diff --git a/notebooks/00_Introduction_solution.ipynb b/notebooks/00_Introduction_solution.ipynb deleted file mode 100644 index b58d807..0000000 --- a/notebooks/00_Introduction_solution.ipynb +++ /dev/null @@ -1,622 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Introduction\n", - "\n", - "This notebook shows how to set-up a working python envirnoment for the Machine Learning Practical course.\n", - "\n", - "\n", - "# Setting up the software\n", - "\n", - "Within this course we are going to work with python (using some auxiliary libraries like numpy and scipy). Depending on the infrastracture and working environment (e.g. DICE), root permission may not be not available so the packages cannot be installed in default locations. A convenient python configuration, which allows us to install and update third party libraries easily using package manager, are so called virtual environments. They can be also used to work (and test) the code with different versions of software.\n", - "\n", - "## Instructions for Windows\n", - "\n", - "The fastest way to get working setup on Windows is to install Anaconda (http://www.continuum.io) package. It's a python environment with precompiled versions of the most popular scientific python libraries. It also works on MacOS, but numpy is not linked without a fee to a numerical library, hence for MacOS we recommend the following procedure.\n", - "\n", - "## Instructions for MacOS\n", - "\n", - " * Install macports following instructions at https://www.macports.org/install.php\n", - " * Install the relevant python packages in macports\n", - "\n", - " ```\n", - " sudo port install py27-scipy +openblas\n", - " sudo port install py27-ipython +notebook\n", - " sudo port install py27-notebook\n", - " sudo port install py27-matplotlib\n", - " sudo port select --set python python27\n", - " sudo port select --set ipython2 py27-ipython\n", - " sudo port select --set ipython py27-ipython\n", - " ```\n", - "\n", - "Make sure that your `$PATH` has `/opt/local/bin` before `/usr/bin` so you pick up the version of python you just installed.\n", - "\n", - "## Instructions for DICE:\n", - "\n", - "### Directory structure and getting things organised\n", - "\n", - "To get things somehow standarized between people, and make life of everyone easier, we propse to organise your DICE setup in the following directory structure:\n", - "\n", - " * `~/mlpractical/` -- for a general course repository\n", - " * `~/mlpractical/repos-3rd` -- for stuff you download, build and install (numpy, OpenBlas, virtualenv)\n", - " * `~/mlpractical/repo-mlp` -- this is the actual course repository you clone from our website (do not create a dir for it yet!)\n", - " * `~/mlpractical/venv` -- this is where virutal envirnoment will make its dir (do not create a dir for it yet!)