrupting a busy kernel (useful for example if you realise you have set a slow code cell running with incorrect parameters) and to restart the current kernel. This will cause all variables currently defined in the workspace to be lost but may be necessary to get the kernel back to a consistent state after polluting the namespace with lots of global variables or when trying to run code from an updated module and `reload` is failing to work. \n", + "\n", + "To the far right of the menu toolbar is a kernel status indicator. When a dark filled circle is shown this means the kernel is currently busy and any further code cell run commands will be queued to happen after the currently running cell has completed. An open status circle indicates the kernel is currently idle.\n", + "\n", + "The final row of the top notebook interface is the notebook toolbar which contains shortcut buttons to some common commands such as clipboard actions and cell / kernel management. If you are interested in learning more about the notebook user interface you may wish to run through the `User Interface Tour` under the `Help` menu drop down.\n", + "\n", + "### Markdown cells: easy text formatting\n", + "\n", + "This entire introduction has been written in what is termed a *Markdown* cell of a notebook. [Markdown](https://en.wikipedia.org/wiki/Markdown) is a lightweight markup language intended to be readable in plain-text. As you may wish to use Markdown cells to keep your own formatted notes in notebooks, a small sampling of the formatting syntax available is below (escaped mark-up on top and corresponding rendered output below that); there are many much more extensive syntax guides - for example [this cheatsheet](https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet).\n", + "\n", + "---\n", + "\n", + "```\n", + "## Level 2 heading\n", + "### Level 3 heading\n", + "\n", + "*Italicised* and **bold** text.\n", + "\n", + " * bulleted\n", + " * lists\n", + " \n", + "and\n", + "\n", + " 1. enumerated\n", + " 2. lists\n", + "\n", + "Inline maths $y = mx + c$ using [MathJax](https://www.mathjax.org/) as well as display style\n", + "\n", + "$$ ax^2 + bx + c = 0 \\qquad \\Rightarrow \\qquad x = \\frac{-b \\pm \\sqrt{b^2 - 4ac}}{2a} $$\n", + "```\n", + "---\n", + "\n", + "## Level 2 heading\n", + "### Level 3 heading\n", + "\n", + "*Italicised* and **bold** text.\n", + "\n", + " * bulleted\n", + " * lists\n", + " \n", + "and\n", + "\n", + " 1. enumerated\n", + " 2. lists\n", + "\n", + "Inline maths $y = mx + c$ using [MathJax]() as well as display maths\n", + "\n", + "$$ ax^2 + bx + c = 0 \\qquad \\Rightarrow \\qquad x = \\frac{-b \\pm \\sqrt{b^2 - 4ac}}{2a} $$\n", + "\n", + "---\n", + "\n", + "We can also directly use HTML tags in Markdown cells to embed rich content such as images and videos.\n", + "\n", + "---\n", + "```\n", + "\n", + "```\n", + "---\n", + "\n", + "\n", + "\n", + "---\n", + "\n", + " \n", + "### Code cells: in browser code execution\n", + "\n", + "Up to now we have not seen any runnable code. An example of a executable code cell is below. To run it first click on the cell so that it is highlighted, then either click the button on the notebook toolbar, go to `Cell > Run Cells` or use the keyboard shortcut `Ctrl+Enter`." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Hello world!\n", + "Hello again!\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Alarming hello!\n" + ] + }, + { + "data": { + "text/plain": [ + "'And again!'" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from __future__ import print_function\n", + "import sys\n", + "\n", + "print('Hello world!')\n", + "print('Alarming hello!', file=sys.stderr)\n", + "print('Hello again!')\n", + "'And again!'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This example shows the three main components of a code cell.\n", + "\n", + "The most obvious is the input area. This (unsuprisingly) is used to enter the code to be run which will be automatically syntax highlighted.\n", + "\n", + "To the immediate left of the input area is the execution indicator / counter. Before a code cell is first run this will display `In [ ]:`. After the cell is run this is updated to `In [n]:` where `n` is a number corresponding to the current execution counter which is incremented whenever any code cell in the notebook is run. This can therefore be used to keep track of the relative order in which cells were last run. There is no fundamental requirement to run cells in the order they are organised in the notebook, though things will usually be more readable if you keep things in roughly in order!\n", + "\n", + "Immediately below the input area is the output area. This shows any output produced by the code in the cell. This is dealt with a little bit confusingly in the current Jupyter version. At the top any output to [`stdout`](https://en.wikipedia.org/wiki/Standard_streams#Standard_output_.28stdout.29) is displayed. Immediately below that output to [`stderr`](https://en.wikipedia.org/wiki/Standard_streams#Standard_error_.28stderr.29) is displayed. All of the output to `stdout` is displayed together even if there has been output to `stderr` between as shown by the suprising ordering in the output here. \n", + "\n", + "The final part of the output area is the *display* area. By default this will just display the returned output of the last Python statement as would usually be the case in a (I)Python interpreter run in a terminal. What is displayed for a particular object is by default determined by its special `__repr__` method e.g. for a string it is just the quote enclosed value of the string itself.\n", + "\n", + "### Useful keyboard shortcuts\n", + "\n", + "There are a wealth of keyboard shortcuts available in the notebook interface. For an exhaustive list see the `Keyboard Shortcuts` option under the `Help` menu. We will cover a few of those we find most useful below.\n", + "\n", + "Shortcuts come in two flavours: those applicable in *command mode*, active when no cell is currently being edited and indicated by a blue highlight around the current cell; those applicable in *edit mode* when the content of a cell is being edited, indicated by a green current cell highlight.\n", + "\n", + "In edit mode of a code cell, two of the more generically useful keyboard shortcuts are offered by the `Tab` key.\n", + "\n", + " * Pressing `Tab` a single time while editing code will bring up suggested completions of what you have typed so far. This is done in a scope aware manner so for example typing `a` + `[Tab]` in a code cell will come up with a list of objects beginning with `a` in the current global namespace, while typing `np.a` + `[Tab]` (assuming `import numpy as np` has been run already) will bring up a list of objects in the root NumPy namespace beginning with `a`.\n", + " * Pressing `Shift+Tab` once immediately after opening parenthesis of a function or method will cause a tool-tip to appear with the function signature (including argument names and defaults) and its docstring. Pressing `Shift+Tab` twice in succession will cause an expanded version of the same tooltip to appear, useful for longer docstrings. Pressing `Shift+Tab` four times in succession will cause the information to be instead displayed in a pager docked to bottom of the notebook interface which stays attached even when making further edits to the code cell and so can be useful for keeping documentation visible when editing e.g. to help remember the name of arguments to a function and their purposes.\n", + "\n", + "A series of useful shortcuts available in both command and edit mode are `[modifier]+Enter` where `[modifier]` is one of `Ctrl` (run selected cell), `Shift` (run selected cell and select next) or `Alt` (run selected cell and insert a new cell after).\n", + "\n", + "A useful command mode shortcut to know about is the ability to toggle line numbers on and off for a cell by pressing `L` which can be useful when trying to diagnose stack traces printed when an exception is raised or when referring someone else to a section of code.\n", + " \n", + "### Magics\n", + "\n", + "There are a range of *magic* commands in IPython notebooks, than provide helpful tools outside of the usual Python syntax. A full list of the inbuilt magic commands is given [here](http://ipython.readthedocs.io/en/stable/interactive/magics.html), however three that are particularly useful for this course:\n", + "\n", + " * [`%%timeit`](http://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=matplotlib#magic-timeit) Put at the beginning of a cell to time its execution and print the resulting timing statistics.\n", + " * [`%precision`](http://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=matplotlib#magic-precision) Set the precision for pretty printing of floating point values and NumPy arrays.\n", + " * [`%debug`](http://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=matplotlib#magic-debug) Activates the interactive debugger in a cell. Run after an exception has been occured to help diagnose the issue.\n", + " \n", + "### Plotting with `matplotlib`\n", + "\n", + "When setting up your environment one of the dependencies we asked you to install was `matplotlib`. This is an extensive plotting and data visualisation library which is tightly integrated with NumPy and Jupyter notebooks.\n", + "\n", + "When using `matplotlib` in a notebook you should first run the [magic command](http://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=matplotlib)\n", + "\n", + "```\n", + "%matplotlib inline\n", + "```\n", + "\n", + "This will cause all plots to be automatically displayed as images in the output area of the cell they are created in. Below we give a toy example of plotting two sinusoids using `matplotlib` to show case some of the basic plot options. To see the output produced select the cell and then run it." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "nbpresent": { + "id": "2bced39d-ae3a-4603-ac94-fbb6a6283a96" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAEPCAYAAADI01d4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4U2Ubx/Hvk3S3tKW0hVI2tJXdMkVRi7JUBEWmoKIo8ioi7r1f98aNqKDIEkRARRSkoiJ7b8oum5bunTzvHydqX2yhgTYnae/PdeXiJDkn+fUhbe+e8wyltUYIIYQQ4nQWswMIIYQQwj1JkSCEEEKIUkmRIIQQQohSSZEghBBCiFJJkSCEEEKIUkmRIIQQQohSSZEghBBCiFJJkSCEEEKIUkmRIIQQQohSeZkdwB2EhobqZs2amR3DLeXk5BAYGGh2DLckbVM2aZuySduUTdqmbBXdNmvWrDmptY44235SJAC1a9dm9erVZsdwS0lJSSQmJpodwy1J25RN2qZs0jZlk7YpW0W3jVJqf3n2k8sNQgghhCiVFAlCCCGEKJUUCUIIIYQolRQJQgghhCiVFAlCCCGEKJVbFglKqc+UUseVUpvLeF4ppcYrpZKVUhuVUu1KPHezUmqX43az61ILIYQQVYtbFgnAJKD3GZ6/Eohx3EYBHwIopcKAp4HOQCfgaaVUzUpNKoQQQlRRbjlPgtZ6qVKq0Rl26Qd8obXWwHKlVKhSKgpIBH7WWqcBKKV+xig2pp3p/fzzDsO0G8AnAHwCwTcYQhtAzcZQsxGE1gcv3wr4yoQzbHbNgbRcDqfncTg9j6MZ+RzJzCcjr4him50im6bIZsdm1wT6ehHi7/33LaKGL00jgmgaEUhYoA9KKbO/HCGEcI3iQsg4CKf2Gbf0/ZCfAYW5UJQLhTnlfim3LBLKIRo4WOJ+iuOxsh7/F6XUKIyzELSPssCO78t8M40iNyCazOBYMoPjyAyOIzegAdpiPc8vw/1lZ2eTlJRU6e+jteZYriY53ca+DDv7M+0cyLJTYDv/1w70hqhAC01DLMSGWYmtaaWGz/kXDa5qG08kbVM2aZuySduUrcy20TYCc1IIztzx9y0g9xAKe4W8r6cWCaX9hNdnePzfD2o9AZgA0LJZfc2g9/+psPLSIP2Aowrbj8pIITDXuEUd/cV4AZ8a0OxyiLsaYnpAQFiFfGHupjJnQMstLGb5nlSSdpwgaccJDqTl/WufqBA/6ocFUDfEjzoh/kSF+BEa4I2P1YK31YKXVWG1KHIKisnIK/r7diQ9n90nstlzIoesgmKS0+0kp9tZuL8YgJjIIC5qWoveraLo1DgMq8X5okFmhyubtE3ZpG3KJm1Ttv9rm7x0SF4EO36AXYugIOP/d1YWCG4ANRsat9BGEFATfILAO8A4a/5sj3K9r6cWCSlA/RL36wGHHY8nnvZ40tlerNgaAC36nmGHQji2GVJWQ8pKSFllFBBb5xo3ZYUGXaDltdB6IPiHOv8VVRPFNjtLd51g9ppD/LztGIXF/1S7oQHeXNi4Fq3rhdA6OoSWdYOpFXR+l3m01pzILmDH0SxW7zvFyr1prD1wil3Hs9l1PJvJf+4nPMiHni3rcFWrKLo0rXVOBYMQQlQma3EurJkEm7+B/X+AvfifJ0MaQL0OUL8T1OsIdVpX2CVyTy0S5gFjlFLTMTopZmitjyilFgIvluis2BN49LzfzcsHotsZt86jjMfSD8COBUYlt+932O+4/fQEtLgW2t9sFA5yLRyAnceymLnqIN+uP8zJ7ALAaJq29UK4LC6SxLgI2tYLrfBf0EopImv4EVnDj0tijLVMCovtbExJZ/H24/yw6Qj7U3OZuuIAU1ccIDrUnxs6N2BQh/pE1JB+KEIIE2lt/FG6djIXbZgF9nzjcWWFRpdA3JXGLaxJpUVwyyJBKTUN44xAuFIqBWPEgjeA1voj4AfgKiAZyAVucTyXppR6HljleKnn/urEWOFCG0DnO4xbXjrs+gnWTYG9v8LG6cYtPBa63AVth1bLjo9aa5btTmXC0j38uvPE3483iQjk+nb1uC4hmrqh/i7P5eNloUOjMDo0CuOhXnFsO5LFgs1HmLv+MAfScnlt4Q7eXrST3q2iGHFRQ9o3rJqXkoQQbspWBJu+hmXvwvGtAFgBGl4M8cOMwsBFl7jdskjQWg89y/MauKuM5z4DPquMXGXyD4U2g4xb2h6jWFj3FZzcCfPvgaSX4aK7od3N4Bvk0mhmKLbZ+X7TESYs3cOWw5kA+Htb6d8umoEd6tO2XojbjDZQStGibjAt6gZzb/dYfks+yZTl+1m87RjzNxxm/obDdGlSi3u6x3Bhk1pmxxVCVGVFebD2S1g23hidABAQDvE3sKI4js5XDXd5JLcsEjxaWBO44ilIfAy2fgu/vWFUggsfg6WvQZcxxtkFb9f/BV3ZtNb8tPUYry3cQfLxbADCg3wYcVEjhnVuSM1AH5MTnpnForgsNoLLYiM4lJ7H1BX7+eLP/fy5J5U/J6TSuXEY93SPoUuTWm5T5AghqoDiAlg5Af54B3IcZ13DY6HrvdBqAHj5kGfSqA8pEiqL1QtaD4CW/WHXQqNYSFkFvzwPqz8zConWg8DirvNZOWfl3jReXrCNtQfSAWgQFsB/EptyXUI0ft6eN1Q0OtSfB3tdwKhLmzLpj318+vseVuxN44ZPVnBJTDhP9WlhdkQhhKfTGrbMgUXPGHMZAETFwyX3wwV93OL3gxQJlc1iMa4fxfaGPUnw85NwdBPMuQOWfwi9XoBGXc1Oec4OpuXy7PytLNp2DIBagT6MvSKGoZ0a4ONl/gf8fIX4e3NP9xhu6dqISX/s45Pf9vDbrpP0fuc3Lq9vJaFTESEB3mbHFEJ4moMrYeHjxog5gIgLoMdzENPTrTq8S5HgKkpB027Q+FfYMN04o3BkPUy62jij0PslCAw3O2W5FdnsTPxtL+8s3kl+kZ1AHyu3X9qE2y5pQpBv1ftYBft5M/aKGIZ1bsCbP+9k2soD/Ly/mMTXl3B/zzhu6NQAiwydFEKcTd4p+OlJWPelcT8wAro9Bgk3GWeg3Yz7JarqLFZIGGbMqbDsPfj9Tdg005gYo9eL0HaIW1WRpVm5N40nvt3EzmNGv4Nr2tblyaubExnsZ3KyylcryJcXrmvNsM4NuW/KH2xPK+KJbzczb/1hXhnQhsbhgWZHFEK4o78uLSx4GHKOg9XH6NDe9V7wrWF2ujJJkWAWn0BIfBjaDIT544yhk9+Oho0zoM9bENbY7IT/kldo46UF2/jiT+PaWcNaATzfrxWXxkaYnMz1WtQN5uGOfuTWuoCn521h5b40er+9lAd6xnFr18YyIZMQ4h8ZKfD9/bDzR+N+gy5wzTsQEWdurnLw/IvGni6sCdw0F/p9AP41Yc8S+KirMYRSlzqjtCnWH0zn6vG/8cWf+/G2KsZe3oyF4y6tlgXCX5RSXN0mikX3XUr/dtEUFNt54Ydt9P9w2d+jO4QQ1dymWfDBRUaB4Bts/BE44gePKBBAigT3oJRxCeKuVcZsjYXZMPdOmHWLcf3KRDa75p1Fu7j+w2XsOZlDbO0gvr3rYu7rGeeRoxYqQ2iAD28OiufzER2pE+zHhoPpXPPu78xcfRDtRoWeEMKFCrJgzn9g9khjbYXYK+GuldDhVrcYtVBenpO0OgiKgIGTjLMK3oHG9asPu8K+P0yJcyg9jxdX5PPWop3Y7JrbujZm3piutKwbYkoed9ftgkh+uu9SrkuIJq/IxkOzNnLP9PVk5ReZHU0I4Uopq40zwhumgpc/XP0mDJ0GwVFmJ3OaFAnu5q+zCqN/g7rtIDPFGAGx9DWwV8zSn+Xx684T9Bn/G7sz7ESF+DH1ts480aeFnD04i2A/b94aHM8bA9sS4GNl3obD9Hn3dzampJsdTQhR2bSGP9+HT3saiwDWbg13/AodR7p9h/SySJHgrmo1hZE/GZNqAPzyX5gxHPIzznzcebLbNW8v2smIz1dyKreI1uFWfhh7CRc185zhme7g+vb1mH93V1pEBbM/NZfrP1zG9JUHzI4lhKgshTnGpYWFj4G2wYV3we2LPabvQVmkSHBnVm9jZsYbZoBfCOz4Hj65HI5vr5S3O5VTyIhJq3h70S4A7usRy73tfd1+OmV31TQiiG/uvIibujSkyKZ55JtNPPnt5v9bHlsIUQWk7oaJ3WHzbPAJgkFfQO8Xq8TCflIkeILYXjAqCSJbQmoyTLwCts6r0LdIPp7NtR/8wdKdJ6gZ4M3kWzox9ooYLB56isxd+Hlbea5fK14d0AYfq4Uvl+9n+MQVnMgqMDuaEKIi7PwJJnQz1uipFQO3/wIt+pmdqsJIkeApwprAbT8bi30UZsPMG+H3typkmOTvu05y3Qd/sD81l5Z1g/lu7CXVemhjZRjUoT4z7riQ2sG+rNyXRt/3fmfzocq9dCSEqGQrPoZpg43RCxf0MQoED7+8cDopEjyJTyBcPxF6PA8oY1GQ+WONtcfP0ZTl+7n585Vk5RfTs0Vtvh7dhejQqrdCpTtIaFCT+WO60q5BKEcy8hn08Z8s2X7c7FhCCGfZbcbMiQseAm2HxEdh8BTwCzY7WYVzyyJBKdVbKbVDKZWslHqklOffUkqtd9x2KqXSSzxnK/FcxZ6TdwdKwcVjjWteXv6w9gv4aoDTHRrtds1z87fyxLebsdk1/0lsykfD2xPgI5NwVqbIYD+mjbqQ/gnR5BbauO2L1UxdIR0ahfAYBdkwfRis+MiYWvm6CZD4iMeOXjgbt/uNoJSyAu8DPYAUYJVSap7Weutf+2it7y2x/91AQomXyNNax7sqr2la9IXgaONU154kY8jNsFkQWv+shxYU27h/5ga+23gEb6vixetaM7DD2Y8TFcPXy8obg9oSXdOfd39J5rE5mziUnssDPeNQVfQHjRBVQtZR+GogHN1ozJA7+CtodLHZqSqVO55J6AQka633aK0LgenAmXqBDAWmuSSZu6nXHm5bbCwxemI7fNYLTuw84yHZBcWMnLSa7zYeIcjXi8m3dpICwQRKKe7vGcdL/VtjtSjeX7Kb+2ZuoMgmIx+EcEtpe42fsUc3Gn3ERi6q8gUCuGeREA0cLHE/xfHYvyilGgKNgV9KPOynlFqtlFqulLq28mK6iZoN4daFUP9CyDwEn/eGw+tK3TU1u4AbPlnO78knCQ/yZfqoC7moqcx/YKahnRow8eYOBPhYmbPuEKO/XEN+kc3sWEKIko5tgc96GxMkRcXDyJ8hvJnZqVxCudvc8kqpgUAvrfVtjvs3Ap201neXsu/DQL2Szyml6mqtDyulmmAUD1dorXeXcuwoYBRARERE+5kzZ1bOF+QiFlsBLbe8Qq20NRRb/dnc6nHSa7b++/mTeXZeX5XP0VxNhL/iwY5+RAacvUbMzs4mKCioMqN7rIpsm70ZNt5YnU92ETQPszC2nR/+Xp576UE+N2WTtimbO7ZNcMZ2Wm96Du/iHE6FtmJzq8exeQW4PEdFt023bt3WaK07nG0/dywSugDPaK17Oe4/CqC1fqmUfdcBd2mtl5XxWpOA77TWs870nnFxcXrHjh3nG918xYXGctObZ4PV11gH4oKr2J+aww2frOBQeh4tooKZdGtHImv4leslk5KSSExMrNTYnqqi22bnsSyGT1zB8awC4uuHMumWjoQGeOZEVvK5KZu0Tdncrm2SFxsz3RblQtxVMOBz8C7fz86KVtFto5QqV5HgjpcbVgExSqnGSikfYAjwr1EKSqk4oCbwZ4nHaiqlfB3b4cDFwNbTj62yvHyg/yfQYSTYCmDmjRxdPoPBHy/nUHoe7RvWZPodF5a7QBCuFVu7Bl+P7kK9mv6sP5jOkAnLOZ6Vb3YsIaqnnT/BtCFGgdD2Bhj0pWkFgpncrkjQWhcDY4CFwDZgptZ6i1LqOaVU3xK7DgWm6/8/FdIcWK2U2gAsAV4uOSqiWrBY4eo34OJxYC8m/MfRtMtOolPjMCbf2olgP2+zE4ozaFgrkK9Hd6FpRCDbj2YxVAoFIVxvx48wYxjYCqHj7dDvfbC63WBAl3C7IgFAa/2D1jpWa91Ua/2C47GntNbzSuzzjNb6kdOOW6a1bq21buv491NXZ3cLSrG91X18qvrjhZ13fd7jy84pBPlWzw+5p4kK8WfGHV24oE4Ndp8wLhXJNM5CuMj2H4xLDLZC6DwarnoNLG75q9Ilqu9XXoXtOJrF0E9W8Hze9cwNHoYVO75zR8GmM3bNEG4kPMiXr27rTFztGiQfz+aGT5ZzMlsKBSEq1bbvYOZNYC+CC++E3i9X2UmSykuKhCpm94lshk1czqncIrrFRdJrzHi47BFj6tBvbjc6NQqPUCvIl69u70xs7SB2OQqFVCkUhKgcOxbA1zcbBUKXMdDrxWpfIIAUCVXKgdRchn2ygpPZhVwSE86Hw9vj5+MF3R415hbXdvhmlPHNIDxCeJAvU2+/kJjIIHYey+aGT1ZwKqfQ7FhCVC27lzjOIBTDRXdDz/9KgeAgRUIVcSg9j6GfLOdoZj6dGocx4cYO+Hlb/9nhsof/7szIzJuNqZyFR/irUGgWGcSOY1mOBbnOfVEvIUQJB5bD9BuMPgidRhkL6EmB8DcpEqqA45n5DPvEGOaY0CCUz0Z0xN/H+v87KQXdnzF66toKYNpQ45tDeISIGkYfhfph/mxMyeC2yatlZkYhztfhdcZaDEW5ED8Mer8iBcJppEjwcBm5Rdz46Ur2pebSKjqYSbd0KnsUg1Jw5avGN0NRrvHNcXi9awOLc1Y72I+vRl5IZA1fVuxN466v1spaD0Kcq+Pb4Mv+UJAJLa6Fvu9W61EMZZEW8WB5hTZGTl7FjmNZNIsM4otbOxPif5Z5ECwWuGY8tOhnfHNM6Q8nk10TWJy3BrUCmHJbZ2oGeLN4+3Hum7kBm929Zk0Vwu2d2g9fXAt5aRDTy5iEzmI9+3HVkBQJHqrIZueuqWtZvf8UdUP8+OLWToQFlnMKX6sX9J8IzbpDbipMuc5YAlV4hNjaNZh8q3HGaP6Gwzw9bzPuNr26EG4rJ9X44yj7KDTsCoMmG7PVilJJkeCBtNY8MnsTv2w/Ts0Ab74Y2Zm6of7OvYiXDwz6AqLbQ/oBmDIA8jMqJ7CocG3qhTLx5g74eFmYsvwA7y+Rs0FCnFVhDkwdCKnJULsVDJ0K3k7+7KxmpEjwQC8v2M7stSkE+Fj5/JZONIs8x5XBfALhhq+hVjM4tgmmD4MimQLYU1zYpBbjh8SjFLz+006+Xn3w7AcJUV3ZioyRXYfWQEgDGDYL/ELMTuX2pEjwMJ//sZePl+7B26r4aHh74uuHnt8LBtaC4d9AUB3Y9xvMGQV26TXvKXq3iuKZa1oC8Mg3m1iy47jJiYRwQ1rDvLsh+WfwD4Mbv4HgKLNTeQQpEjzIwi1Hee47Y72q1wa05dLYiIp54ZoNYfhs8A2GrXNh4WMV87rCJW6+qBH/SWyKza65c8paNhxMNzuSEO7ll+dhwzTwDjDOIITHmJ3IY0iR4CHWHTjF2Gnr0Boe6BnLtQnRFfsGdVrB0Glg8YYVH8Hyjyr29UWleqhXHP0ToskrsnHrpFUcSM01O5IQ7mHtl/DbG6CsRj+seu3NTuRRpEjwAPtTc7ht8moKiu0M6Vifu7o1q5w3atTVWBIV4MdHjNXQhEdQSvHKgDZcEhNOak4ht0xaSUaezMooqrndS+C7ccb21a9DTA9z83ggKRLc3KmcQkZ8vorUnEIujY3g+WtboSpzRrC2gyHxMUDD7JEEZUmveU/hbbXw/rB2xNYOYveJHO78ao1MtiSqr2NbS6zHMBY63Gp2Io8kRYIbKyy2c8eUNew9mUPzqGA+GNYOb6sL/ssuewja3gBFubTe9F9jiKTwCMF+3nw2oiPhQb78kZzKE3NkDgVRDWUdhamDHLMp9oPuz5qdyGO5ZZGglOqtlNqhlEpWSj1SyvMjlFInlFLrHbfbSjx3s1Jql+N2s2uTVxytNY/P2cTKvWnUDvbl8xEdy55uuaIpBde8A40uwbfwFEwdDPmZrnlvcd7q1Qxg4s0d8PWyMGP1QT76dY/ZkYRwncJcmDYEMg5CvY5w3ccy3fJ5cLuWU0pZgfeBK4EWwFClVItSdp2htY533CY6jg0DngY6A52Ap5VSNV0UvUJ98tsevl6Tgp+3hYk3daROiJ9rA3j5wOAvyQmoB8e3wje3y9BIDxJfP5S3BscD8MqP21mw6YjJiYRwAa1h7l3Gwk2hDWHINJks6Ty5XZGA8cs9WWu9R2tdCEwH+pXz2F7Az1rrNK31KeBnoHcl5aw0i7Ye46UF2wF4c1A8reuZNOGHf002t3oC/EJh54+wWE7ZeZKrWkfxcO8LALh35no2H5IZNUUVt/Q12PIN+NSAG2ZAUAUNE6/G3LFIiAZKTh2X4njsdNcrpTYqpWYppeo7eazb2nYkk3um/zPU8arW5k74kRcQZQwbsnjBH+/A+qmm5hHOGX1ZE65vV4/8IjujvljNiawCsyMJUTm2zoUlLwAKBnwKkc3NTlQluOgit1NK67p/es+r+cA0rXWBUmo0MBm4vJzHGm+i1ChgFEBERARJSUnnHLiiZBZonv0zj5xCTZcoKy1VCklJh0zNlJ2dTdKBIOo2vY3YXR9hn3s36/dnkBki34DZ2dlu8bk5m161NOtDLOzOyGfo+7/wcCc/vC2VOEIGz2kbM0jblO1c2yYoaw8J6x7GCuxucjMHD/vCYedfx52Z9blxxyIhBahf4n494HDJHbTWqSXufgK8UuLYxNOOTSrtTbTWE4AJAHFxcToxMbG03VymyGZn2MQVpObnktAglM9vvxA/b/OXLk1KSsJom0T43oZl1Se02/kG3L4EQuuf5eiq7Z+2cX/xnfLp994fJKfn81NqGK8OaFOpQ2k9qW1cTdqmbOfUNlnH4JM7wV4I8cNp2u9tmlbmMHGTmPW5ccfLDauAGKVUY6WUDzAEmFdyB6VUyXPwfYFtju2FQE+lVE1Hh8Wejsfc3nPzt/49kuHj4e3dokD4l94vQ5NEyDkBM4ZBUZ7ZiUQ5Rdbw45ObOuDnbeHrNSl89sc+syMJcf6KC425EDIPQf0Loc+bxugsUWHcrkjQWhcDYzB+uW8DZmqttyilnlNK9XXsNlYptUUptQEYC4xwHJsGPI9RaKwCnnM85tamrzzAl8v342O18NHw9kQGu3gkQ3lZvWDA51CzERzZAPPvMXoTC4/QKjqE1we2BeCF77fy+66TJicS4jz9+DAcXA7B0TD4S/DyNTtRleN2RQKA1voHrXWs1rqp1voFx2NPaa3nObYf1Vq31Fq31Vp301pvL3HsZ1rrZo7b52Z9DeW1Zn8aT87dDMAL17UioYGbj9gMCIMhU8E7EDbOgOUfmJ1IOKFPm7rcfXkz7BrGTFvLwTRZ40F4qDWTYPVnYPWFwVMgKNLsRFWSWxYJ1cXRjHxGT1lLkU0z4qJGDOzgIdf4a7eEax3FwU9Pwp4kU+MI54zrHku3uAjSc4u448s15BXK/BfCwxxYAd8/YGxf8zZEtzM3TxUmRYJJCoptjJ6yhhNZBXRpUovHr/aw0QItr4VL7gdtg69vgVP7zU4kyslqUbw9JIFGtQLYeiSTR7/ZKFM3C8+ReQRm3gj2Iug8GuJvMDtRlSZFgkmem7+V9QfTiQ71531XrclQ0bo9Ds16QF6a0ZGxUE5de4oQf28+vrEDAT5Wvl1/mM+lI6PwBH91VMw+Bg27Qs//mp2oyvPA30ye7+vVB/lqxQF8vCx8OLwdYYE+Zkc6NxYrXD8RwprA0U3w/X3SkdGDxNWp8U9Hxh+28efu1LMcIYTJFj4GKSshuB4MnARWb7MTVXlSJLjY5kMZPP6t0VHx+X4taVMv1ORE58k/1Og05OUPG6YZHYmEx7iqdRSjL2uKza65e9pajmbkmx1JiNJtmAGrPgGrjzELrEy57BJSJLjQqZxCRk9ZQ2GxnaGd6jO4YwOzI1WM2i2h73hje8HDkLLa3DzCKQ/2iuPiZrU4mV3IXVPXUlhsNzuSEP/v6GZjyDXAla9Cvfbm5qlGpEhwEZtdc8+M9aScyqNtvRCe6dvS7EgVq80g6DTK6Ew08ybIkTH4nsJqUYwfkkBUiB9r9p/ipQXbzn6QEK6Slw4zhkNxHsQPg/YjzE5UrUiR4CLv/rKLpTtPEBbowwfD2+Pr5YYzKp6vni9AvU7G7GezbpWlpT1IrSBfRwdaxed/7GP+hsNnP0iIyma3w5zRcGov1GkNV78hMyq6mBQJLrB05wneWbwLpeCdIfFEh1bR9c29fGDQZAiMgL2/OlZkE56iXYOaPHF1CwAenr2R5ONZJicS1d4fb8POBeAXAoO+BO8q+rPTjUmRUMmOZOQxbsZ6tIZxV8RySUwV72wTXBcGfAbKAr+9Abt+NjuRcMJNXRrSL74uuYU27vhyDdkFxWZHEtXVvt/hl+eN7f6fQFhjc/NUU1IkVKIim527vlpLWk4hl8ZGcPflzcyO5BqNLzXmUAD45nZIP2huHlFuSile6t+a2NpB7D6Rw+NzNslES8L1so4Zlyy1HbreB7G9zE5UbUmRUIleXrCdtQfSiQrx4+3B8Vgs1ehaWtf7HBMtnYJZtxiToAiPEODjxQfD2hHgY2Xu+sNMXXnA7EiiOrHbYPbIfyZM+usPDmEKKRIqyYJNR/j09714WRTv3eDBEyadK4sF+k8wJj1JWQWLnjY7kXBCs8gavNS/NQDPzt/K5kMZJicS1UbSS7DvNwiMhAGfGqvPCtNIkVAJDqTm8tCsjQA8elVz2jd085UdK0tAmDErmsXbWC1y61yzEwkn9IuPZminBhQW27lr6loy84vMjiSquLDUtbD0NaNP04BPoUYdsyNVe1IkVLCCYht3TV1LVkExvVvW4daLG5kdyVz1O0JPR+ejuWMgbY+5eYRTnr6mBS2igtmfmsvDs2QhKFGJMg7RfNubxna3x4y+TcJ0UiRUsJd+2M6mQxnUD/PnlQFtUDKm11iprfk1UJBprBhZXGB2IlFOft5WPhjWjiBfLxZsPsqkZfvMjiSqIlvDXcQxAAAgAElEQVQxzB6Jd3EWNL0Cut5vdiLh4JZFglKqt1Jqh1IqWSn1SCnP36eU2qqU2qiUWqyUaljiOZtSar3jNs+VuRdsOsKkZfvwtireG9qOEH9ZfAQwJj/p+x6ENoAj6+Hnp8xOJJzQKDyQVwe0AeDFH7axMSXd5ESiykl6EQ78SYFPmNGXyeKWv5qqJbf7n1BKWYH3gSuBFsBQpVSL03ZbB3TQWrcBZgGvlnguT2sd77j1dUlo/r8fwmNXNadtfQ9fuKmi+YfCgElG/4QVH8FWl9Zv4jxd1TqKm7o0pMimGTN1nfRPEBUneZExp4qysLXFAxAYbnYiUYLbFQlAJyBZa71Ha10ITAf6ldxBa71Ea53ruLscqOfijP+nZD+EXi1rM+KiRmbGcV/12kOPZ43tuWPg1D5T4wjnPHZVc1pEBXMgLZdHv5H5E0QFyDwC39xhbCc+RkZoFVvTpgpQ7vaNrpQaAPTWWt/muH8j0FlrPaaM/d8Djmqt/+u4XwysB4qBl7XW35Zx3ChgFEBERET7mTNnnnPmqdsK+Gl/MeH+imcv8ifQu+r0Q8jOziYoKKjiXlBrWm1+kfDUlWTWiGFdwktoi2delqnwtvEAR3PsPLMsj3wbjGjpQ2L90v/vqmPblJe0jUHZbbTd8BShGZtJq9mWjW2eJjsnT9qmDBX9uenWrdsarXWHs+3njgNQS/sNW2olo5QaDnQALivxcAOt9WGlVBPgF6XUJq317n+9oNYTgAkAcXFxOjEx8ZzCLtp6jJ9+XI2XRTHx1ouIr2KXGZKSkjjXtilT57bw8aUEZ+zisqIk6OWZazxUStt4AP/oQ9wzfT3TdhQzuHtnmkcF/2uf6to25SFt47DkJcjYDEG1CRs5i8SgSGmbMzCrbdzxckMKUL/E/XrAv5akU0p1Bx4H+mqt/+4ur7U+7Ph3D5AEJFRW0MPpeTwwawMAD/WOq3IFQqUJCHOs72CFP9+DnT+ZnUg4oV98NEM61qfAMX9CjqzvIJy19zdY+iqgjHUZgiLNTiTK4I5FwiogRinVWCnlAwwB/q+Xm1IqAfgYo0A4XuLxmkopX8d2OHAxsLUyQhbb7Iybvp703CIS4yK4rWuTynibqqt+J7j8CWP729HGtUnhMZ6+piWxtYPYcyKHp+dtMTuO8CQ5qcaaLtoOlz4ATS47+zHCNG5XJGiti4ExwEJgGzBTa71FKfWcUuqv0QqvAUHA16cNdWwOrFZKbQCWYPRJqJQiYfziXazcl0ZkDV9eH9i2eq3LUFEuHgdNukGu44eG3WZ2IlFO/j5W3ruhHX7eFmatSeHbdYfMjiQ8gdbw7X8g6wjUvxAu+9cId+Fm3K5IANBa/6C1jtVaN9Vav+B47Cmt9TzHdnetde3ThzpqrZdprVtrrds6/v20MvIt232Sd5ckoxS8PTie8CDfynibqu+v9R0CI4252n970+xEwgmxtWvw9DVGb/TH52xi38kckxMJt7f8Q9i1EPxC4fqJsi6DB3DLIsGdpeUUMm76erSGu7s146JmMqb3vARFQv+Pje2kF2H/MnPzCKcM6Vifq1tHkVNo4+5p6ygstpsdSbirw+v+mUit3/sQWv/M+wu3IEWCE7TWPPj1Bo5nFdCxUU3GXhFjdqSqoenl0PVe4xrl7NsgN83sRKKclFK82L819Wr6s+lQBq/+uN3sSMIdFWTBrFvBXgSdRkHzPmYnEuUkRYITJi3bx+Ltxwnx9+btIQl4WaX5Kky3x6FeR8g8BPPuNq5dCo8Q4u/N+KEJWC2Kib/v5Zftx8yOJNzN9w8Yi7vVbg09njc7jXCC/JYrpy2HM3jpB+OvpFeub010qL/JiaoYq7dxjdI3GLZ/B6s/MzuRcEK7BjV5oGccAA98vZH0fLnsIBw2TIeN08E7wBj67O1ndiLhBCkSyiG3sNi43mqzM6xzA3q3ijI7UtVUsxFc87axvfAxOFYpA1NEJbnj0iZ0bRZOWk4hn2wqwG6Xs0HVXupu+N6xouOVr0BErLl5hNOkSCiHZ+ZtYc+JHGJrB/Fkn9PXmhIVqtX1ED8civONa5hFeWYnEuVksSjeHNSWsEAftqTamfDbHrMjCTMVF8LskVCYDS2vg4QbzU4kzoEUCWcxf8NhZq5OwdfL4hgXbjU7UtV35StQqxmc2AYLHzc7jXBCZLAfrw80lpV+feEONhyUZaWrrV+eN0Y0hDSAPm8bS8YLjyNFwhkcTMvlsTmbAHiyTwtia9cwOVE14RtkXLu0+sDqT2HbfLMTCSdcfkFtejT0otiuGTt9HdkybXP1k7wYlo03pl6/fqKxVLzwSFIklKHYZmfcjPVk5RfTs0VthnVuYHak6iWqLXR3LCs9727IkBn9PMnAWB+aRwWzPzWXp77dbHYc4UrZJ2DOaGM78VFo0NncPOK8SJFQhvG/JLNm/ynqBPvxyvVtUHKqzPU6j4Zm3SHvFMy5Q6Zt9iA+VsW7Q+Px87bwzbpDMm1zdaE1zL0Tco5Dw65wyX1mJxLnSYqEUqzcm8Z7v+xCKXhrcDw1A33MjlQ9WSxw7Yf/TNv8+1tmJxJOaBb5z7TNT3y7mQOpuSYnEpVuxcew6ydj2uX+H4NF+nB5OikSTpORW8S46euwa7gzsSldmtYyO1L1FhRpFAoAS16Eg6vMzSOcMqRjfa5sVYfsgmLGTl9HkU3mT6iyjm6Cn580tvu+CyH1zM0jKoQUCSVorXnkm40czsgnvn4o47rLmF63ENMdLrwLtM0YUpWfaXYiUU5KKV7q35qoED/WH0znnUW7zI4kKkNhLswaCbZCaD8CWvQ96yHCM0iRUMKMVQdZsPkoQb5ejB+SgLdMu+w+uj8NddpA+v5/JmcRHiE0wIe3B8ejFLyflMzyPalmRxIVbeFjcHIHhMdBr5fMTiMqkPwWdEg+ns2z840Z/l64rhUNagWYnEj8Hy9fx5SuAbBpJmyYYXYi4YTOTWoxplsztIZ7Z6wnPbfQ7EiiomybD2s+N4YsD/gUfORnZ1Vy1iJBKTXEFUFOe8/eSqkdSqlkpdQjpTzvq5Sa4Xh+hVKqUYnnHnU8vkMp1as876eBe6avI6/IRv+EaPrFR1fY1yIqUHgM9H7Z2P7+fmPBGOExxl4RQ0KDUI5k5PPw7I1oWcTL82U4FmQD6PEc1Gltbh5R4cpzJuELpdQvSimXzEeslLIC7wNXAi2AoaW890jglNa6GfAW8Irj2BbAEKAl0Bv4wPF6Z3QqX7PlcCYNwgJ4tl/LivtiRMVrdxM07wuFWTD7drAVmZ1IlJO31cL4IQnU8PVi4ZZjTF910OxI4nzYbcbQ5LxT0KyHMWRZVDnlKRLaA97AOqXU60qpoErO1AlI1lrv0VoXAtOBfqft0w+Y7NieBVyhjIkM+gHTtdYFWuu9QLLj9c4os1BjtSjeGRJPDT/vCvtCRCVQCvqOh+B6cGg1JL1sdiLhhPphAfz3ulYAPDt/C8nHs01OJM7ZH+8YQ5MDI+DaD2TaZQ+SV1j+OWfOWiRorTdprS8BRgHDgR1KqaHnHu+sooGSf2KkOB4rdR+tdTGQAdQq57Gluq9HLAkNap5jZOFS/jWh/wRAwW9vwL7fzU4knNAvPpr+CdHkF9kZO20dBcUySZbHSVkDS14wtq/9yBiqLDzGCz+Uf4Vdr/LuqLWerJT6FngR+FIpNQoYo7Xe4nzEMyqtHD394mVZ+5TnWOMFjPyjAAJqN6I5B0lKSnEmZ7WQnZ1NUlKS2TFK1ajhQBrtn0n+tJtY3eEdir1du7aGO7eN2c7WNj1qaX7zV2w9ksnYiYsYeoGv68KZzNM/N9biXDqsvhd/ezEH6/Vl9yEvOJRUIa/t6W1TmSqqbdYeK2bKuoJy71/uIgFAa50B3KWUmgh8gXEJ4l3gGa11llNJy5YC1C9xvx5wuIx9UpRSXkAIkFbOYwHQWk8AJgA0i43Tl3frViHhq5qkpCQSExPNjlG6Sy6Gz/fil7KKrmkzYNCXLj3l6dZtY7LytE1UXDoDPlzGwn3F3HB5Oy6LjXBNOJN5/Odmzn8g/yjUbk39EROp71VxBZ7Ht00lqoi2OZqRz7h3ljp1TLmGQCqlvJVSnZRSY5VSU4HZGJ0DvYC7gO1KqYqaPWMVEKOUaqyU8sHoiDjvtH3mATc7tgcAv2ijq/Q8YIhj9ENjIAZYebY3tMqlNM9k9TZWmPMNNoZhrf3C7ETCCfH1Q7m3hzFh2f0zN3Ayu/x/3QiTbJoFG6aCl78x3LECCwRRuWx27Rh+XMSlThTk5RkCuQzIBP4E3gBigfnAYIy/1CMxOhfOUkqdd/dWRx+DMcBCYBswU2u9RSn1XIlC5FOgllIqGbgPeMRx7BZgJrAV+BG4S2stFzyrspqN4Oo3je0fH4ETO02NI5wz+rKmXNgkjJPZBTz49QYZFunOTu2D7+41tnu/BBFxpsYRzpmwdA9/7kklPMiHNwa2Lfdx5TmTkA28BPQEQrXWHbTW92itv9ZaH9ZaZ2qt7weeAB47p/Sn0