\n", - "\n", - "Create now repos-3rd directory (option -p in the below command will automatically create (non-existing) **p**arent directories (mlpractical):\n", - "\n", - " * `mkdir -p ~/mlpractical/repos-3rd`\n", - "\n", - "And now, let us set an MLP_WDIR environmental variable (MLP Working DIRectory) that will keep an absolute path of working dir pointing to `~/mlpractial`, **add the below line** to your `~/.bashrc` file (if it does not exists, create one using a text editor! e.g. by running `gedit ~/.bashrc`):\n", - "\n", - "```\n", - "export MLP_WDIR=~/mlpractical\n", - "```\n", - "\n", - "Now re-source `~/.bashrc` by typing (so the env variables get updated!): `source ~/.bashrc`\n", - "\n", - "Enter the `repos-3rd` directory by typing: `cd ~/mlpractical/repos-3rd` (or ```cd $MLP_WDIR/repos-3rd``` if you want)\n", - "\n", - "### Configuring virtual environment\n", - "\n", - "Make sure you are in `repos-3rd` directory and that MLP_WDIR variable has been exported (you may type export in the terminal and examine the list of availabe variables in the current session), then type:\n", - "\n", - " * `git clone https://github.com/pypa/virtualenv`\n", - " * Enter the cloned repository and type ```./virtualenv.py --python /usr/bin/python2.7 --no-site-packages $MLP_WDIR/venv```\n", - " * Activate the environment by typing `source ~/mlpractical/venv/bin/activate` (to leave the virtual environment one may type `decativate`)\n", - " * Environments need to be activated every time ones start the new session so we will now create a handy alias to it in `~/.bashrc` script, by typing the below command (note, MLP_WDIR export needs to preceed this command):\n", - " \n", - " ```alias activate_mlp=\"source $MLP_WDIR/venv/bin/activate\"```\n", - " \n", - "Then every time you open new session and want to activate the right virtual environment, simply type `activate_mlp` instead `source ~/mlpractical/venv/bin/activate`. Note, you need to re-soure the .bashrc in order alias to be visible in the current session.\n", - "\n", - "### Installing remaining packages\n", - "\n", - "Then, before you follow next, install/upgrade the following packages:\n", - "\n", - "```\n", - "pip install --upgrade pip\n", - "pip install setuptools\n", - "pip install setuptools --upgrade\n", - "pip install ipython\n", - "pip install notebook\n", - "```\n", - "\n", - "### Installing numpy\n", - "\n", - "Note, having virtual environment properly installed one may then run `pip install numpy` to use pip to install numpy, though this will most likely lead to the suboptimal configuration where numpy is linked to ATLAS numerical library, which on DICE is compiled in multi-threaded mode. This means whenever numpy use BLAS accelerated computations (using ATLAS), it will use **all** the available cores at the given machine. This happens because ATLAS can be compiled to either run computations in single *or* multi threaded modes. However, contrary to some other backends, the latter does not allow to use an arbitrary number of threads (specified by the user prior to computation). This is highly suboptimal, as the potential speed-up resulting from paralleism depends on many factors like the communication overhead between threads, the size of the problem, etc. Using all cores for our exercises is not-necessary.\n", - "\n", - "For which reason, we are going to compile our own version of BLAS package, called *OpenBlas*. It allows to specify the number of threads manually by setting an environmental variable OMP_NUM_THREADS=N, where N is a desired number of parallel threads (please use 1 by default). You can set an environment variable in the current shell by running\n", - "\n", - "```\n", - "export OMP_NUM_THREADS=1\n", - "```\n", - "\n", - "(note the lack of spaces around the equals sign and use of `export` to define an environment variable which will be available in sub-shells rather than just a variable local to the current shell).\n", - "\n", - "#### OpenBlas\n", - "\n", - "Enter again repos-3rd directory and copy into terminal the following commands (one at the time):\n", - "\n", - "```\n", - "cd ~/mlpractical/repos-3rd\n", - "OBDir=$MLP_WDIR/repos-3rd/OpenBLAS\n", - "git clone git://github.com/xianyi/OpenBLAS\n", - "cd OpenBLAS\n", - "make\n", - "make PREFIX=$OBDir install\n", - "```\n", - "\n", - "Once OpenBLAS is finished compiling we need to ensure the compiled shared library files in the `lib` subdirectory are available to the shared library loader. This can be done by appending the absolute path to the `lib` subdirectory to the `LD_LIBRARY_PATH` environment variable. To ensure this changes persist we will change the bash start up file `~/.bashrc` by opening it in a text editor (e.g. by running `gedit ~/.bashrc`) and adding the following line\n", - "\n", - "```\n", - "export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$MLP_WDIR/repos-3rd/OpenBLAS/lib\n", - "```\n", - "\n", - "Note, we again are using MLP_WDIR here, so the above line needs to be placed after you set MLP_WDIR.\n", - "\n", - "After you have edited `.bashrc` run\n", - "\n", - "```\n", - "source ~/.bashrc\n", - "activate_mlp # This is the alias you set up in the bashrc\n", - "#source ~/mlpractical/venv/bin/activate\n", - "```\n", - "\n", - "to rerun the bash start up script make sure the new environment variable is available in the current shell and then reactivate the virtual environment.\n", - "\n", - "#### Numpy\n", - "\n", - "To install `numpy` linked against the OpenBLAS libraries we just compiled, first run the following commands (one at a time)\n", - "\n", - "```\n", - "cd ~/mlpractical/repos-3rd/\n", - "wget http://downloads.sourceforge.net/project/numpy/NumPy/1.9.2/numpy-1.9.2.zip\n", - "unzip numpy-1.9.2.zip\n", - "cd numpy-1.9.2\n", - "echo \"[openblas]\" >> site.cfg\n", - "echo \"library_dirs = $OBDir/lib\" >> site.cfg\n", - "echo \"include_dirs = $OBDir/include\" >> site.cfg\n", - "python setup.py build --fcompiler=gnu95\n", - "```\n", - "\n", - "Assuming the virtual environment is activated, the below command will install numpy in a desired space (`~/mlpractical/venv/...