Vr/oLWO1Vo31Vq/4HjsKa31PMd2vtZ6oNa6mda6k9Z6T4ljX3AcF6e1XlAReYSbazMQ2gyBolxj2uZi+YvUU1gtircGxxMa4M2SHSeYtGyf2ZFEaWzFxpDjgky4oI8x9bLwGBsOpvPGTzsAeG1AWyJqlP8MUHlGN/TUWj+ntV6stc45w65LMc4sCOF6V71mnFU4uhEWP2d2GuGEqBB/Xu7fBoCXftjO1sOyNofbWfoqpKyEGnWNxZtkuKPHyC4o5p7p6yi2a265uBHdLnBuJEpFTsu8gX/PZyCEa/gFw/WfgsUL/nwPkheZnUg4oXerOtzQuQGFNjtjp69zahy3qGT7l8HS1wBlLP8cEGZ2IuGEp+duYV9qLhfUqcHDvS9w+vgKKxK01nla6/kV9XpCOK1eB+jmuOI15z+QfcLcPMIpT17dgmaRQSQfz+b578s/jltUorxTxmUGbYdL7oPGl5qdSDhh7vpDzF6bgp+3hXeHJuDnfdYJiP9FFngSVcvF46DRJZBzHL79D9jtZicS5eTvY2X8kAR8rBamrjjAj5uPmh2petMa5t8DmSkQ3R4SHzU7kXDCwbRcnpizGYAn+7Qgpva5zSMjRYKoWixWuO5jY1bG5J9hxUdmJxJOaFE3mEeuNE6JPjx7I4fT80xOVI2t/QK2zgWfGsZQY6tMWe8pihyX7bIKiundsg43dGpwzq8lRYKoekKioe97xvaip+HIBnPzCKfccnEjusVFkJFXxL0z1mOzy7BIlzuxAxY8bGz3eRPCmpibRzhl/OJdrDuQTlSIHy9f3xp1Hh1NpUgQVVPzPtBhJNgKYdZIKDzTwBzhTpRSvDawLeFBvqzYm8YHS5LNjlS9FOUb3zPFecbQ4jaDzE4knLB8TyrvLUlGKRzDi33O6/WkSBBVV68XIKI5pO4yJloSHiM8yJe3BhsTvry9eBdr9qeZnKgaWfQMHNsENRvD1a+bnUY44VROIeOmr0drGNOtGRc2qXXerylFgqi6vB1Tx1p9jeurm78xO5FwwiUxEdxxaRNsds3YaevJyCsyO1LVt/MnWPGhMZR4wKfg69pF08S501rz0OyNHM3Mp12DUO65IqZCXleKBFG11W5pnFEAmD8OTu03N49wyv0942hTL4RD6Xk8NmeTTNtcmTKPwLeOmfUvf8IY0SA8xpTl+/l56zFq+HnxzpAEvKwV8+tdigRR9XW8zZhKtiDDmLbZJn+RegofLwvjhyQQ6GPl+41HmLHqoNmRqia7DeaMgtxUaNINLrrH7ETCCduOZPL899sAeLl/G+qHBVTYa0uRIKo+pYypZIOjIWUVLHnR7ETCCY3CA3n+2lYAPDN/C7uOVdSq9OJvv78Fe5dCQLgxhNgivxo8RV6hjbunraOw2M7QTvW5uk1Uhb6+fBJE9RAQBv0/AWUxfiDuSTI7kXBC/3b16N8umvwiO3dPW0d+kUzbXGEOrvyncL7uY6hR29w8winPfbeF5OPZNIsM4qk+LSv89aVIENVHo4vh0ocADd/cATknzU4knPB8v1Y0Dg9k+9Es/ivTNleMvHRjuKO2QZcxENPd7ETCCd9vPMK0lQfx8TKmXfb3cX7a5bORIkFUL5c+CA0uguyjMGe0TNvsQQJ9vXh3qDFt85TlB/hx8xGzI3m2v6ZdzjgAdRPgiqfNTiSccCA1l0dmbwTgiaub0zwquFLeR4oEUb1YveD6T/6Ztnn5+2YnEk5oFR3y97TND83aSMqpXJMTebA1n8PWb8EnyFhB1ev8Jt0RrlNYbOdux7TLvVrW5sYLG1bae7lVkaCUClNK/ayU2uX4t2Yp+8Qrpf5USm1RSm1USg0u8dwkpdRepdR6xy3etV+B8Agh9aDfB8b2omcgZY2pcYRzbrm4EVdcEElmfjH3TF9PkU3OBjnt6Gb40bFg0zXvQK2m5uYRTnn9px1sOJhOdKg/r17f9rymXT4btyoSgEeAxVrrGGCx4/7pcoGbtNYtgd7A20qp0BLPP6i1jnfc1ld+ZOGRLrgKOv8H7MUwa4RxbVZ4hL+mba4T7Mea/ad48+edZkfyLIU5MOsWKM6HhBuh9QCzEwknLNlxnAlL92C1KMYPjSckoHIX3nK3IqEfMNmxPRm49vQdtNY7tda7HNuHgeNAhMsSiqqjx7MQFQ/pB2D+WOMarfAIYYE+jB+agEXBh0m7+XXnCbMjeY4fHoSTOyHiArjyVbPTCCcczcjn/pnGgnX394ylfcOwSn9PdysSamutjwA4/o08085KqU6AD7C7xMMvOC5DvKWU8q28qMLjefnCwM+NpXC3zoXVn5mdSDihU+Mw7usRC8B9M9ZzLDPf5EQeYMN0WP8VePnDwEngU3GT7ojKZdeacTPWkZZTyCUx4Yy+1DWXiJSrpzlVSi0C6pTy1OPAZK11aIl9T2mt/9UvwfFcFJAE3Ky1Xl7isaMYhcMEYLfW+rkyjh8FjAKIiIhoP3PmzHP+mqqy7OxsgoKCzI5RqSKPLaXFtjewK2/WtH+NnKDG5TquOrTNuXJV29i15o3V+WxJtXNBmIWHOvphqcTrsxXBrM+Nf24KHVbfj9Wez/a4MRyN6uHyDGcj31Nlm7ElmwUHFcE+iucu9iPU9/z+xu/WrdsarXWHs+3n8iLhTJRSO4BErfWRv4oArXVcKfsFYxQIL2mtvy7jtRKBB7TWfc72vnFxcXrHjh3nlb2qSkpKIjEx0ewYlW/eWFg7GWo1g1FJ5VrYptq0zTlwZdscz8rnqnd+52R2AeO6xzCue6xL3vdcmfK5KcqDid3h2GZoNQCun2jMROpm5HuqdL/vOsmNn64ABV+N7MxFzcLP+zWVUuUqEtztcsM84GbH9s3A3NN3UEr5AHOAL04vEByFBcro6nktsLlS04qq48pXILIlpCYbC0G5UfEsziyyhh9vD45HKXhn8S6WJcskWf+y4GGjQAhrCn3ecssCQZTueGY+42asQwP3XBFTIQWCM9ytSHgZ6KGU2gX0cNxHKdVBKTXRsc8g4FJgRClDHb9SSm0CNgHhwH9dG194LG9/GDQZvANh8yxjDLnwGF1jwhnTrRlaw9jp6zmeJf0T/rZxpnGWzMvP+Iz7Vc6kO6Li2eyasdPXcTK7kOZhFu6+vGKWf3aGWxUJWutUrfUVWusYx79pjsdXa61vc2xP0Vp7lxjm+PdQR6315Vrr1lrrVlrr4VrrbDO/HuFhwmOMMeMACx6BIxvMzSOcMq57LBc2CeNkdgFjp63DZpezQZzYaZwZA+NsWZ3W5uYRTnln8S6W70kjPMiXO9r6YrW4/gyQWxUJQpiuzUBoPwJsBfD1CMjPNDuRKCerRTF+SALhQb4s35PG24uq+fwJhbnw9c1QlAOtB0K7m89+jHAbv+86ybu/7EIpGD8k/rw7Kp4rKRKEOF3vl6F2a0jbA/Pulv4JHiQy2I/xQ+OxKHhvSXL1nj9hwYNwfCvUioE+b0s/BA9yJCOPsdPXGZfPLnd9P4SSpEgQ4nTef40hDzLmtl85wexEwgkXNQ3n3u6xaA33zljPkYw8syO53ropxs3L0dfGV4YVeooim50xU/+ZD2HsFa7vh1CSFAlClCa8GfR7z9he+DgcXGVuHuGUu7o149LYCNJyCrl76rrqtb7DkY3w/f3G9tVvQO2W5uYRTnllwXbW7D9FnWBj1I4Z/RBKkiJBiLK0vM6xvkORcW03R4bWeQqLRfHWIGN9h9X7T/HSD9vNjuQaeekw8yZjXYZ2N0HCMLMTCSf8uPkIE3/fi5dF8f6wBGoFmT9psBQJQpxJj+egXifIPASzbwO7zexEopxqBfnywfB2eFsVn/2xl+82HjY7UuXSGubeBaf2Qp02cOVrZicSTth3MocHv94IwKNXNXfJugzlIUWCEGfi5WP0TwioBXuWwK+vmJ1IOKFdg5o8cXULAB6etZHk41kmJ6pEy8bD9u/ALwQGfQHefmYnEuWUV2jjP1+tJaugmCtb1eHWixuZHelvUiQIcTYh0XD9p4CCX1+FXYvMTiSccFOXhvRtW5ecQhujp6wlp6DY7EgVb98fsOhZY/u6jyGsfOuPCPNprXlszia2HcmkcXggrwxog3KjkShSJAhRHk27QbfHAQ2zR0LaXrMTiXJSSvFS/9bERAaRfDybh2dvxJ3WrDlvmYeNPjPaBl3vhbgrzU4knPDFn/uZs+4Q/t5WPhrenmA/b7Mj/R8pEoQor0vuh9grIT8dZtyIxVZgdiJRToG+Xnw4vD2BPla+23iET3+vIkVecYHRUTHnBDS+DLo9YXYi4YTV+9J4/rutALw6oA1xdc6+sJyrSZEgRHlZLND/Y2ORnGObiNvxvky05EGaRQbx+sC2ALy0YDvLdleB0SoLHoaUVRBSHwZ8DlYvsxOJcjqelc+dX62l2K4Z2bUx17Sta3akUkmRIIQz/EJg8BTwDqT28V9hxcdmJxJOuLJ1FHcmNsVm14yZuo5D6R480dLaL4yFyKy+MPhLCKxldiJRTkU2O2O+WsfxrAI6NQ7jkSsvMDtSmaRIEMJZtVv8M9HST48bncaEx7i/Z9zfEy2N/nIN+UUeOKz10Br4/gFju89bUDfB3DzCKf/9bisr96VRO9iX925IwNvqvr+K3TeZEO6sVX8O1L8O7MVGp7GMFLMTiXIyFoKKp36YP5sOZfDYnE2e1ZEx+zjMuMlYhKzDSJkwycPMXHWQyX/ux8dq4YNh7Yms4d5DVaVIEOIc7W18o9FZLOcETB8GRR586rqaCQ3wYcKNHfD3tvLN2kNMXrbP7EjlU1wIM26EzBRjkq/eL5udSDhh7YFTPPHtZgCev7Yl7RvWNDnR2UmRIMQ50harMdFSzUZwZD3MHSMdGT1I86hgXhnQBoDnv9/GsmQ378ioNfzwABxcDjXqGn1jvHzMTiXK6VhmPqO/XEOhzc5NXRoyuGMDsyOVi1sVCUqpMKXUz0qpXY5/Sy2zlFI2pdR6x21eiccbK6VWOI6foZSS7yBRuQLCYMg08A6EzbPgj7fNTiSc0LdtXUZfZnRkvHPqWvan5pgdqWyrJsLayeDlB0O+ghq1zU4kyim/yMYdX67heFYBnRuH8WSfFmZHKje3KhKAR4DFWusYYLHjfmnytNbxjlvfEo+/ArzlOP4UMLJy4wqB0ZGxv2OUw6JnYedP5uYRTnmwVxyXXxBJem4Rt01eTVZ+kdmR/m3vb8ZwR4C+70J0O3PziHLTWvPEt5tZfzCd6FB/PhjWzq07Kp7O3ZL2AyY7ticD15b3QGXMY3k5MOtcjhfivDS/BhIf4+8ZGU/sNDuRKCerRfHOkHiaRQax63g246avx2Z3o8tGp/YZEyZpG1w0FtoMMjuRcMKEpXuYtSYFP28LH9/Y3i1WdnSGuxUJtbXWRwAc/0aWsZ+fUmq1Umq5UuqvQqAWkK61/mti9hQgunLjClHCpQ9C875QkAlTB0FumtmJRDnV8PNm4k0dCPH3ZvH247zx0w6zIxnyM2DqEMhLg2Y9oPszZicSTvh56zFe/tFYpvzNQfG0ig4xOZHzlKuH/iilFgF1SnnqcWCy1jq0xL6ntNb/6peglKqrtT6slGoC/AJcAWQCf2qtmzn2qQ/8oLVuXUaOUcAogIiIiPYzZ848z6+sasrOziYoKMjsGG6ptLax2PJJWPcoNbL3kB7Skg1tn0Vb3Gsudlfw1M/N1lQbr6/Ox67h9tY+XBxd8f935W0bZbfRavN/qZW2lpyAeqxLeIVib89rU2d46uemNAez7Px3eR4FNugf403fpufXRa6i26Zbt25rtNYdzrafy4uEM1FK7QAStdZHlFJRQJLWOu4sx0wCvgNmAyeAOlrrYqVUF+AZrXWvs71vXFyc3rHDTf5ycDNJSUkkJiaaHcMtldk2GYdg4hWQdQTih0G/98GNVnVzBU/+3Hzx5z6emrsFb6tiysjOdG5SsTMZlrttfngQVk4wlim/bXG1WNnRkz83JZ3IKuDa9//gUHoe18bX5a3B8ee9smNFt41SqlxFgrtdbpgH3OzYvhmYe/oOSqmaSilfx3Y4cDGwVRvVzhJgwJmOF6LShUTD0Gng5Q/rv5IRDx7mpi6NGHFRI4psmjumrGHvSRNGPKyYYBQIVh8Y/FW1KBCqivwiG6O+XM2h9DwSGoTy8vXutfSzs9ytSHgZ6KGU2gX0cNxHKdVBKTXRsU9zYLVSagNGUfCy1nqr47mHgfuUUskYfRQ+dWl6If5SNwH6TzC2Fz0DW+edcXfhXp7s04IrHCMebp20ilM5ha57812L4Me/RjK8Bw27uO69xXmx2zX3f72BdQeMkQwTbuyAn7fV7Fjnxa2KBK11qtb6Cq11jOPfNMfjq7XWtzm2l2mtW2ut2zr+/bTE8Xu01p201s201gO11rKWrzBPi77/dDT7ZhSkrDYzjXCC1aIYPzSBFqz/DdUAACAASURBVFHB7D2Zwx1T1lBQ7II1Ho5uhq9HgLYbHWHbDq789xQV5pUft/P9xiPU8PXi0xEdiKjhWSMZSuNWRYIQVc7F4yBhOBTnwdTBkLrb7ESinAIdP+hrB/uycm8aj8yu5DUeMlLgqwFQmAUt+zuG1ApP8eWf+/h46R68LIoPh7fngjrBZkeqEFIkCPG/9u48Lupqf/z468wAsgqyuCSoGEoaLriRmghpLmmppGWpaW51W+x2s8Vv2q37zeze31evbdc0dzJTK9NKr2mKW66kiaYmoRaC4oogO5zfH5/RXEAoYT4DvJ+Pxzycz2c+M/Oe4zDznnPO530qklLQdzrc3g2yzhhfApccvPyvuKKetxtzhrfH3cXK8j0n+NeaCprgnH0BPh5oTHZt2Bn6zwCLfDxXFut+OsXfVx4AYEpMC+5u4m9yROVH3oVCVDSrMzy0AOq2hHNJRo9CXpbZUYkyCqvvzX+GtMFqUcyI+6X8F4MqyIUlQ+H0QfAPNUouOzv2yoDid/uSL/Ds4j0UaXiuWxMGtQsyO6RyJUmCEPZQwwuGLAPvBnBit1GVscgOY9yiXESF1ubtGKPkyutfHWB1Qmr5PHBREXz5Fzi2GTzrwtDPwM3xVwYUhqNnLjFy/i6y8wt5sE0gf+3exOyQyp0kCULYi5ftS8DVBw6vgm9ekFUjK5FB7YJ4sWcoWsNzS/ay8+gtVtTUGtZOgv2fg4unkUT6VI6VAYWxquOwOTs4k5lHlyb+TIlpUalPdSyJJAlC2FNAKDzyqbGSX/w8WP+/Zkck/oCnom5n6F0NyCsoYvSCXRw+mfHnH2zLNNj2Plic4aGFUK9l+QUqKlR6dj7D5+4k+Xw2rYJ8+HBoW1ycqubXadV8VUI4soYdYdB8UFbYPBW+f9/siEQZKaV444EwejSvw8WcAobO2fHnlpfePRe++wegjBVEQ7qVe6yiYuTkFzJ6wS4OncygcYAH80a0x6OGk9lhVRhJEoQwQ2hv6P8f4/q3r8Kej82NR5TZ5RoKHRv7cTojlyGzd3AyPafM9w9I2wxf/83Y6DMVwh6soEhFeSsoLOKZT35g17Hz1K3pSuyoCHw9bm1NBkcnSYIQZmk1GHr907i+8lk4+LW58Ygyc3W28tHwdrQK8iH5fDZD5+zgXFmqMiauo9nB6YCGeyZB+1EVHqsoH4W2aorrDqbh7eZM7KgO1PdxMzusCidJghBmuutJ6PqyUWHvs8chcZ3ZEYky8qzhxILH2xNax4vEtEyGz91JRk5+yXc4thWWDMOiC6DjM9DlBfsFK25JUZFmwhf7WLE3BQ8XK/Meb0+TOl5mh2UXVXcg5Rbl5+eTnJxMTk7ZuxGrIm9vb44ePUpgYCDOztVvyWO7iJpgFNPZORM+HQKPLoXGXc2OSpSBj7sLsaM6MPDDbSScSGfU/N3Me7yYMepft8OiQZCfRWrd7tTr8Wa1Wxm0stJa8/eVB1i6OxlXZwtzR7SnTYPqc5qqJAklSE5OxsvLi0aNGlXJ01rK6uLFi+Tl5ZGcnExwsKxEVyGUgt7/hMI844yHxYNhyGfQqLPZkYkyqF3TlUWjIxj04TZ2HjvHyPm7mPd4e9xdbB+vybuNaor5l6Dlwxyu9TD1qvFnSmWiteatVQeJ3X4cFycLHz3WrtyXDnd0MtxQgpycHPz8/Kp1ggDGbG4/P79q36NS4ZSCPtOg9VDIzzJ+df663eyoRBkF+bqzeOxd1KlZgx1HjUQhK68AUvZAbMzv6zH0+49xVotweFprpn77Mx9tPmqsxzCkDV2aBJgdlt1JknAT1T1BuEzawU4sFnjgXWg52PjV+fFA+G2X2VGJMgr292DxmLuo7VWD7Unn+MdHS9AL+0NuOjR7wFg63Cqdt5WB1pp/rTnM+xsSsVoU7z0STrdmdcwOyxSSJAjhSCxW49TIsAeNX5+x/Y0Jb6JSaBzgyeKxdxHl8SsT0sajci5Q2KQ3PDjHWMNDODytNZO/OciMuF9wsijeHRxO7xb1zA7LNJIkCOFoLFYYMAtaDIK8TPj4QfhlvdlRiTK6PWsfcy1v4q2yWFPYjmEX/0JGgfTGVQZFRZrXVx5g9pajOFsVHwxpQ5+W1TdBAAdLEpRSvkqptUqpI7Z/b5hCqpSKVkrtveqSo5Tqb7ttvlLq6FW3tbb/q6h4nTp1KvWY7OxsunbtSmFhyYsI5eXlERkZSUFBQXmGJ8qD1QkGzITwYVCQbawceXi12VGJ0vyyHmJjsORnktGkH//r9hLfH8/k0Y/KWEdBmKaoSPPql/tZsO04LlYLM4e1peeddc0Oy3QOlSQArwDfaa2bAN/Ztq+htd6gtW6ttW4N3ANkAd9edciLl2/XWu+1S9R29v3335d6zNy5c4mJicFqLXmSlIuLC926dWPJkiXlGZ4oLxYr3P8udBhrnPmwZCjs/8LsqERJDq82krmCbGg9FK9H5rH4yS409HMn4UQ6D8/cxqmLMgHYEeUVFPH80r0s3vkrNZwszB7ejnvuqJ5zEK7naElCP2CB7foCoH8pxw8EVmutsyo0KpNcunSJPn360KpVK8LCwq58mXt6enLs2DGaNWvGmDFjuPPOO+nRowfZ2dlX7rto0SL69et3ZTs6Opq1a9cCMHHiRMaNGwdA//79WbRokR1flfhDLBbo/S/o/BwUFRhLTO+aY3ZU4np7FxtJXGEetB8DD7wHFitBvu4se6IjTet4ciQtk0EfbuN0VpHZ0YqrXMotYNSCXdcUSopsWv3OYiiJ0g60VK1S6oLW2ueq7fNa6xKrViil1gPTtNZf27bnAx2BXGw9EVrr3BLuOxYYCxAQENB26dKl19zu7e1NSEgIAC0mb7qFV1WyhFcjb3r7ihUrWLduHe+99x4A6enpeHt7U69ePbZv307r1q3ZuHEjLVu2ZPjw4fTu3ZvBgweTl5dH8+bNSUxMvPJYW7duZfLkyQwfPpxly5axZMkSrFYrhYWFhISEcPTo0WJjKCwsxGq1kpiYSHp6evm9+CogMzMTT09P+zyZ1jQ8vozgY0ZCd6zhQxxr9KjDFuSxa9uYSWsa/Po5jY/GAvBrUAxJjR+74f8lM08zdXcORy8WUdNF80I7NxrWlFMhr2fv901Gnubf8TkkpRfh5QIvtHWlkbdj/r+Ud9tER0fHa63blXac3c/HUUqtA4ob6Hn1Dz5OPaAFsOaq3ROAk4ALMAt4GfhHcffXWs+yHUNoaKiOioq65vaDBw/i5VWxZTdLe/wOHTowadIk3nzzTfr27UuXLl2u3Obp6UlwcDCdOxsFdyIiIjh16hReXl6kpKRQq1atax6/V69eTJkyhRkzZhAXF3fNbTVq1CgxnoyMDLy8vHB1dSU8PPyWXm9VExcXx/Xvm4oVDfER8PVfaXR8KY18XaDvdIecNW//tjFBUSH89xU4Ggso6PU2De56kgYlHN41Mp+xC+PZlnSWf+3O54MhLYgKrW3PiB2ePd83yeezeGzuTpLSiwis5UbsqAiC/T3s8tx/hll/U3ZPErTW3Uu6TSl1SilVT2udaksC0m7yUA8By7XWV4qla61TbVdzlVLzgPHlEfOxt/uUx8P8YU2bNiU+Pp5Vq1YxYcIEevTowWuvvXbl9stf7gBWq/XKcIObm9sNxY8SEhJITU3F39//hmQgNzcXV1fXCnwloty0HQ6edWDZCGPlyMw0Y9lpF8f9cKuS8nPgizFwcCVYXYxJpmExN72Ll6sz80e2Z/gHa9meWsioBbt5a0AYD7cvKa0QFWVf8gVGL9hNWkYud9T1YuHIDtSuKZ+BxXG0OQkrgeG268OBFTc59hFg8dU7bIkFyqj+0x/YXwEx2k1KSgru7u4MHTqU8ePH88MPP5TpfrVq1aKwsPBKopCamsqQIUNYsWIFHh4erFnze+fL2bNnCQgIkHUZKpPQXjD8K3DzhSPfwrzekJ5sdlTVR8YpWHC/kSDU8IahX5SaIFxWw8nK2JY1eCrqdgqLNC9/nsC0bw/jSMO+Vd2qhFQemrmNtIxcIoJ9WfJER0kQbsLRkoS3gXuVUkeAe23bKKXaKaVmXz5IKdUICAI2Xnf/RUqpBCAB8AfetEPMFSYhIYEOHTrQunVrJk+ezMSJE8t83x49erBlyxaysrKIiYlh6tSpNGvWjEmTJvH6669fOW7Dhg3cd999FRC9qFBB7WHUWqgVDKk/wqxoqc5oD6k/wkfRkLwTagbCyNUQ3KX0+13FohQv9bqDyQPCsCh4d30izyzeY5RxFhVGa83764/w1KIfyMkv4qF2gcSOisDbTX4g3YxD1QjVWp8FuhWzfzcw+qrtY0D9Yo67pyLjs7eePXvSs2fPG/ZnZmYCsH//7x0l48dfO7LyzDPPMG3aNLp37862bduu7I+MjLxm+5NPPmHKlCnlHbqwB/8QGLMelg2Ho5tg/n3GKZOtHzE7sqrpwHJY/hfjFMegCHj4Y/D883MKhkQ0pJ63K+MW7+Wbfan8kpbJR4+1I8jXvRyDFgA5+YVM+CKB5XtOoBRM6H0HY7o0lpLzZeBoPQminISHhxMdHV1qMaX+/fsTGhpqx8hEuXL3Nbq7248xTr/78kn4diIUyq/SclNUBBveMuaB2GogMPyrW0oQLrvnjjp8+XQngv09OHQygwfe38L3iWduPWZxxW/nshj44fcs33MCdxcrs4a1Y2zk7ZIglJEkCVXYyJEjSy2m9Nhjj9kxIlEhrM7Q5/+g77/B4gTfvwcLH4CLqaXfV9xc5mn4OAY2/hOUBXq+Bf3eB6capd+3jEJqe/Hl052JCg3gfFY+w+buZPbmJJmnUA7WHzpF3/e2sP/ERYJ83Vj2ZEfubS5Fkv4ISRKEqCrajYTHVoJnXTi+FT68W9Z8uBXHtsLMLpC0Adz9YMhn0PHpCqlN4e3mzJzh7a9MaHzzm4OMXrBbSjn/SYVFmv9bc5iR83eTnp1P92a1+fqZLtx5m7fZoVU6kiQIUZU06gxPbobGUZB1BmJjYP1k45x+UTZFRbB5KizoCxmp0KATPLkFQm6YLlWurBZjQuOHQ9tS09WJ7w6l0fudTWxPOluhz1vVpFzIZujsHby/IRGLgpd6hTJrWDu83WWC4p8hSYIQVY1nbWOeQtT/GNub/gXz7oOzv5gbV2Vw4VeI7Qff/QN0Edz9vDH/oOZtdguhV1hdVj3XhbYNa3HqYi6PfrSdaWt/pqBQyjmXZsXeE/ScvoltSWfx93Th41ERPBUVgsUi8w/+LEkShKiKLFaIehkeW2EMP/y23Rh+2DHL+KUsrqU1xC+A/3QyzhRx94NHl0H3140VOe0ssJY7S8bexTPRIWjg3e+OEDPjew6dvGj3WCqDC1l5PLt4D899upeMnAK6N6vN6uci6RTib3ZolZ4kCUJUZY27wlPboMUgyM+C1S8av5TPHzc7MsdxMQUWDYKvxkFeBjS7H57aAU17mBqWk9XC+J6hLBoVwW3eruxLTuf+97bwzroj5BVIonfZ2p9O0Wv6Zr76MQV3Fytvx7Tgo8faEeBVfpNLqzNJEoSo6tx94cHZ8FAsuPsbv5RndIKt70Jhfun3r6oKC2DHTPjgLkhcC64+EGNrJ0/HWQWwU4g/a56PZOhdDcgv1Px73c888P4W9iVfMDs0U524kM2YhbsZs3A3Jy/m0LZhLVY/14XBHRrI6Y3lSJIEIaqL5g/AU9uheT/Iy4S1k2BGZ0i6vnBpNXB8G8zqCqtfgtx0aNrLaJuWgxxyZU0vV2fe7N+CT8ZE0MDXnUMnM+j3wVZe+XwfZzKLXei2ysovLGLWpl/oPnUja386hWcNJ16/vzlLn+hIQz9Zw6S8SZJQxWVnZ9O1a9dSiypFRkZSUCAFeKo8zwB4aCEM+Rx8G8OZw0ZNhWUj4MJvZkdX8S6mwhdPwLxecGo/eDeAwZ/AI59CzXpmR1eqTrf789+/dmFMl2CsSvHprt+I/n9xfLQpqcoPQWitWfvTKe57ZzNvrTpEdn4hfVrU47sXujKiczBWmZxYISRJqOLmzp1LTExMqUWVunXrxpIlS+wYmTBVk+7GL+d7JoKTm1Fy+L02sOolYwGjqubSGVjzKrzbGvZ9CtYaEPkSPL0D7ujjkL0HJXF3ceLVPs1Z83wkUaEBZOQWMHnVQXpO38RXP6ZQWFT1ijDtPnaOQR9uY8zC3RxJy6SBrzvzHm/PB0PaUEcWZ6pQkiQ4uIULF9KyZUtatWrFsGHDAJg2bRphYWGEhYUxffp0AC5dukSfPn1o1aoVYWFhV77wFy1aRL9+/a48XnR0NGvXrgVg4sSJjBs3DoD+/fuzaNEie740YTanGhD5IjyzC8IeNMo675wJ77SCta9B1jmzI7x12Rdg/ZvGa9r2PhTkGBMTn94O97wKLpV3nYTbAzyZ/3gH5o1oT2N/D46eucSzi/fQc/omVuw9USWShctLOg/8cBu7j5/H18OFv9/fnLV/iyQ69NbLYovSOdQCTw7r9Qqq0vV6+k1vPnDgAJMnT2br1q34+/tz7tw54uPjmTdvHjt27EBrTUREBF27diUpKYnbbruNb775BoD09HTy8vJISkqiUaNGVx7zjTfe4LXXXiMtLY09e/awcuVKAMLCwti1S1YRrJZ8gmDgXLj7bxA3BQ59DVvfgV1zoPUQiHgC/G43O8o/5vwx43TPPbGQazttsEkPiP4fuC3c1NDKW/Qdtekc4s9n8cl8sCGRxLRMnvt0L+9+d4S/RIXQt2U9XJ1L7kl0NEVFmrif05i5MYkdR41E1d3Fyui7gxkT2RgvVymKZE+SJDiw9evXM3DgQPz9jXN9fX19iY2NZcCAAXh4GBN0YmJi2Lx5M7169WL8+PG8/PLL9O3bly5dupCSkoKPj881jxkZGYnWmmnTphEXF3dlGMJqteLi4kJGRgZeXl72faHCMdQNg8GL4ES8saBR4jqjZ2HnLOML9q4noXG043bNaw3HtsCOD+HwKqMYEkCjLsawSoO7zI2vArk4WXg0ogED2wbyxQ/JvL8hkV9OX2L8sh+Z/M1PPNQuiCERDWng57g9J+nZ+Wz4NZ83p28iMc1Y6darhhOPRDRgdJdganvJsIIZJEkoi1J+8VcUrfUNp/KUtOhL06ZNiY+PZ9WqVUyYMIEePXrw7LPPkpOTc81xCQkJpKam4u/vf0MykJubi6ur/CFWe/XbwtDP4eR+4wt331I4ssa4+DSEFgMhbCDUaW52pIbTP8P+zyDhMzhnqyppdTGGUCKeqHI9Bzfj4mRhcIcGPNg2kC/3nGDBtmPsP3GRmZuSmLU5icgmAQwIr889zWpT0wF+kRcUFrE58Qyfxyfz7U+nbJMv86jn7crIzsE83CHIIeKszhwqSVBKDQJeB5oBHbTWu0s4rhfwDmAFZmut37btDwY+BXyBH4BhWutKu0JKt27dGDBgAM8//zx+fn6cO3eOyMhIRowYwSuvvILWmuXLlxMbG0tKSgq+vr4MHToUT09P5s+fT61atSgsLCQnJwdXV1dSU1MZMmQIK1asYNy4caxZs4aePXsCcPbsWQICAnB2lj9IYVM3zFjxsPsbED8Pds+FC8eNdQ02T4Xad0LYALi9G9RrZVR5tIeiIjiVYCxetf8LOLnv99s860Dbx43Frryq72p/zlYLg9oFMbBtID8mpxO77Thf7Uth48+n2fjzaVysFu5u4k/vsLp0a1YHXw8Xu8V2MSefrUfOsPHn03x3KI3TGcYpnEpBM18LT9zbkj4t6+FslSlzjsChkgRgPxADzCzpAKWUFfgAuBdIBnYppVZqrX8C/gn8W2v9qVLqQ2AUMKPiw64Yd955J6+++ipdu3bFarUSHh7O/PnzGTFiBB06dABg9OjRhIeHs2bNGl588UUsFgvOzs7MmGG87B49erBlyxY6depETEwMU6dOpVmzZkyaNImXX375SpKwYcMG7rvvPtNeq3BgHn4QOd5Yx+D495CwDH5aAWkHYP0BY2Kgq7fRrd84CgLbYSksx3P383OMUzVPxBs1HY5uguyrJlXW8DYmI7YYaMRgQhllR6WUonWQD62DfJjYpxkrf0xh9f5Udh49x/pDaaw/lAZA0zqedAj2pUOwH+0b1aJuTddyK0iUdjGH/SnpJCRfZOsvZ/jh+HkKrppUGezvwYNt6jOgTSBH9u4gKrx+uTyvKB/KEdcsV0rFAeOL60lQSnUEXtda97RtT7Dd9DZwGqirtS64/ribCQ0N1YcPH75m38GDB2nWrNmtvRAHsGfPHqZNm0ZsbOxNj4uJiWHKlCmEhoZes//yHIWq0h7lKS4ujqioKLPDMEdBHvzyHRxeDUc3GhMFr6KxoPwaQ+3mEBBq/ML3CDAunrWNMyuuf7xLp+FSGmTaLmd+hrSfjIWp9HV1PryDjJLTTXtByL3gXHmGyRzhfXM6I5dvfzrJ6oST7Dp2jtzraizUdHWicYAnjQM8uD3Ak/o+bni7OVPTzRlvN2e8XJ0o0pr8Ak1eYREFRUVcyMrnZHoOqek5nEzP5rfz2ew/kU5axrUJo9WiaNugFl1DA+jaNIA7b6t5JSFxhLZxVOXdNkqpeK11u9KOq4wpd33g6qovyUAE4Adc0FoXXLW/2qek4eHhREdHU1hYWGKthLy8PPr3739DgiBEiZxcILS3cQEjSUjaCMc2w8kEY57A2UTjcvAWn0tZwK8J1G0BwV0guKtRCMpRJ1BWAgFeNRgS0ZAhEQ3JLSgkITmdHUfPsfPoOX749TwXcwrY+9sF9v5266WfvWo4cWf9mrSo7014g1p0DvHH202GNSsLu/ckKKXWAXWLuelVrfUK2zFxlNyTMAjoqbUebdseBnQA/gFs01qH2PYHAau01i1KiGMsMBYgICCg7dKlS6+53dvbm5CQkD/1GquSy8lFYmIi6enmTOB0VJmZmXh6epodhkPKunie2uo8HpeO45adikveBZzz06/8aym6trqnVlbyXLzJd/Yhz8WHPBdvst3qccmjIVnugRRZq85iPY7+vtFak56nOXlJk5pZxMlLRZzP1WQVQFa+5lK+JrtAY1EKJwtYFThZwM1J4etqXGq5WvB1VQR5WajtrrCUMaFz9LYxU3m3TXR0tGP2JGitu9/iQyQDQVdtBwIpwBnARynlZOtNuLy/pDhmAbPAGG64vhvn4MGDciogvw83uLq6Eh5efWaJl4V0jZYsLi6OdlED/tB93CooFkcj75uSSduUzKy2qYzTR3cBTZRSwUopF2AwsFIbXSIbgIG244YDK0yKUQghhKj0HCpJUEoNUEolAx2Bb5RSa2z7b1NKrQKw9RI8A6zBGO1cqrU+YHuIl4G/KaUSMeYozLmVeBxxUqcZpB2EEKJ6cqiJi1rr5cDyYvanAPddtb0KWFXMcUkY8xNumaurK2fPnsXPz69ar02utebs2bNSZEkIIaohh0oSHElgYCDJycmcPn3a7FBMlZOTg4+PD4GBgWaHIoQQws4kSSiBs7MzwcHBZodhuri4OJmwKIQQ1ZRDzUkQQgghhOOQJEEIIYQQxZIkQQghhBDFcsi1G+xNKZUBHC71wOrJH6NQlbiRtE3JpG1KJm1TMmmbkpV32zTUWgeUdpBMXDQcLkt5yupIKbVb2qZ40jYlk7YpmbRNyaRtSmZW28hwgxBCCCGKJUmCEEIIIYolSYJhltkBODBpm5JJ25RM2qZk0jYlk7YpmSltIxMXhRBCCFEs6UkQQgghRLGqdZKglOqllDqslEpUSr1idjyORCk1VymVppTab3YsjkQpFaSU2qCUOqiUOqCUes7smByJUspVKbVTKfWjrX3eMDsmR6KUsiql9iilvjY7FkejlDqmlEpQSu1VSu02Ox5HopTyUUp9ppQ6ZPvs6Wi3566uww1KKSvwM3AvkAzsAh7RWv9kamAOQikVCWQCC7XWYWbH4yiUUvWAelrrH5RSXkA80F/eNwZlLJnqobXOVEo5A1uA57TW200OzSEopf4GtANqaq37mh2PI1FKHQPaaa2lTsJ1lFILgM1a69lKKRfAXWt9wR7PXZ17EjoAiVrrJK11HvAp0M/kmByG1noTcM7sOByN1jpVa/2D7XoGcBCob25UjkMbMm2bzrZL9fwlch2lVCDQB5htdiyi8lBK1QQigTkAWus8eyUIUL2ThPrAb1dtJyMf9uIPUEo1AsKBHeZG4lhsXep7gTRgrdZa2scwHXgJKDI7EAelgW+VUvFKqbFmB+NAGgOngXm2oarZSikPez15dU4SVDH75BePKBOllCfwOfBXrfVFs+NxJFrrQq11ayAQ6KCUqvbDVUqpvkCa1jre7FgcWGetdRugN/C0bchTGJWR2wAztNbhwCXAbnPoqnOSkAwEXbUdCKSYFIuoRGxj7Z8Di7TWX5gdj6OydYnGAb1MDsURdAYesI27fwrco5T62NyQHIvWOsX2bxqwHGNIWBjfVclX9ch9hpE02EV1ThJ2AU2UUsG2iSCDgZUmxyQcnG1i3hzgoNZ6mtnxOBqlVIBSysd23Q3oDhwyNyrzaa0naK0DtdaNMD5r1muth5oclsNQSnnYJgJj60rvAciZVYDW+iTwm1Iq1LarG2C3idLVdoEnrXWBUuoZYA1gBeZqrQ+YHJbDUEotBqIAf6VUMvB3rfUcc6NyCJ2BYUCCbdwd4H+01qtMjMmR1AMW2M4esgBLtdZyup8oTR1guZGD4wR8orX+r7khOZRngUW2H7RJwOP2euJqewqkEEIIIW6uOg83CCGEEOImJEkQQgghRLEkSRBCCCFEsSRJEEIIIUSxJEkQQgghRLEkSRBCCCFEsSRJEEIIIUSxJEkQQgghRLEkSRBC2I1SKkQpla+UeuO6/TOUUhlKqXZmxSaEuJEkCUIIu9FaJwKzgeeVUv4ASqnXgJHAAK31bjPjE0JcS8oyCyHsSilVF/gF+A/G4k+zgEe01ktNDUwIcYNqu8CTTi+l3QAAAO1JREFUEMIcWuuTSqnpwAsYn0HjJEEQwjHJcIMQwgxHgBrANq31B2YHI4QoniQJQgi7UkrdA8wEtgGdlVKtTA5JCFECSRKEEHajlGoDfIkxeTEK+BV4y8yYhBAlkyRBCGEXSqkQYDXwLfCs1joPeAO4TykVaWpwQohiydkNQogKZzuj4XuMnoOeWutc234rsB84r7XuZGKIQohiSJIghBBCiGLJcIMQQgghiiVJghBCCCGKJUmCEEIIIYolSYIQQgghiiVJghBCCCGKJUmCEEIIIYolSYIQQgghiiVJghBCCCGKJUmCEEIIIYr1/wGrlhwm8BXecwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# use the matplotlib magic to specify to display plots inline in the notebook\n", + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "# generate a pair of sinusoids\n", + "x = np.linspace(0., 2. * np.pi, 100)\n", + "y1 = np.sin(x)\n", + "y2 = np.cos(x)\n", + "\n", + "# produce a new figure object with a defined (width, height) in inches\n", + "fig = plt.figure(figsize=(8, 4))\n", + "# add a single axis to the figure\n", + "ax = fig.add_subplot(111)\n", + "# plot the two sinusoidal traces on the axis, adjusting the line width\n", + "# and adding LaTeX legend labels\n", + "ax.plot(x, y1, linewidth=2, label=r'$\\sin(x)$')\n", + "ax.plot(x, y2, linewidth=2, label=r'$\\cos(x)$')\n", + "# set the axis labels\n", + "ax.set_xlabel('$x$', fontsize=16)\n", + "ax.set_ylabel('$y$', fontsize=16)\n", + "# force the legend to be displayed\n", + "ax.legend()\n", + "# adjust the limits of the horizontal axis\n", + "ax.set_xlim(0., 2. * np.pi)\n", + "# make a grid be displayed in the axis background\n", + "ax.grid(True)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "nbpresent": { + "id": "533c10f0-95ba-4684-a72d-fd52cef0d007" + } + }, + "source": [ + "# Exercises\n", + "\n", + "Today's exercises are meant to allow you to get some initial familiarisation with the `mlp` package and how data is provided to the learning functions. Next week onwards, we will follow with the material covered in lectures. \n", + "\n", + "If you are new to Python and/or NumPy and are struggling to complete the exercises, you may find going through [this Stanford University tutorial](http://cs231n.github.io/python-numpy-tutorial/) by [Justin Johnson](http://cs.stanford.edu/people/jcjohns/) first helps. There is also a derived Jupyter notebook by [Volodymyr Kuleshov](http://web.stanford.edu/~kuleshov/) and [Isaac Caswell](https://symsys.stanford.edu/viewing/symsysaffiliate/21335) which you can download [from here](https://github.com/kuleshov/cs228-material/raw/master/tutorials/python/cs228-python-tutorial.ipynb) - if you save this in to your `mlpractical/notebooks` directory you should be able to open the notebook from the dashboard to run the examples.\n", + "\n", + "## Data providers\n", + "\n", + "Open (in the browser) the [`mlp.data_providers`](../../edit/mlp/data_providers.py) module. Have a look through the code and comments, then follow to the exercises.\n", + "\n", + "### Exercise 1 \n", + "\n", + "The `MNISTDataProvider` iterates over input images and target classes (digit IDs) from the [MNIST database of handwritten digit images](http://yann.lecun.com/exdb/mnist/), a common supervised learning benchmark task. Using the data provider and `matplotlib` we can for example iterate over the first couple of images in the dataset and display them using the following code:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "nbpresent": { + "id": "978c1095-a9ce-4626-a113-e0be5fe51ecb" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJIAAACPCAYAAAARM4LLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAABJhJREFUeJzt3b8vc28cxvH28UwMJonVYCAmET8WImYxCZGYkEgkgj/AImH1IxKiasJGYrAYxCQ2LAaxECo2BoPFd/mm6eeTtNXH1Zue835NvXLk9ESu3L17nx9Nfn5+JoDv+vPTB4BooEiQoEiQoEiQoEiQoEiQoEiQoEiQoEiQ+Bv4/VhGrzzJr/wRIxIkKBIkKBIkKBIkKBIkKBIkKBIkKBIkKBIkKBIkKBIkKBIkKBIkKBIkKBIkKBIkKBIkKBIkKBIkKBIkKBIkKBIkKBIkKBIkKBIkKBIkQt+yHQsfHx8mn5+fm3xycmJyOp02+fn52eTW1laT9/f3TW5sbPyn41RiRIIERYIERYJEMvAD2yP5WJtUKmXyxsaGyZeXlyb7/3kymSxp+9DQkMm7u7tfP9jS8VgbhEORIEGRIME6Uh7F1oJmZ2ezr6+ursy26upqk7u7u01eWloyuaOjw+TV1dW875VIJBKZTCbfYf8YRiRIUCRIUCRIsI6Uh5+nzM3NmZz7f/PnwtbX101ub28v6b2rqqpM9utIfg52d3dncl1dXUnvVwTrSAiHIkGCIkEitutIfp1oamrK5O3tbZP9PGV4eDj7emtry2zzcxjv4eHBZL+OVGze2tbWZnJNTU3Bvw+BEQkSFAkSFAkSsV1HmpiYMHlnZ8fk/v5+k0dGRkweHBzMu+/393eTV1ZWTF5bWzP55eXF5GLXI93c3Jhc5mu2WUdCOBQJEhQJErGZI83MzJjsz6XV19eb/PT0VHB/uetQ/lql3t5ek0u9JruhocHkvb09k0s9d/dNzJEQDkWCRGxOkVxfX5vsP07GxsZMPj4+Lri/+fn57Gt/u5Hft8+e3+6Ptdgpl9+AEQkSFAkSFAkSkZ0j+ctE3t7eTPZfwRcXFwtuL/QV3i8d+MfSeD09PSZvbm6aXAlzIo8RCRIUCRIUCRKRPUXy+vpqcnNzs8l+HlPsNIa/5ejg4CD7enp62mw7OjoquO/Al4F8F6dIEA5FggRFgkRk15Fqa2tNfnx8lO4/dw52cXFhtvn51fLyssm/fE70TxiRIEGRIEGRIBHZOVK59fX1ZV/724nGx8dNnpycDHJMP4kRCRIUCRIUCRKRPdf2Xf5cXVNTk8m55+oGBgbMtsPDw/IdWHica0M4FAkSFAkSrCPl4e9V82tFudcYLSwsBDmm34wRCRIUCRIUCRLMkf53e3trcrFH0+Tei9bS0lK+A6sQjEiQoEiQoEiQiO0cyV9nPTo6arKfE52enprsf1407hiRIEGRIEGRIBHbOVIqlTLZ/5ynf0Sx/2krWIxIkKBIkIjNR5v/KEun0yb7r/v+afuV+Di+kBiRIEGRIEGRIBHZ25Hu7+9N7uzsNDmTyZh8dnZmMqdAsrgdCeFQJEhQJEhEdh3J33Ltbyfyv7Ld1dVV9mOKMkYkSFAkSFAkSER2HQkyrCMhHIoECYoEidDrSF/6vEXlYUSCBEWCBEWCBEWCBEWCBEWCBEWCBEWCBEWCBEWCBEWCBEWCBEWCBEWCBEWCBEWCBEWCBEWCBEWCBEWCBEWCBEWCBEWCxH/yKxa+n2pIxAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Image target: [9]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJIAAACPCAYAAAARM4LLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAABPRJREFUeJzt3c0rbW0cxvFFj5eiHAZCRBzTk3CSkaJIkTIxMMBEDBgc/4F/QjJQFJMzkRQldToiRCZeJgYmXifeylvyzPazfnfZe3tcFsv+fkbrau299lJX977da++1k56fnz3grZI/+gTwNVAkSFAkSFAkSFAkSFAkSFAkSFAkSFAkSPwT8OuxjB4+SfE8iBEJEhQJEhQJEhQJEhQJEhQJEhQJEhQJEhQJEhQJEhQJEhQJEhQJEhQJEhQJEhQJEhQJEhQJEhQJEhQJEhQJEhQJEkF/HelLOjs7M3l+fj7q41taWkzOycmRn1PQGJEgQZEgQZEgEao5UmlpaWR7a2vL7Pv27Vug57KzsxPZ/vnzp9l3f38f9bnZ2dkmj4+Pm9za2vrGswseIxIkKBIkKBIkkgK+YfubXiw5+b/eb29vm30/fvx4y6Fjcuc9lZWVke29vT2zLy8vz+TT09Oox/b/XZ7neRsbGyZXVFTEfZ7vgNvaIDgUCRIUCRKhWkfy+/v3r8nvPUc6Pj42eX9/P7Ld3d1t9o2MjJj8+/dvk3t7e02+u7sz+fz8/P+e5odhRIIERYIERYJEaOdIGRkZgb7ewcFB3I9NTU01ubOz0+SrqyuTh4aGTHbXoVzu2t/m5qbJj4+Pke3a2troJyvCiAQJigQJigSJUF1rS0tLi2zv7u6afWVlZW85dEw3Nzcml5SURLbLy8vNvpWVFZOTkqJfrjo6OjK5oKAg6uNvb29Ndv92/2e1Ys234sC1NgSHIkGCIkEiVOtIXV1dke33nhO50tPTTfavBa2trZl97nU5d87z9PRkckpKismrq6smLywsmDw9PW1yZmamyYJ50asxIkGCIkGCIkEiVOtI/s9N+9eUPoL/u2dzc3NmX19fn8n5+fkmT05Omvya63ie53lFRUUm//nzx+Ti4uJXHS8G1pEQHIoEiVD9+//Rb2d+379/f3Hf6Ojoq45VXV1tck1NjclVVVUmNzc3m5ybm/uq13sPjEiQoEiQoEiQCNUcKUiHh4cmDw4Omjw7OxvZjrWE0tHRYfLw8LDJ7sdQwogRCRIUCRIUCRKhukTynpaXl01ua2sz+eLiwuSsrKwXj3V5eWny+vq6ye660CfHJRIEhyJBgiJBImHXkdyPbri3JHa/fjQzM2NyU1NTZHtsbMzsGxgYUJxiqDAiQYIiQYIiQSJh50j9/f0m+28F43met7i4aHJdXd2Lx3p4eIj6Wp/h80LvjREJEhQJEhQJEgkzR3JvHeNe//r165fJ0eZEromJCZMbGxtNLiwsjPtYYcWIBAmKBAmKBImEmSP5fzrU8zzv+vra5KWlJZMbGhpMdn/WwX+rGfcnv6ampkyOdeu/r4ARCRIUCRIUCRIJM0eKxb3dXn19fdzP9d+S0PM8r729XXJOYcKIBAmKBAmKBImE+V6bu27U09NjsvuZbPcn1P0/GeE+371O5/7MVsjxvTYEhyJBgiJBImHmSLGcnJyY7M5zcnJygjydz4Q5EoJDkSDBWxti4a0NwaFIkKBIkKBIkKBIkKBIkKBIkKBIkKBIkKBIkKBIkKBIkKBIkKBIkKBIkAj6K9tf//4uCYoRCRIUCRIUCRIUCRIUCRIUCRIUCRIUCRIUCRIUCRIUCRIUCRIUCRIUCRIUCRIUCRIUCRIUCRIUCRIUCRIUCRIUCRIUCRL/AhkN/OtmZFaHAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Image target: [8]\n" + ] + } + ], + "source": [ + "%matplotlib inline\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import mlp.data_providers as data_providers\n", + "\n", + "def show_single_image(img, fig_size=(2, 2)):\n", + " fig = plt.figure(figsize=fig_size)\n", + " ax = fig.add_subplot(111)\n", + " ax.imshow(img, cmap='Greys')\n", + " ax.axis('off')\n", + " plt.show()\n", + " return fig, ax\n", + "\n", + "# An example for a single MNIST image\n", + "mnist_dp = data_providers.MNISTDataProvider(\n", + " which_set='valid', batch_size=1, max_num_batches=2, shuffle_order=True)\n", + "\n", + "for inputs, target in mnist_dp:\n", + " show_single_image(inputs.reshape((28, 28)))\n", + " print('Image target: {0}'.format(target))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Generally we will want to deal with batches of multiple images i.e. `batch_size > 1`. As a first task:\n", + "\n", + " * Using MNISTDataProvider, write code that iterates over the first 5 minibatches of size 100 data-points. \n", + " * Display each batch of MNIST digits in a $10\\times10$ grid of images. \n", + " \n", + "**Notes**:\n", + "\n", + " * Images are returned from the provider as tuples of numpy arrays `(inputs, targets)`. The `inputs` matrix has shape `(batch_size, input_dim)` while the `targets` array is of shape `(batch_size,)`, where `batch_size` is the number of data points in a single batch and `input_dim` is dimensionality of the input features. \n", + " * Each input data-point (image) is stored as a 784 dimensional vector of pixel intensities normalised to $[0, 1]$ from inital integer values in $[0, 255]$. However, the original spatial domain is two dimensional, so before plotting you will need to reshape the one dimensional input arrays in to two dimensional arrays 2D (MNIST images have the same height and width dimensions)." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# write your code here for iterating over five batches of \n", + "# 100 data points each and displaying as 10x10 grids\n", + "\n", + "def show_batch_of_images(img_batch):\n", + " raise NotImplementedError('Write me!')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "nbpresent": { + "id": "d2d525de-5d5b-41d5-b2fb-a83874dba986" + } + }, + "source": [ + "### Exercise 2\n", + "\n", + "`MNISTDataProvider` as `targets` currently returns a vector of integers, each element in this vector represents an the integer ID of the class the corresponding data-point represents. \n", + "\n", + "For training of neural networks a 1-of-K representation of multi-class targets is more useful. Instead of representing class identity by an integer ID, for each data point a vector of length equal to the number of classes is created, will all elements zero except for the element corresponding to the class ID. \n", + "\n", + "For instance, given a batch of 5 integer targets `[2, 2, 0, 1, 0]` and assuming there are 3 different classes \n", + "the corresponding 1-of-K encoded targets would be\n", + "```\n", + "[[0, 0, 1],\n", + " [0, 0, 1],\n", + " [1, 0, 0],\n", + " [0, 1, 0],\n", + " [1, 0, 0]]\n", + "```\n", + "\n", + " * Implement the `to_one_of_k` method of `MNISTDataProvider` class. \n", + " * Uncomment the overloaded `next` method, so the raw targets are converted to 1-of-K coding. \n", + " * Test your code by running the the cell below." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "mnist_dp = data_providers.MNISTDataProvider(\n", + " which_set='valid', batch_size=5, max_num_batches=5, shuffle_order=False)\n", + "\n", + "for inputs, targets in mnist_dp:\n", + " assert np.all(targets.sum(-1) == 1.)\n", + " assert np.all(targets >= 0.)\n", + " assert np.all(targets <= 1.)\n", + " print(targets)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true, + "nbpresent": { + "id": "471093b7-4b94-4295-823a-5285c79d3119" + } + }, + "source": [ + "### Exercise 3\n", + "\n", + "Here you will write your own data provider `MetOfficeDataProvider` that wraps [weather data for south Scotland](http://www.metoffice.gov.uk/hadobs/hadukp/data/daily/HadSSP_daily_qc.txt). A previous version of this data has been stored in `data` directory for your convenience and skeleton code for the class provided in `mlp/data_providers.py`.\n", + "\n", + "The data is organised in the text file as a table, with the first two columns indexing the year and month of the readings and the following 31 columns giving daily precipitation values for the corresponding month. As not all months have 31 days some of entries correspond to non-existing days. These values are indicated by a non-physical value of `-99.9`.\n", + "\n", + " * You should read all of the data from the file ([`np.loadtxt`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.loadtxt.html) may be useful for this) and then filter out the `-99.9` values and collapse the table to a one-dimensional array corresponding to a sequence of daily measurements for the whole period data is available for. [NumPy's boolean indexing feature](http://docs.scipy.org/doc/numpy/user/basics.indexing.html#boolean-or-mask-index-arrays) could be helpful here.\n", + " * A common initial preprocessing step in machine learning tasks is to normalise data so that it has zero mean and a standard deviation of one. Normalise the data sequence so that its overall mean is zero and standard deviation one.\n", + " * Each data point in the data provider should correspond to a window of length specified in the `__init__` method as `window_size` of this contiguous data sequence, with the model inputs being the first `window_size - 1` elements of the window and the target output being the last element of the window. For example if the original data sequence was `[1, 2, 3, 4, 5, 6]` and `window_size=3` then `input, target` pairs iterated over by the data provider should be\n", + " ```\n", + " [1, 2], 3\n", + " [4, 5], 6\n", + " ```\n", + " * **Extension**: Have the data provider instead overlapping windows of the sequence so that more training data instances are produced. For example for the sequence `[1, 2, 3, 4, 5, 6]` the corresponding `input, target` pairs would be\n", + "\n", + "```\n", + "[1, 2], 3\n", + "[2, 3], 4\n", + "[3, 4], 5\n", + "[4, 5], 6\n", + "```\n", + " * Test your code by running the cell below." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "nbpresent": { + "id": "c8553a56-9f25-4198-8a1a-d7e9572b4382" + } + }, + "outputs": [], + "source": [ + "batch_size = 3\n", + "for window_size in [2, 5, 10]:\n", + " met_dp = data_providers.MetOfficeDataProvider(\n", + " window_size=window_size, batch_size=batch_size,\n", + " max_num_batches=1, shuffle_order=False)\n", + " fig = plt.figure(figsize=(6, 3))\n", + " ax = fig.add_subplot(111)\n", + " ax.set_title('Window size {0}'.format(window_size))\n", + " ax.set_xlabel('Day in window')\n", + " ax.set_ylabel('Normalised reading')\n", + " # iterate over data provider batches checking size and plotting\n", + " for inputs, targets in met_dp:\n", + " assert inputs.shape == (batch_size, window_size - 1)\n", + " assert targets.shape == (batch_size, )\n", + " ax.plot(np.c_[inputs, targets].T, '.-')\n", + " ax.plot([window_size - 1] * batch_size, targets, 'ko')" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/notebooks/res/code_scheme.svg b/notebooks/res/code_scheme.svg new file mode 100644 index 0000000..0b0eec8 --- /dev/null +++ b/notebooks/res/code_scheme.svg @@ -0,0 +1,2030 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + image/svg+xml + + + + + + + The Model + Forward Computation + Backward computation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + E(y,t)(here assumed cross-entropy) + + + + + + + + + + + + + + + + ParameterUpdates + + + + + + + + + + + + + + + + + + + diff --git a/notebooks/res/jupyter-dashboard.png b/notebooks/res/jupyter-dashboard.png new file mode 100644 index 0000000..9e9ea4e Binary files /dev/null and b/notebooks/res/jupyter-dashboard.png differ diff --git a/notebooks/res/jupyter-notebook-interface.png b/notebooks/res/jupyter-notebook-interface.png new file mode 100644 index 0000000..846d07e Binary files /dev/null and b/notebooks/res/jupyter-notebook-interface.png differ diff --git a/notebooks/res/singleLayerNetBP-1.png b/notebooks/res/singleLayerNetBP-1.png new file mode 100644 index 0000000..122ee36 Binary files /dev/null and b/notebooks/res/singleLayerNetBP-1.png differ diff --git a/notebooks/res/singleLayerNetPredict.png b/notebooks/res/singleLayerNetPredict.png new file mode 100644 index 0000000..4e54404 Binary files /dev/null and b/notebooks/res/singleLayerNetPredict.png differ diff --git a/notebooks/res/singleLayerNetWts-1.png b/notebooks/res/singleLayerNetWts-1.png new file mode 100644 index 0000000..7f9f68d Binary files /dev/null and b/notebooks/res/singleLayerNetWts-1.png differ diff --git a/notebooks/res/singleLayerNetWtsBP.pdf b/notebooks/res/singleLayerNetWtsBP.pdf new file mode 100644 index 0000000..0892783 Binary files /dev/null and b/notebooks/res/singleLayerNetWtsBP.pdf differ diff --git a/notebooks/res/singleLayerNetWtsEqns-1.png b/notebooks/res/singleLayerNetWtsEqns-1.png new file mode 100644 index 0000000..274e467 Binary files /dev/null and b/notebooks/res/singleLayerNetWtsEqns-1.png differ diff --git a/notebooks/res/singleLayerNetWtsEqns.pdf b/notebooks/res/singleLayerNetWtsEqns.pdf new file mode 100644 index 0000000..bda1492 Binary files /dev/null and b/notebooks/res/singleLayerNetWtsEqns.pdf differ diff --git a/notes/environment-set-up.md b/notes/environment-set-up.md new file mode 100644 index 0000000..99d8e83 --- /dev/null +++ b/notes/environment-set-up.md @@ -0,0 +1,441 @@ +# Environment set up + +*The instructions below are intentionally verbose as they try to explain the reasoning behind our choice of environment set up and to explain what each command we are asking you to run does. If you are already confident using bash, Conda environments and Git you may wish to instead use the much shorter [minimal set-up instructions](#minimal-set-up-instructions-for-dice) at the end which skip the explanations.* + +In this course we will be using [Python 3](https://www.python.org/) for all the labs and coursework assignments. In particular we will be making heavy use of the numerical computing libraries [NumPy](http://www.numpy.org/) and [SciPy](http://www.scipy.org/), and the interactive notebook application [Jupyter](http://jupyter.org/). + +A common headache in software projects is ensuring the correct versions of all dependencies are available on the current development system. Often you may be working on several distinct projects simultaneously each with its own potentially conflicting dependencies on external libraries. Additionally you may be working across multiple different machines (for example a personal laptop and University computers) with possibly different operating systems. Further, as is the case in Informatics on DICE, you may not have root-level access to a system you are working on and so not be able to install software at a system-wide level and system updates may cause library versions to be changed to incompatible versions. + +One way of overcoming these issues is to use project-specific *virtual environments*. In this context a virtual environment is an isolated development environment where the external dependencies of a project can be installed and managed independent of the system-wide versions (and those of the environments of other projects). + +There are several virtual environment solutions available in the Python eco-system, including the native [pyvenv](https://docs.python.org/3/library/venv.html) in Python 3 and the popular [virtualenv](https://virtualenv.pypa.io/en/stable/). Also related is [pip](https://pip.pypa.io/en/stable/) a Python package manager natively included in Python 2.7.9 and above. + +Here we will instead use the environment capabilities of the [Conda](http://conda.pydata.org/docs/) package management system. Unlike pip and virtualenv/pyvenv, Conda is not limited to managing Python packages but is a language and platform agnostic package manager. Both NumPy and SciPy have many non-Python external dependencies and their performance is very dependent on correctly linking to optimised linear algebra libraries. + +Conda can handle installation of the Python libraries we will be using and all their external dependencies, in particular allowing easy installation of [optimised numerical computing libraries](https://docs.continuum.io/mkl-optimizations/). Further Conda can easily be installed on Linux, OSX and Windows systems meaning if you wish to set up an environment on a personal machine as well this should be easy to do whatever your operating system of choice is. + +There are several options available for installing Conda on a system. Here we will use the Python 3 version of [Miniconda](http://conda.pydata.org/miniconda.html), which installs just Conda and its dependencies. An alternative is to install the [Anaconda Python distribution](https://docs.continuum.io/anaconda/), which installs Conda and a large selection of popular Python packages. As we will require only a small subset of these packages we will use the more barebones Miniconda to avoid eating into your DICE disk quota too much, however if installing on a personal machine you may wish to consider Anaconda if you want to explore other Python packages. + +## Installing Miniconda + +We provide instructions here for getting an environment with all the required dependencies running on computers running +the School of Informatics [DICE desktop](http://computing.help.inf.ed.ac.uk/dice-platform). The same instructions +should be able to used on other Linux distributions such as Ubuntu and Linux Mint with minimal adjustments. + +For those wishing to install on a personal Windows or OSX machine, the initial instructions for setting up Conda will +differ slightly - you should instead select the relevant installer for your system from [here](http://conda.pydata.org/miniconda.html) and following the corresponding installation instructions from [here](http://conda.pydata.org/docs/install/quick.html). After Conda is installed the [remaining instructions](#creating-the-conda-environment) should be broadly the same across different systems. + +*Note: Although we are happy for you to additionally set up an environment on a personal machine, you should still set up a DICE environment now as this will make sure you are able to use shared computing resources later in the course. Also although we have tried to note when the required commands will differ on non-DICE systems, these instructions have only been tested on DICE and we will not be able to offer any support in labs on getting set up on a non-DICE system.* + +--- + +Open a bash terminal (`Applications > Terminal` on DICE). + +We first need to download the latest 64-bit Python 3 Miniconda install script: + +``` +wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh +``` + +This uses `wget` a command-line tool for downloading files. + +Now run the install script: + +``` +bash Miniconda3-latest-Linux-x86_64.sh +``` + +You will first be asked to review the software license agreement. Assuming you choose to agree, you will then be asked +to choose an install location for Miniconda. The default is to install in the root of your home directory +`~/miniconda3`. We recommend going with this default unless you have a particular reason to do otherwise. + +You will then be asked whether to prepend the Miniconda binaries directory to the `PATH` system environment variable +definition in `.bashrc`. As the DICE bash start-up mechanism differs from the standard set up +([details here](http://computing.help.inf.ed.ac.uk/dice-bash)), on DICE you should respond `no` here as we will set up the addition to `PATH` manually in the next step. On other Linux distributions you may choose to accept the default. + +On DICE, append the Miniconda binaries directory to `PATH` in manually in `~/.benv` using + +``` +echo "export PATH=\""\$PATH":$HOME/miniconda3/bin\"" >> ~/.benv +``` + +For those who this appears a bit opaque to and want to know what is going on see here [1](#f1). + +We now need to `source` the updated `~/.benv` so that the `PATH` variable in the current terminal session is updated: + +``` +source ~/.benv +``` + +From the next time you log in all future terminal sessions should have the updated `PATH` loaded by default. + +## Creating the Conda environment + +You should now have a working Conda installation. If you run + +``` +conda --help +``` +from a terminal you should see the Conda help page displayed. If you get a `No command 'conda' found` error you should check you have set up your `PATH` variable correctly (you can get a demonstrator to help you do this). + +Assuming Conda is working, we will now create our Conda environment: + +``` +conda create -n mlp python=3 +``` + +This bootstraps a new Conda environment named `mlp` with a minimal Python 3 install. You will be presented with a 'package plan' listing the packages to be installed and asked whether to proceed: type `y` then enter. + +We will now *activate* our created environment: + +``` +source activate mlp +``` + +or on Windows only + +``` +activate mlp +``` + +When a environment is activated its name will be prepended on to the prompt which should now look something like `(mlp) [machine-name]:~$` on DICE. + +**You need to run this `source activate mlp` command every time you wish to activate the `mlp` environment in a terminal (for example at the beginning of each lab)**. When the environment is activated, the environment will be searched first when running commands so that e.g. `python` will launch the Python interpreter installed locally in the `mlp` environment rather than a system-wide version. + +If you wish to deactivate an environment loaded in the current terminal e.g. to launch the system Python interpreter, you can run `source deactivate` (just `deactivate` on Windows). + +We will now install the dependencies for the course into the new environment: + +``` +conda install numpy scipy matplotlib jupyter +``` + +Again you will be given a list of the packages to be installed and asked to confirm whether to proceed. Enter `y` then wait for the packages to install (this should take around five minutes). In addition to Jupyter, NumPy and SciPy which we have already mentioned, we are also installing [matplotlib](http://matplotlib.org/) a plotting and visualisation library. + +Once the installation is finished, to recover some disk space we can clear the package tarballs Conda just downloaded: + +``` +conda clean -t +``` + +These tarballs are usually cached to allow quicker installation into additional environments however we will only be using a single environment here so there is no need to keep them on disk. + +## Getting the course code and a short introduction to Git + +The next step in getting our environment set up will be to download the course code. This is available in a Git repository on Github: + +https://github.com/CSTR-Edinburgh/mlpractical + +[Git](https://git-scm.com/) is a distributed version control system and [Github](https://github.com) a popular site for hosting Git repositories. We will be using Git to distribute the code for all the labs and assignments. We will explain all the necessary `git` commands as we go, though those new to Git may find [this concise guide by Roger Dudler](http://rogerdudler.github.io/git-guide/) or [this slightly longer one from Atlassian](https://www.atlassian.com/git/tutorials/) useful. + +--- + +***Non-DICE systems only:*** + +Git is installed by default on DICE desktops. If you are running a system which does not have Git installed, you can use Conda to install it in your environment using: + +``` +conda install git +``` + +--- + +We will now go over the process of [cloning](https://www.atlassian.com/git/tutorials/setting-up-a-repository/git-clone) a local copy of the `mlpractical` repository. + +--- +**Confident Git users only:** + +For those who have their own Github account and are confident Git users, you may wish to consider instead [creating a private fork](http://stackoverflow.com/a/30352360) of the `CSTR-Edinburgh/mlpractical` repository on Github. This is not required for the course, however it will allow you to push your local commits to Github making it easier to for example sync your work between DICE computers and a personal machine. + +**Note you should NOT create a public fork using the default forking mechanism on Github as this will make any commits you push to the fork publicly available which creates a risk of plagiarism.** + +If you are already familiar with Git you may wish to skip over the explanatory sections below, though you should read [the section on how we will use branches to separate the code for different labs](#branching-explanation). + +--- + +By default we will assume here you are cloning to your home directory however if you have an existing system for organising your workspace feel free to keep to that. **If you clone the repository to a path other than `~/mlpractical` however you will need to adjust all references to `~/mlpractical` in the commands below accordingly.** + + +To clone the `mlpractical` repository to the home directory run + +``` +git clone https://github.com/CSTR-Edinburgh/mlpractical.git ~/mlpractical +``` + +This will create a new `mlpractical` subdirectory with a local copy of the repository in it. Enter the directory and list all its contents, including hidden files, by running: + +``` +cd ~/mlpractical +ls -a # Windows equivalent: dir /a +``` + +For the most part this will look much like any other directory, with there being the following three non-hidden sub-directories: + + * `data`: Data files used in the labs and assignments. + * `mlp`: The custom Python package we will use in this course. + * `notebooks`: The Jupyter notebook files for each lab and coursework. + +Additionally there exists a hidden `.git` subdirectory (on Unix systems by default files and directories prepended with a period '.' are hidden). This directory contains the repository history database and various configuration files and references. Unless you are sure you know what you are doing you generally should not edit any of the files in this directory directly. Generally most configuration options can be enacted more safely using a `git config` command. + + +For instance to globally set the user name and email used in commits you can run: + +``` +git config --global user.name "[your name]" +git config --global user.email "[matric-number]@sms.ed.ac.uk" +``` + +*Note this is meant as an example of a `git config` command - you do not need to run this command though there is no harm in doing so.* + +From the `~/mlpractical` directory if you now run: + +`git status` + +a status message containing information about your local clone of the repository should be displayed. + +Providing you have not made any changes yet, all that will be displayed is the name of the current *branch* (we will explain what a branch is to those new to Git in a little while), a message that the branch is up to date with the remote repository and that there is nothing to commit in the working directory. + +The two key concepts you will need to know about Git for this course are *commits* and *branches*. + +A *commit* in Git is a snapshot of the state of the project. The snapshots are recorded in the repository history and allow us to track changes to the code over time and rollback changes if necessary. In Git there is a three stage process to creating a new commit. + + 1. The relevant edits are made to files in the working directory and any new files created. + + 2. The files with changes to be committed (including any new files) are added to the *staging area* by running: + + ``` + git add file1 file2 ... + ``` + + 3. Finally the *staged changes* are used to create a new commit by running + + ``` + git commit -m "A commit message describing the changes." + ``` + +This writes the staged changes as a new commit in the repository history. We can see a log of the details of previous commits by running: + +``` +git log +``` + +Although it is not a requirement of the course for you to make regular commits of your work, we strongly recommend you do as it is a good habit to get into and will make recovery from accidental deletions etc. much easier. + +The other key Git concept you will need to know about are *branches*. A branch in Git represents an independent line of development of a project. When a repository is first created it will contain a single branch, named `master` by default. Commits to this branch form a linear series of snapshots of the project. + +A new branch is created from a commit on an existing branch. Any commits made to this new branch then evolve as an independent and parallel line of changes - that is commits to the new branch will not affect the old branch and vice versa. + +A typical Git workflow in a software development setting would be to create a new branch whenever making changes to a project, for example to fix a bug or implement a new feature. These changes are then isolated from the main code base allowing regular commits without worrying about making unstable changes to the main code base. Key to this workflow is the ability to *merge* commits from a branch into another branch, e.g. when it is decided a new feature is sufficiently developed to be added to the main code base. Although merging branches is key aspect of using Git in many projects, as dealing with merge conflicts when two branches both make changes to same parts of files can be a somewhat tricky process, we will here generally try to avoid the need for merges. + +

We will therefore use branches here in a slightly non-standard way. The code for each week's lab and for each of the assignments will be maintained in a separate branch. This will allow us to stage the release of the notebooks and code for each lab and assignment while allowing you to commit the changes you make to the code each week without having to merge those changes when new code is released. Similarly this structure will allow us to release updated notebooks from previous labs with proposed solutions without overwriting your own work.