`):\n", - "\n", - "```\n", - "python setup.py install\n", - "```\n", - "\n", - "Now use pip to install remaining packages: `scipy`, `matplotlib`, `argparse`, and `nose` by executing:\n", - "\n", - "```\n", - "pip install scipy matplotlib argparse nose\n", - "```\n", - "\n", - "### Getting the mlpractical repository\n", - "\n", - "Clone the course repository from the github, by navigating to `~/mlpractical` directory and typing:\n", - "\n", - "```\n", - "cd $MLP_WDIR\n", - "git clone https://github.com/CSTR-Edinburgh/mlpractical.git repo-mlp\n", - "```\n", - "\n", - "When download is ready, enter the repo-mlp directory and start the actual interactive notebook session by typing:\n", - "\n", - "```\n", - "cd repo-mlp\n", - "ipython notebook\n", - "```\n", - "\n", - "This should start a ipython server which opens a new browser window listing files in `repo-mlp` directory, including `00_Introduction.ipynb.`. Open it and run (from the browser interface) the following examples and exercies." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "scrolled": true - }, - "outputs": [], - "source": [ - "%clear\n", - "import numpy\n", - "# show_config() prints the configuration of numpy numerical backend \n", - "# you should be able to see linkage to OpenBlas or some other library\n", - "# in case those are empty, it means something went wrong and \n", - "# numpy will use a default (slow) pythonic implementation for algebra\n", - "numpy.show_config()\n", - "#numpy.test()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Also, below we check whether and how much speedup one may expect by using different number of cores:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "import os\n", - "import multiprocessing\n", - "import timeit\n", - "\n", - "num_cores = multiprocessing.cpu_count()\n", - "N = 1000\n", - "x = numpy.random.random((N,N))\n", - "\n", - "for i in xrange(0, num_cores):\n", - " # first, set the number of threads OpenBLAS\n", - " # should use, the below line is equivalent\n", - " # to typing export OMP_NUM_THREADS=i+1 in bash shell\n", - " print 'Running matrix-matrix product on %i core(s)' % i\n", - " os.environ['OMP_NUM_THREADS'] = str(i+1)\n", - " %%timeit numpy.dot(x,x.T)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Test whether you can plot and display the figures using pyplot" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "# Remove the below line if not running this code in an ipython notebook\n", - "# It's a special command allowing the notebook to display plots inline\n", - "%matplotlib inline\n", - "import matplotlib.pyplot as plt\n", - "\n", - "x = numpy.linspace(0.0, 2*numpy.pi, 100)\n", - "y1 = numpy.sin(x)\n", - "y2 = numpy.cos(x)\n", - "\n", - "plt.plot(x, y1, lw=2, label=r'$\\sin(x)$')\n", - "plt.plot(x, y2, lw=2, label=r'$\\cos(x)$')\n", - "plt.xlabel('x')\n", - "plt.ylabel('y')\n", - "plt.legend()\n", - "plt.xlim(0.0, 2*numpy.pi)\n", - "plt.grid()\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Exercises\n", - "\n", - "Today exercises are meant to get you familiar with ipython notebooks (if you haven't used them so far), data organisation and how to access it. Next week onwars, we will follow with the material covered in lectures.\n", - "\n", - "## Data providers\n", - "\n", - "Open (in the browser) `mlp.dataset` module (go to `Home` tab and navigate to mlp package, then click on the link `dataset.py`). Have a look thourgh the code and comments, then follow to exercises.\n", - "\n", - "General note: you can load the mlp code into your favourite python IDE but it is totally OK if you work (modify & save) the code directly in the browser by opening/modyfing the necessary modules in the tabs.\n", - "\n", - "### Exercise 1 \n", - "\n", - "Using MNISTDataProvider, write a code that iterates over the first 5 minibatches of size 100 data-points. Print MNIST digits in 10x10 images grid plot. Images are returned from the provider as tuples of numpy arrays `(features, targets)`. The `features` matrix has shape BxD while the `targets` vector is of size B, where B is the size of a mini-batch and D is dimensionality of the features. By deafult, each data-point (image) is stored in a 784 dimensional vector of pixel intensities normalised to [0,1] range from an inital integer values [0-255]. However, the original spatial domain is two dimensional, so before plotting you need to convert it into 2D matrix (MNIST images have the same number of pixels for height and width).\n", - "\n", - "Tip: Useful functions for this exercise are: imshow, subplot, gridspec" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "%matplotlib inline\n", - "import matplotlib.pyplot as plt\n", - "import matplotlib.gridspec as gridspec\n", - "import matplotlib.cm as cm\n", - "from mlp.dataset import MNISTDataProvider\n", - "\n", - "def show_mnist_image(img):\n", - " fig = plt.figure()\n", - " gs = gridspec.GridSpec(1, 1)\n", - " ax1 = fig.add_subplot(gs[0,0])\n", - " ax1.imshow(img, cmap=cm.Greys_r)\n", - " plt.show()\n", - "\n", - "def show_mnist_images(batch):\n", - " feats, tar = batch\n", - " fig = plt.figure()\n", - " fif, axarr = plt.subplots(10, 10)\n", - " for i in xrange(0,10):\n", - " for j in xrange(0,10):\n", - " k = i*10 + j\n", - " axarr[i,j].imshow(feats[k].reshape(28,28), cmap=cm.Greys_r)\n", - " plt.show()\n" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "collapsed": false, - "scrolled": true - }, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWYAAAEACAYAAACAi9xRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXdYFGf3/u+BBREBsWIXG4oVW/I12GNNfNXYxd4To8Zo\nEksixpj3jSYmRo0NjSZqLFhjr2A0amJLFBWMCBY6KtLb7ty/P2Z3XWAbyyxifnuu61yws7Ozn3nm\nmbPPPOXcAknYzGY2s5nNSo7ZvWwAm9nMZjazWV6zBWab2cxmNithZgvMNrOZzWxWwswWmG1mM5vZ\nrISZLTDbzGY2s1kJM1tgtpnNbGazEmYWB2ZBEHoJghAiCMIdQRDmyAn1KnKUJBYbh43DxvHqceQx\nkoV2AKUARAKoDkAB4AqAlpYcqyheUjhKEouNw8Zh43j1OPK7pS3m1wHcJhlNUglgF4C3LTxWUayk\ncJQkFhuHjcPG8epx5DFLA3MNAI91XkeptxW3lRSOksRi47Bx2DhePY48prDwcwQAQRAeAEgB4Aqg\nDIB35cF65Tg0LCMEQfAFoFKznLZx2DhsHDaOwpqlgTkKQE1IJ9UZwAQAjro7CIIgaxIOkkIJ5tCw\nKAB0JvlMEISPrclSUjiMsNg4bBw2DvM5CuxkSYe5E4AHAB4B8IDUYd4q3z6U00syhw5LLoAmABws\nZencuTMXLFjAwMBAOjg4vDQOma5NkTgaNGjAU6dO0d/fnykpKQwICKCTk1Oxc5SU8rBx/Hs5CnCZ\nEYQ3AYgHEKKzrTyA6wBESM3/OADTzDkZe3t7/ve//+WMGTP45MkTbty4kZ06dWKjRo1MnZCsHABY\nqlQpVq9enYMHD+bIkSPZrFkzDhs2jLVq1bKE45T6AqsAZAH4VU9ZGj3Hxo0bMyQkhFOmTGHbtm0t\nLY8ic1jgsnOUL1+e169fZ3p6OkeMGMHt27fz1q1bHDx4MMuVK1dsHHZ2dmzQoAEB0NPTk56eni+l\nPErCdZkyZQr9/f155coVLlmyhG3atOGwYcNoZ2f30srDwcGB9erV48CBA9mlSxeWKlWqWDl0v8/N\nzY3/93//Z5JZrsDcAUDLfCe0CsBMAJXVfwMAXAPQzdTJlC5dmg8fPuS4ceN47do1PnnyhJ9++ilv\n3rxJFxcXYyckK0fZsmV5/Phxzp49mykpKQwPD+eHH37IpKQkBgYGGrv5LeIwdYEFQeCBAwf49OlT\nli1b1pybziocFrqsHM2aNeO0adP49OlTjh07lqVKlaKjoyNr167NAQMG0MvLq1g4oL7ZfvrpJzo7\nO3Pw4MF8//33i708TLmTkxObNWvGdu3a0d3dXbfuyspRrlw5durUiWfOnOH9+/c5f/58pqam8s03\n3yz28rC3t+fSpUt56NAhfvzxx4yIiGBkZCQDAgKMBWdZOezt7Tlu3Dja29sTAJs0acKrV6+avF6y\nBGY1mGe+E7oPoIL6/4oAwgHMAzCvsJVMoVCwV69eFEWRb7/9ttGTkYtDEAR+9913TElJ4fDhw1mt\nWjXtexUrVmRcXBzfe+89WTmMlYkgCOzduzczMzPZt29fs8rNGhwODg708fHhlStXmJGRwY0bN3Ls\n2LGmfjApJ4ejoyPXrFnDM2fOcMGCBVQoFAUY82+zBofGu3Xrxl9//ZUuLi786KOPuGnTJnOuj+wc\n+b1UqVJs0KABP/vsM+7Zs4eiKFIURZ45c4YrV64sFo6KFSvy0qVLXLVqVbGXR9WqValSqZicnMyO\nHTuyVKlSrFKlCi9fvmzsx1NWjhYtWjAoKIi9evUiAHbt2pUxMTFm3btFDsyQHpkTAWTpbMsGEA3g\nbwB/AUgH8BuAvoW9uHZ2dpw2bRpFUeTMmTON7Ssbh6urKw8dOsSDBw9S3bGv9SZNmjAmJobz5s2T\nlcNYmbi6uvL69es8efJkAR65y8MQh0Kh4Pvvv8/ExEQGBgbyu+++4+nTp6lUKrl9+3ajfbtycjRs\n2JDR0dHctWuXuU8OVuEApB/MoKAgHjhwgC4uLhw/fjxPnDhRrBz29vbaFpnGfX19+dNPPzEqKoq5\nubkURZG5ubk8e/YsV65cSR8fH6uUh8arV6/Odu3accuWLXz48CHr1KlTrNcFAD08PJiWlsbFixfn\n2T5//nz+9ddfxcLRokULiqLITz75hADYoUMHPnz40GT9kCswdwDwVr4TygLwJYAb6pNSAfjCkl/d\n0aNHMyMjg/Hx8axYsaKxfWXlWL9+PVNTU/N8Z+nSpRkTE8MFCxawadOmsnKYc4E/++wzs8rMGhz1\n6tXTdudotlWrVo1XrlyhKIpcsWJFgQCh47JxtGjRghkZGRw8eHBhykJ2DkDq5ybJ5cuXEwBHjhzJ\nmzdvFitHYGAgjx49SgCsXLkyf/nlF20w1vWff/5Z32CxrOXh5OTE/fv3MzMzkyqVipmZmdqgVJzX\nBZB+NMPDw3nkyJE827/77jsuW7asWDg09223bt0IgD4+PoyMjDRZHrIEZjVY+3wn9AyAv/r/SgDC\nC1OogPSru2rVKmZmZvLy5cts1aqVyZORk6Ndu3aMi4tjUFAQPT096ebmxl9++YXXrl0z+gNhKYch\nFkEQuGfPHgYFBZkziGI1jn79+vHXX38tsH369OkURZGxsbFs3ry5IR7ZOMaPH8/s7GxWqFDB7LKw\nBgcgzQohyfHjxxMAX3/9dSYkJNDR0bFYONzc3JiWlkZRFPnHH3/w6dOnFEWRSqWS9+/f5549e7h0\n6VK2a9euWMqje/fu2u8PDw/nvXv3+NNPP5kacJOdA+r75vjx44yKitJu69mzJ0+cOGFsgFZWjhYt\nWlClUrFr164EwPr16/PPP/806961VmD+E8ATAKEArgJYX9hCDQ4OZk5ODs+cOcOWLVuadTJycgiC\nwLZt2zIhIYHXrl3jqlWr+M8//7B69epW4TDE0qZNG6akpLB79+55tnt6enLJkiVs2bKl3u4NuTm+\n/fZbvd037u7uTE5OZk5ODt944w1zK7zFHJMmTWJmZmae4DRjxgweO3aMW7du5cGDBzlz5kxDrXfZ\nOADpRyI9PV07mObt7c2oqCjWrFmzsIHIIg5HR0cmJSUVaB2vXr2a3t7edHZ2NtbfLnt5VKpUiV98\n8QVHjx7NevXqsWnTpjx06BC3bt3K0qVLFxuHxtu3b8+YmBh26NCBHTt25LNnz9ijRw9jZSIrR5Mm\nTahSqTht2jTtPXvjxg26urqajCFFCsyQFm8kQJpOQgDPAYwD0BrAUwCZADIA7CtsYI6NjaUoipww\nYYKxGRC6LjsHAHbq1ImPHz+mKIr88ccfrcZhiMXPz4+pqal5psfZ29szODiYKpWKGRkZvH79utU5\nBg4cyCdPnrBnz56sXbs2S5UqRVdXV3bu3JmpqakcOHAg3d3dDZWJbBzjxo2jUqlk9+7d6eXlxZCQ\nECYlJTE4OJhff/01AwMDmZGRwW3btlmVw97enuvWrePz58+12zw9PRkaGqqdPmfEZePYtm0bVSoV\nRVHkypUrWa9evcKMQ+To8AQCqA8gGEAqpP7VWADuhb1ndL158+ZMSUnhyJEjjXFZhaN69er8448/\nmJaWxujoaI4cObLYyyM9PZ1ffPGFtn4EBwebLDM5ArMHgKaQRjNvA/gHQAuop5mo9/EHkFTYQl28\neDGTk5OZmZnJY8eOmTNv1yocVapU4fXr1ymKIqOiogq0XOXiMMQyd+5cxsTE5BnoGjRoEBMTE7li\nxQquW7eOp06dsjpH+fLluWnTJubm5jIsLEzbOn38+DFVKpWp+ZmycbRv355ZWVlcsWIFz5w5w/j4\nePbt21f7uOzm5sadO3fy66+/tiqHg4MDt27dypSUFNarV48VK1akj48Pb9y4wfXr15vqdpKNo0mT\nJnzw4AFFUeSiRYtMzbHP7z0AhABwyc8CoBqkH/cVRQnMADhnzhyePn3aWPeT1Ti+//57iqLIQ4cO\nvZTySE9P57Fjxzho0CD26dOHt2/f5rx58/jFF1+wQ4cOej9T5MCsA+apPqE9kDrQH+DFNJO5ANIK\nW6gKhYKurq7ax7Ps7Gy+9dZbBve3FkeXLl0YHx/PUaNG8fDhw8zJyTHWZ2cxhyGWNWvWFBgwWLRo\nEUNCQjh58mQ+ffqUYWFhVufQ+FtvvcUDBw7w/PnzvHTpEiMiIiiKIl