+ +To list the branches present in the local repository, run: + +``` +git branch +``` + +This will display a list of branches with a `*` next to the current branch. To switch to a different existing branch in the local repository run + +``` +git checkout branch-name +``` + +This will change the code in the working directory to the current state of the checked out branch. Any files added to the staging area and committed will then create a new commit on this branch. + +You should make sure you are on the first lab branch now by running: + +``` +git checkout mlp2017-8/lab1 +``` + +## Installing the `mlp` Python package + +In your local repository we noted above the presence of a `mlp` subdirectory. This contains the custom Python package implementing the NumPy based neural network framework we will be using in this course. + +In order to make the modules in this package available in your environment we need install it. A [setuptools](https://setuptools.readthedocs.io/en/latest/) `setup.py` script is provided in the root of the `mlpractical` directory for this purpose. + +The standard way to install a Python package using a `setup.py` script is to run `python setup.py install`. This creates a copy of the package in the `site-packages` directory of the currently active Python environment. + +As we will be updating the code in the `mlp` package during the course of the labs this would require you to re-run `python setup.py install` every time a change is made to the package. Instead therefore you should install the package in development mode by running: + +``` +python setup.py develop +``` + +Instead of copying the package, this will instead create a symbolic link to the copy in the local repository. This means any changes made will be immediately available without the need to reinstall the package. + +--- + +**Aside on importing/reloading Python modules:** + +Note that after the first time a Python module is loaded into an interpreter instance, using for example: + +``` +import mlp +``` + +Running the `import` statement any further times will have no effect even if the underlying module code has been changed. To reload an already imported module we instead need to use the [`reload`](https://docs.python.org/2.7/library/functions.html#reload) function, e.g. + +``` +reload(mlp) +``` + +**Note: To be clear as this has caused some confusion in previous labs the above `import ...` / `reload(...)` statements should NOT be run directly in a bash terminal. They are examples Python statements - you could run them in a terminal by first loading a Python interpreter using:** + +``` +python +``` + +**however you do not need to do so now. This is meant as information to help you later when importing modules as there was some confusion last year about the difference between `import` and `reload`.** + +--- + +## Adding a data directory variable to the environment + +We observed previously the presence of a `data` subdirectory in the local repository. This directory holds the data files that will be used in the course. To enable the data loaders in the `mlp` package to locate these data files we need to set a `MLP_DATA_DIR` environment variable pointing to this directory. + +Assuming you used the recommended Miniconda install location and cloned the `mlpractical` repository to your home directory, this variable can be automatically defined when activating the environment by running the following commands (on non-Windows systems): + +``` +cd ~/miniconda3/envs/mlp +mkdir -p ./etc/conda/activate.d +mkdir -p ./etc/conda/deactivate.d +echo -e '#!/bin/sh\n' >> ./etc/conda/activate.d/env_vars.sh +echo "export MLP_DATA_DIR=$HOME/mlpractical/data" >> ./etc/conda/activate.d/env_vars.sh +echo -e '#!/bin/sh\n' >> ./etc/conda/deactivate.d/env_vars.sh +echo 'unset MLP_DATA_DIR' >> ./etc/conda/deactivate.d/env_vars.sh +export MLP_DATA_DIR=$HOME/mlpractical/data +``` + +And on Windows systems (replacing the `[]` placeholders with the relevant paths): + +``` +cd [path-to-conda-root]\envs\mlp +mkdir .\etc\conda\activate.d +mkdir .\etc\conda\deactivate.d +@echo "set MLP_DATA_DIR=[path-to-local-repository]\data" >> .\etc\conda\activate.d\env_vars.bat +@echo "set MLP_DATA_DIR=" >> .\etc\conda\deactivate.d\env_vars.bat +set MLP_DATA_DIR=[path-to-local-repository]\data +``` + +## Loading the first lab notebook + +Your environment is now all set up so you can move on to the introductory exercises in the first lab notebook. + +One of the dependencies you installed in your environment earlier was Jupyter. Jupyter notebooks allow combining formatted text with runnable code cells and visualisation of the code output in an intuitive web application interface. Although originally specific to Python (under the previous moniker IPython notebooks) the notebook interface has now been abstracted making them available to a wide range of languages. + +There will be a Jupyter notebook available for each lab and assignment in this course, with a combination of explanatory sections for you to read through which will complement the material covered in lectures, as well as series of practical coding exercises to be written and run in the notebook interface. The first lab notebook will cover some of the basics of the notebook interface. + +To open a notebook, you first need to launch a Jupyter notebook server instance. From within the `mlpractical` directory containing your local copy of the repository (and with the `mlp` environment activated) run: + +``` +jupyter notebook +``` + +This will start a notebook server instance in the current terminal (with a series of status messages being streamed to the terminal output) and launch a browser window which will load the notebook application interface. + +By default the notebook interface will show a list of the files in the directory the notebook server was launched from when first loaded. If you click on the `notebooks` directory in this file list, a list of files in this directory should then be displayed. Click the `01_Introduction.ipynb` entry to load the first notebook. + +# Minimal set-up instructions for DICE + +Below are instructions for setting up the environment without additional explanation. These are intentionally terse and if you do not understand what a particular command is doing you might be better following the more detailed instructions above which explain each step. + +--- + +Start a new bash terminal. Download the latest 64-bit Python 2.7 Miniconda install script: + +``` +wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh +``` + +Run the install script: + +``` +bash Miniconda3-latest-Linux-x86_64.sh +``` + +Review the software license agreement and choose whether to accept. Assuming you accept, you be asked to choose an install location for Miniconda. The default is to install in the root of your home directory `~/miniconda3`. We will assume below you have used this default. **If you use a different path you will need to adjust the paths in the commands below to suit.** + +You will then be asked whether to prepend the Miniconda binaries directory to the `PATH` system environment variable definition in `.bashrc`. You should respond `no` here as we will set up the addition to `PATH` manually in the next step. + +Append the Miniconda binaries directory to `PATH` in manually in `~/.benv`: +``` +echo "export PATH=\""\$PATH":$HOME/miniconda3/bin\"" >> ~/.benv +``` + +`source` the updated `~/.benv`: + +``` +source ~/.benv +``` + +Create a new `mlp` Conda environment: + +``` +conda create -n mlp python=3 +``` + +Activate our created environment: + +``` +source activate mlp +``` + +Install the dependencies for the course into the new environment: + +``` +conda install numpy scipy matplotlib jupyter +``` + +Clear the package tarballs Conda just downloaded: + +``` +conda clean -t +``` + +Clone the course repository to your home directory: + +``` +git clone https://github.com/CSTR-Edinburgh/mlpractical.git ~/mlpractical +``` + +Make sure we are on the first lab branch + +``` +cd ~/mlpractical +git checkout mlp2017-8/lab1 +``` + +Install the `mlp` package in the environment in develop mode + +``` +python ~/mlpractical/setup.py develop +``` + +Add an `MLP_DATA_DIR` variable to the environment + +``` +cd ~/miniconda3/envs/mlp +mkdir -p ./etc/conda/activate.d +mkdir -p ./etc/conda/deactivate.d +echo -e '#!/bin/sh\n' >> ./etc/conda/activate.d/env_vars.sh +echo "export MLP_DATA_DIR=$HOME/mlpractical/data" >> ./etc/conda/activate.d/env_vars.sh +echo -e '#!/bin/sh\n' >> ./etc/conda/deactivate.d/env_vars.sh +echo 'unset MLP_DATA_DIR' >> ./etc/conda/deactivate.d/env_vars.sh +export MLP_DATA_DIR=$HOME/mlpractical/data +``` + +Environment is now set up. Load the notebook server from `mlpractical` directory + +``` +cd ~/mlpractical +jupyter notebook +``` + +and then open the first lab notebook from the `notebooks` directory. + + +--- + +[1] The `echo` command causes the following text to be streamed to an output (standard terminal output by default). Here we use the append redirection operator `>>` to redirect the `echo` output to a file `~/.benv`, with it being appended to the end of the current file. The text actually added is `export PATH="$PATH:[your-home-directory]/miniconda/bin"` with the `\"` being used to escape the quote characters. The `export` command defines system-wide environment variables (more rigorously those inherited by child shells) with `PATH` being the environment variable defining where `bash` searches for executables as a colon-seperated list of directories. Here we add the Miniconda binary directory to the end of the current `PATH` definition. [↩](#a1) diff --git a/notes/getting-started-in-a-lab.md b/notes/getting-started-in-a-lab.md new file mode 100644 index 0000000..7f53851 --- /dev/null +++ b/notes/getting-started-in-a-lab.md @@ -0,0 +1,55 @@ +# Getting started in a lab on DICE computers + +Once your [environment is set up](environment-set-up.md), at the beginning of each lab you should be able follow the steps below to get the lab notebook for that session running. + +Open a terminal window (`Applications > Terminal`). + +We first need to activate our `mlp` Conda environment: + +``` +source activate mlp +``` + +We now need to fetch any new code for the lab from the Github repository and create a new branch for this lab's work. First change in to the `mlpractical` repoistory directory (if you cloned the repository to a different directory than the default you will need to adjust the command below accordingly): + +``` +cd ~/mlpractical +``` + +If you have not yet commited the changes you made to the current branch in the previous lab you should do so now. You can check if you have changes not yet commited by running `git status`. If there are files with changes to be commited (they will appear in red) you should first add them to the staging area using + +``` +git add path/to/file1 path/to/file2 +``` + +then commit them with a descriptive commit message using + +``` +git commit -m "Description of changes e.g. Exercises for first lab notebook." +``` + +We are now ready to fetch any updated code from the remote repository on Github. This can be done by running + +``` +git fetch origin +``` + +This should display a message indicate a new branch has been found and fetched, named `origin/mlp2017-8/lab[n]` where `[n]` is the relevant lab number e.g. `origin/mlp2017-8/lab2` for the second lab. + +We now need to create and checkout a new local branch from the remote branch fetched above. This can be done by running + +``` +git checkout -b lab[n] origin/mlp2017-8/lab[n] +``` + +where again `lab[n]` corresponds to the relevant lab number fetched above e.g. `lab2`. This command creates a new local branch named `lab[n]` from the fetched branch on the remote repository `origin/mlp2017-8/lab[n]`. + +Inside the `notebooks` directory there should new be a new notebook for today's lab. The notebook for the previous lab will now also have proposed solutions filled in. + +To get started with the new notebook from the `~/mlpractical` directory start up a Jupyter notebook server + +``` +jupyter notebook +``` + +then open the new notebook from the dashboard. diff --git a/notes/quota-issue.md b/notes/quota-issue.md new file mode 100644 index 0000000..db09687 --- /dev/null +++ b/notes/quota-issue.md @@ -0,0 +1,29 @@ +# Exceeded quota problems on DICE + +Apologies to those who may have issues with having insufficient quota space on DICE in the labs on Monday (25th September). + +This was caused by the [dynamic AFS quota system](http://computing.help.inf.ed.ac.uk/dynamic-afs-quotas) which only initially allocates users a subset of their maximum quota and then checks hourly to increase this quota as needed. Unfortunately the amount of disk space needed to store the temporary files used in installing the course dependencies exceeded the current dynamic quota for some people. This meant when running the `conda install ...` command it exited with a quota exceeded error. + +Those who experienced that issue should now have sufficient quota space available. From any DICE computer, If you run in a terminal + +``` +source activate mlp +conda remove -y numpy scipy matplotlib jupyter +conda install -y numpy scipy matplotlib jupyter +conda clean -t -y +``` + +this should clean out the old partially installed packages and reinstall them from scratch which should now run to completion without a quota exceeded error. + +Your homespace can be accessed from any Informatics computer running DICE (e.g. any of the computers in the [Forrest Hill labs](http://web.inf.ed.ac.uk/infweb/student-services/ito/students/year2/student-support/facilities/computer-labs) which are open-access outside of booked lab sessions or for those who know how to use SSH you can [log in remotely](http://computing.help.inf.ed.ac.uk/external-login)). You can therefore finish your environment set up prior to the next lab if you want though it is also fine to wait till the beginning of the next lab (it will take around 5 minutes to complete the installation). + +At this point assuming you ran through the rest of the instructions to clone the Git repository to your homespace and install the `mlp` package (i.e. the instructions from [here](https://github.com/CSTR-Edinburgh/mlpractical/blob/mlp2016-7/lab1/environment-set-up.md#getting-the-course-code-and-a-short-introduction-to-git) on-wards), you should have a fully working environment. + +Once your environment is set up in all future labs you will only need to activate it to get started. So at the beginning of each subsequent lab we will ask you to do something like the following + +``` +source activate mlp # Activate the mlp environment +cd ~/mlpractical # Change the current directory to mlpractical repository +git checkout mlp2017-8/lab[...] # Checkout the branch for this week's lab +jupyter notebook # Launch the notebook server +``` diff --git a/notes/running-notebooks-remotely.md b/notes/running-notebooks-remotely.md new file mode 100644 index 0000000..54f433b --- /dev/null +++ b/notes/running-notebooks-remotely.md @@ -0,0 +1,84 @@ +# Running Jupyter notebooks over SSH + +Below is a guide for how to start a Jupyter notebook server remotely on one of the shared-use `student.compute` servers and to connect to it on a local machine by port-forwarding over SSH. It is assumed you already have a SSH client set up on the machine you are connecting from and that you are familiar with how to use SSH. These instructions have been written for use with a SSH client running within a terminal session - although it may be possible to replicate the relevant commands within a GUI based SSH client, you will need to figure out how to do this yourself. They were written and tested on Ubuntu 14.04 and no attempt has been made to test them on other operating systems. + +## Securing your notebook server + +Before running a Jupyter notebook server instance on one of the shared compute servers you **must** make sure you have secured your server by configuring it to use a password and to communicate that password between the browser client and server by secure HTTP. This can be done on by running the `secure-notebook-server.sh` bash script provided in the `scripts` directory of the `mlpractical` repository. You can either do this when logged on to DICE in one of the labs or after connecting to DICE remotely over SSH as described below. + +To run the script, in a DICE terminal enter the `mlpractical` repository directory and run +``` +bash scripts/secure-notebook-server.sh +``` +As this script creates a self-signed certificate to set up the secure HTTP encrypted communication between the browser and server, you will be shown a security warning when you load up the URL the notebooks are being served on. + +If you want to manually secure the notebook server yourself or to create a certificate which will stop the security warnings appearing you can refer to the [relevant official Jupyter documentation page](http://jupyter-notebook.readthedocs.io/en/latest/public_server.html). + +## Connecting to a remote `student.compute` server over SSH + +To start an SSH session, open a terminal window and run + +``` +ssh [dice-username]@student.ssh.inf.ed.ac.uk +``` + +If this is this is the first time you have logged on to the SSH gateway server from this computer you will be asked to confirm you wish to connect and a ECDSA key fingerprint printed. You can check this against the reference values on the [school help pages](http://computing.help.inf.ed.ac.uk/external-login). + +You will then be asked to enter your password. This is the same password you usually use to log on to DICE. + +Assuming you enter the correct password, you will at this point be logged in to the SSH *gateway server*. As the message printed when you log in points out this is intended only for accessing the Informatics network externally and you should **not** attempt to work on this server. You should log in to one of the `student.compute` shared-use servers by running + +``` +ssh student.compute +``` + +You should now be logged on to one of the shared-use compute servers. The name of the server you are logged on to will appear at the bash prompt e.g. + +``` +ashbury:~$ +``` + +You will need to know the name of the remote server you are using later on. + +## Starting a notebook server on the remote computer + +You should now activate your `mlp` Conda environment by running + +``` +source activate mlp +``` + +Now move in to the `mlpractical` local repository directory e.g. by running + +``` +cd ~/mlpractical +``` + +if you chose the default of putting the repository in your home directory. + +We will now launch a notebook server on the remote compute-server. There are two key differences in the command we use to do this compared to how we usually start up a server on a local machine. First as the server will be running remotely you should set the `--no-browser` option as this will prevent the remote server attempting open a browser to connect to the notebook server. + +Secondly we will prefix the command with `nice`. `nice` is a shell command which alters the scheduling priority of the process it is used to start. Its important to use `nice` when running on the shared `student.compute` servers to make sure they remain usable by all of the students who need to run jobs on them. You can set a priority level between 10 (highest priority) and 19 (lowest priority) using the `-n` argument. Running the command below will start up a notebook server at the lowest priority level. + +``` +nice -n 19 jupyter notebook --no-browser +``` + +Once the notebook server starts running you should take note of the port it is being served on as indicated in the `The Jupyter Notebook is running at: https://localhost:[port]/` message. + +## Forwarding a connection to the notebook server over SSH + +Now that the notebook server is running on the remote server you need to connect to it on your local machine. We will do this by forwarding the port the notebook server is being run on over SSH to you local machine. As all external connections from outside the `inf.ed.ac.uk` domain have to go via the SSH gateway server we need to go via this gateway server. + +In a **new terminal window / tab** run the command below with the `[...]` placeholders substituted with the appropriate values to securely forward the specified port on the remote server to your local machine and bind it to a local port. You should choose `[remote-port]` to be the port the notebook server is running on on the remote server, `[local-port]` to be a currently unused port on your local machine and `[remote-server-name]` to be the host name of the remote server the notebook server is being run on. + +``` +ssh -N -o ProxyCommand="ssh -q [dice-username]@student.ssh.inf.ed.ac.uk nc [remote-server-name] 22" \ + -L [local-port]:localhost:[remote-port] [dice-username]@[remote-server-name] +``` + +You will be asked to enter your (DICE) password twice, once to log on to the gateway server and a second time to log on to the remote compute server. + +Assuming you enter your password both times correctly, the remote port will now be getting forwarded to the specified local port on your computer. If you now open up a browser on your computer and go to `https://localhost:[local-port]` you should (potentially after seeing a security warning about the self-signed certicate) now asked to enter the notebook server password you specified earlier. Once you enter this password you should be able to access the notebook dashboard and open and edit notebooks as you usually do in labratories. + +When you are finished working you should both close down the notebook server by entering `Ctrl+C` twice in the terminal window the SSH session you used to start up the notebook server is running and halt the port forwarding command by entering `Ctrl+C` in the terminal it is running in. diff --git a/scripts/secure-notebook-server.sh b/scripts/secure-notebook-server.sh new file mode 100644 index 0000000..95f0547 --- /dev/null +++ b/scripts/secure-notebook-server.sh @@ -0,0 +1,73 @@ +#!/bin/bash +# Configure Jupyter notebook server to use password authentication +# Make sure Conda environment is active as will assume it is later +[ -z "$CONDA_PREFIX" ] && echo "Need to have Conda environment activated." && exit 1 +if [ "$#" -gt 2 ]; then + echo "Usage: bash secure-notebook-server.sh [jupyter-path] [open-ssl-config-path]" + exit 1 +fi +# If specified read Jupyter directory from passed argument +JUPYTER_DIR=${1:-"$HOME/.jupyter"} +# If specified read OpenSSL config file path from passed argument +# This is needed due to bug in how Conda handles config path +export OPENSSL_CONF=${2:-"$CONDA_PREFIX/ssl/openssl.cnf"} +SEPARATOR="=================================================================\n" +# Create default config file if one does not already exist +if [ ! -f "$JUPYTER_DIR/jupyter_notebook_config.py" ]; then + echo "No existing notebook configuration file found, creating new one ..." + printf $SEPARATOR + jupyter notebook --generate-config + printf $SEPARATOR + echo "... notebook configuration file created." +fi +# Get user to enter notebook server password +echo "Getting notebook server password hash. Enter password when prompted ..." +printf $SEPARATOR +HASH=$(python -c "from notebook.auth import passwd; print(passwd());") +printf $SEPARATOR +echo "... got password hash." +# Generate self-signed OpenSSL certificate and key file +echo "Creating certificate file ..." +printf $SEPARATOR +CERT_INFO="/C=UK/ST=Scotland/L=Edinburgh/O=University of Edinburgh/OU=School of Informatics/CN=$USER/emailAddress=$USER@sms.ed.ac.uk" +openssl req \ + -x509 -nodes -days 365 \ + -subj "/C=UK/ST=Scotland/L=Edinburgh/O=University of Edinburgh/OU=School of Informatics/CN=$USER/emailAddress=$USER@sms.ed.ac.uk" \ + -newkey rsa:1024 -keyout "$JUPYTER_DIR/key.key" \ + -out "$JUPYTER_DIR/cert.pem" +printf $SEPARATOR +echo "... certificate created." +# Setting permissions on key file +chmod 600 "$JUPYTER_DIR/key.key" +# Add password hash and certificate + key file paths to config file +echo "Setting up configuration file..." +printf $SEPARATOR +echo " adding password hash" +SRC_PSW="^#\?c\.NotebookApp\.password[ ]*=[ ]*u['"'"'"]\(sha1:[a-fA-F0-9]\+\)\?['"'"'"]" +DST_PSW="c.NotebookApp.password = u'$HASH'" +grep -q "c.NotebookApp.password" $JUPYTER_DIR/jupyter_notebook_config.py +if [ ! $? -eq 0 ]; then + echo DST_PSW >> $JUPYTER_DIR/jupyter_notebook_config.py +else + sed -i "s/$SRC_PSW/$DST_PSW/" $JUPYTER_DIR/jupyter_notebook_config.py +fi +echo " adding certificate file path" +SRC_CRT="^#\?c\.NotebookApp\.certfile[ ]*=[ ]*u['"'"'"]\([^'"'"'"]+\)\?['"'"'"]" +DST_CRT="c.NotebookApp.certfile = u'$JUPYTER_DIR/cert.pem'" +grep -q "c.NotebookApp.certfile" $JUPYTER_DIR/jupyter_notebook_config.py +if [ ! $? -eq 0 ]; then + echo DST_CRT >> $JUPYTER_DIR/jupyter_notebook_config.py +else + sed -i "s|$SRC_CRT|$DST_CRT|" $JUPYTER_DIR/jupyter_notebook_config.py +fi +echo " adding key file path" +SRC_KEY="^#\?c\.NotebookApp\.keyfile[ ]*=[ ]*u['"'"'"]\([^'"'"'"]+\)\?['"'"'"]" +DST_KEY="c.NotebookApp.keyfile = u'$JUPYTER_DIR/key.key'" +grep -q "c.NotebookApp.keyfile" $JUPYTER_DIR/jupyter_notebook_config.py +if [ ! $? -eq 0 ]; then + echo DST_KEY >> $JUPYTER_DIR/jupyter_notebook_config.py +else + sed -i "s|$SRC_KEY|$DST_KEY|" $JUPYTER_DIR/jupyter_notebook_config.py +fi +printf $SEPARATOR +echo "... finished setting up configuration file." diff --git a/setup.py b/setup.py new file mode 100644 index 0000000..46266b1 --- /dev/null +++ b/setup.py @@ -0,0 +1,13 @@ +""" Setup script for mlp package. """ + +from setuptools import setup + +setup( + name = "mlp", + author = "Pawel Swietojanski, Steve Renals, Matt Graham and Antreas Antoniou", + description = ("Neural network framework for University of Edinburgh " + "School of Informatics Machine Learning Practical course."), + url = "https://github.com/CSTR-Edinburgh/mlpractical", + packages=['mlp'] +) +