9//XVTgUgWDk9PT4aFhVEU\nRT58+FBvv/aGDRt49epVfY+MsnFoAjNJ7UBXTk4OSVIURWPdOrJyANI0rKysLIqiyEePHhVmtoon\n1NPD1CzDoZ4iBmA6gMOwYHwovzs7OzMkJMTYk4RVOKpUqcKbN2+SJAMCAl5KeZw5c0YbwzRPNppG\nnre3t8EYUqTAjIJdGSoAU9V/cyCNaqYAyDD3ZPL3Db7++us8f/48RVHk2rVrjbVEZOXQ+LJly7Rd\nGF5eXrx69Sr37dtnbO6uRRyGWD744APGxcWxbdu29PLyYr9+/Xj48GGqVCo+ffqUAQEBrFSpktU5\nDPlHH31ElUpl8Ndf7dmQVl8SwH41Q5yaL0XN1cscDjs7O86aNYtKpZKRkZEcN25cnq4uNzc3Xrt2\njZcuXWKZMmWsxgFI09K2b9/OEydOMDg4mLt372Z0dDQjIyNNdSfIygFI/bvnzp2jSqViaGgoO3Xq\nZM7103AoIU0F26l+reG4BSDdHI7evXvz66+/prOzc4H3BEHgqVOn2KNHD6tz6Pqbb77JK1eucPLk\nybxz546p/narcAiCwLVr13LXrl3csmWLdlaXsX5mOQKzpivDBdLS52hIzf8sALN09ksx52RKlSrF\nxYsXc+XKlRw3bhzXrVvHAwcOMDIyUtuHZqTCy8ah6zt37swTdOrXr8979+4ZW11mEYchlkGDBlGp\nVDImJoYRERFMTU1lVlYWv//+ezZr1kzvjWANDkM+ffp0qlQqo4t/ALSFNHgyDNIjYhqAhRqWwnKU\nKVOG8+fPZ0pKCtPS0njixAn27NmTVatW5ZIlS5iWlsaPP/7Y6hyANADn7u7OChUqsEKFCjxy5AjD\nw8NNlZvsHIDUzRMdHU2VSsWtW7eac/1ku2f69OnD9PR0nj17lt7e3nnu0/79+zM6Olo7O8GaHLq+\nYcMGjho1io0aNeLjx4/NWZxlFQ5Amkro7u7OQ4cOyTL4ZzS7HMl4QRCeQWribwXgCynTf4b6BCEI\nQiVIrTeT5uHhgf79+6NJkya634Ho6Ghcv34da9eu1RSEPrsrF4fGBEGAq6srRFGEg4MDFAoFUlJS\n4OrqisqVK+Off/6xOsfhw4exf/9+xMbGQqFQIDQ0FEeOHEFERISpj8peHvrs9u3bEAQBZcqUMbbb\nlwB+IblTEIRBkFInOgNIs4QjPT0d//vf/xAcHIyFCxeiTZs2OHLkCOzs7JCeno6AgAB88803VucA\ngJycHOTk5AAAFAoFHj9+jM6dO8PFxQVpaWmGPiYrh7OzM+rUqYMvv/wSVatWBYA895ARk62OXLhw\nAQcPHkT//v1x48YN5ObmIjQ0FN7e3ihVqhQuXbqE0NBQq3NoTBAENG/eHGvWrAEA2Nvbo3v37jh4\n8KCxj1ntnsnKyoKDgwMAwN3dHampqZYc5oWZaDELALYAWA6pf+YhpEpm0TQ1Nzc3zps3j//88w8D\nAwMZERHBb775hnXr1tX3WJrfZePQuCAI/N///sfr169z06ZN9Pf3Z3BwMPfs2WOMxyKOwrZUzfBi\n4ejatStFUTQ1+LdcfVwNyzoAxwBEQEocEwagvCUcjo6O9PHx4fjx4zl58mS2b9/e2LWxGofGJ0+e\nTFEU2bhx42Ipj27duvGnn37ioUOHtP2XX3/9NUePHm21OmLoeB4eHnzzzTe5Y8cORkVFMSgoiLGx\nsfz222/p4+Nj7GlX9nsXAH/77TcePXqUH374Ie/du2fOwKhVODTu5OTEffv28YcffjC6nzktZlOB\nuT2kPpibkPpkIgD0gjTN5JR6+30AuwobEHX/mumycwBSRrfQ0FCKokh/f38uX77c2LQwizmsEJiL\nhUMTmNu3b29sv78hrZ5KB7AIUtaus2qOkwCWANhm5fIoFo7GjRuTJBctWmR1jjFjxjAjI4OiKHL+\n/Pk8fvw4+/fv/9LvGRT+HrYKR+3atXnq1CnOmzcvz4rVl1EeGl+xYgWvXLlidJ8iB2Y1lAOAEwA+\nNPB+NQB3i+Gme6U5rMBSLBwNGzakKIrG+g9f+WtTUjmqVavGQYMGsWnTpuYkkvrXl8e/haPIgRk6\nXRn5tleG9GsTAmlS9q1iKNQSzaH+2wtADKQR3jlWZikWDjs7O7Zp04Zubm6v7LWxcdg4ShKHHIFZ\n05Whyb70F4DeAH6BNPXkHqRfoL+RT/LbCoVakjm2QnoUyoG0kqgW9Mig/0s5Svq1sXHYOEoUhzmB\n2dSsjN+hR0lbEIR0AGVJ9lG//giS5PdfOp81rWtVRCspHACOCYLQEcAnOiwaGfTiZCkpHCXm2tg4\nbByvAkd+s1SMtQaAx3rUqb+UietV49CwdBQE4SZertqujcPGYeN49TjymKWBmTp/O0Nag95Zd4di\nUpYtKRy6LJ0pqe0OsyZLSeEwwmLjsHHYOMznyGMFuinMtChIy7UBaYCwJoDHmjcFQehl4XENmiAI\nf6ld99hF4hAEAdOmTcP169cxcuTIonBoWBRqDuiyCILQSxCEELO+wEwrKRw6LK8ch4bFxmHjeAkc\n+lhemDkd0XoGBZ0gJWZ5CGl5YwaAJer3SgGIhJkd4S4uLmzQoAEHDx5MX19ffSoMBjvMi8pRvXp1\n+vv7UxRFpqens02bNhZ33OOFDHoIpAG4hwBa6XBU13c8hULBMWPGcOTIkUxPT2d4eDhHjBjB+fPn\nG81TLTeHrvv6+nLs2LH08fHRLk13c3MzOGfVWhyF9cJwWFJXnZ2d+dZbb3HixIls0aJFsXK0atWK\nGmvYsOFLK4+mTZsyMzOToihy7ty57NevX7Fz2NnZ0dnZmQMGDGCXLl04ZMgQZmVlcf/+/Ybyylit\nPMqWLcvx48dz2bJlHDNmDG/dusWkpCRmZmYazGdiTow12WIWBGGTIAjx+Vo4zpCy/3sA8AKwGkB3\nQRC6AXgdUspDkzZ27Fjs3bsXAwcOxJYtW7B//340bdq02DhWrlyJ3NxcLFmyBBcvXkTHjh1RvXp1\no8z6OARBKA/gEKQpap4ASkP6FS6v4SAZre94AwYMwOrVq1G3bl08evQIcXFxcHd3x+LFi7Fv3z7t\nElxrcwCAg4MDunfvjr1792Ljxo3o27cvAgMD4evri44dO8LJyckQi6wcGqtTpw7atWuXZ1ufPn3w\n448/6i2XQnIAZtbV+vXrY926dRg9ejS2b9+OgIAATJo0CYKg/4nUGhxxcXHa/zt27GgK2SocDg4O\neOONN1CqVCkAgKOjI9q2bVvsHD179sTYsWOxdetW7N69Gw0bNoSjoyP69u2LlStXonTp0sXCUaZM\nGQwbNgxr1qzBrFmzULt2bTRu3BhKpRLnzp3DrVu3jJaLMTOnK2MzpHl+urYIwBaSTgA+A+AIKY1e\nW6gH5Iwd0N3dHZ9//jk2b96Mrl274vXXXwcgVb74+HhDH+sKacmkvVwcZcqUwb1797BgwQLMmTMH\n7dq1Q58+fYx9xBjHEZK1ASwAcBTAD+Zw7Nu3D5UqVcLGjRvRpEkTtG/fHmvWrMHIkSNRtWpVTJ48\nGQqF3qEAWTkcHBzwv//9Dx999BFu3bqF2bNn4969e6hYsSK+/fZbtG3b1mAgkpNDY05OTti9ezcu\nXryIOXPmAAAaNGiAqVOnYvz48ahcuXJROWCKRRAE1KxZE3v37sXYsWPh4+ODEydOYO3atRgzZgzm\nzZtn6MdKVg4AiImJ0f7v5+eHyZMnG9vdKhwdO3bEsGHDEBUVhe7duyMoKAhffmnWOLtsHOXKlcPM\nmTPRo0cPfPnll0hNTUXbtm3xyy+/IDExEUOHDkWHDh2szgEACxcuRO/evTFhwgQcPXoU8fHxeO21\n11CzZk307NkTT58+1fs5QRBCBUHYpv5h0G9mdl14oqDsdw1ILdaK6te/AegLKcfpWhhp/p88eZIk\n+eTJE44ePZrt27fn0KFDWb9+fWOPRAKA76GTZLyoHG5ubtpUgZr8uzExMcYyulnMwULOh6xUqRKf\nPXvGqKgoVq1a1eocVatW5YULFzhmzBhtdix7e3v+8MMPVCqV3LJlizFtN1nLw87OjqtWraJSqaRK\npWKfPn0ISMKkJJmQkGBIyshsDvX7BuuIIAjs168fY2NjGR4ezvfee4+urq709PTkvn37KIoijx49\nakgfUjYOXR5d++2338ypR7JyzJs3jyqVigMGDDB1j1iNo06dOrx79y4nTZrEli1b8tGjRwwICKCr\nqyvbtWvHx48f8+nTp4ZyQ8vGUbp0ae7Zs4dTpkwpTDno3ruLoGdZvpbNjKC8Cfplv2PxQipHqy4L\nSb35sCEoPz8/beUykLrRkG+CJM8jysGhz1evXk2VSmU0Ub6lHIUNzF27dmV6ejpv3bplSBlCVo7a\ntWvzxo0bbNasWZ7tP/zwA1UqlVYJ2IDLWh6TJ08mKSWo//TTT7V82dnZJMl169YVmcNUHWnUqBFj\nY2MZFRXFunXrEgArVKjAU6dOURRF3r1715jop2wcGs8fmCl90JTLxuHk5KSVufroo4+4detWbtq0\nyWhfuzU4WrZsySdPnhCQUpEmJyfnUbMZM2YMs7Ky+L///c+qHHXr1uW9e/fYvXt3zpkzh3v37uUn\nn3xiloiB+tgGUyaYG5g7QL/st94cpngxIFcAqFSpUly3bp22YrVu3dqci6rxDpB+vVRF5TDkgwcP\nNicwW8ph1mCXnZ0de/Towf379zM7O5sLFy40NOgmK4e7uzuPHj3K1NRU9u/fnwqFgl27dmVMTAxj\nY2NN6TLKxlG+fHkeOXKEJHn69GlWrlyZADhq1CiSZHJyMn18fIrMYaqONGvWjCkpKdy6dSsrV67M\n6tWrMyAggDk5OTx9+jQHDhxoLH+FbBwatzAwy8ZRpkwZBgYGFhCGTUlJ4Q8//MB69eoVC8fKlSt5\n9+5dAuCMGTOYkJBADw8P7fteXl4MDw/njz/+qK9VLxtH69at+eTJkwLlkZCQwBEjRhgVp1UfezoM\naD+SJlb+QTrKeUEQ2ufbbDCHKcksQRDeg9Rfk8ecnZ1Rt25dU19pyAIAJEMaQS0ShyELCwuzJscJ\nUwdWKBT4+eef0bt3b7i5uSEuLg4rV67UVBKrciQnJ+O///0vTp48iQ0bNuDChQuoVasWypcvj44d\nO+L58+fG0FvKxVGjRg106tQJAHDkyBEkJEgfbdy4MQBpHMIIi9kc+VgK1JGcnBykpqZi+PDhqFmz\nJsqUKYOmTZvi8OHDmDRpEp49e2bousjKUUSTjSMjIwO///47vL29cfr0aTg6OqJixYro3bs3pk6d\nirJly2Lq1KmG8hDLxuHr64vz589DEARMnToVv//+e55xqXv37uHcuXPo2bMnvL29ce3aNatwPHjw\nAL/99hvc3d3x66+/AgC8vb0xatQoBAQEwMnJCT/++KO+soAgCKGQZn9M0LuD+suNtZZrAjgHqe9F\nhLTUF5A60TUSRskANuv5bIFfilq1avH27dt5fvUnT55sjuow5eQAQFdXV7799tucNGkSJ06cyIYN\nG/Ltt9+mSqWir6+v7BzGWDQ+btw4iqLIjIwMrX7Y2LFji5WjWbNmvHfvHlUqFVUqFf39/c25NrJx\n+Pj4aPXtBg8ezPfff5/Lly9nSEgISfLYsWMsX7681TkEQWD//v0ZHh5OpVJJURT54MEDgzpu1uLQ\n9SlTphS2xfy3muMugE8g5R5+CklRJQPSwFaRVLJbtGjBCxcuMCMjg//5z3+sznH79m2uWLGCgiAw\nNjaWK1asKLDPqlWrtE9+xVkegiBw6NChzMzMZFBQkEFxWmMxV/udJgKzB6Rfi3i80Mbyh5Sl6S6k\neX9PAPxjzslUrlyZFy5cYH6LiYnhunXruG7dOk6ePNnQicvGoVAo+NlnnzEzM1MbgGJjYxkXF0dR\nFDljxgxjeWYt4jDnAnt6enLhwoUcMmQI9+/fT6VSyePHjxtKDG81Dj8/P6anp1OpVPLzzz83p1LK\nxlGnTh1tEE5OTtYKoGps5syZxcKh8dq1azM8PJyiKPL58+ecMWNGsZaHrlsQmJ+oOaIgaQ72AfAI\n0vSw+5DyQZitCm1o8NfT05M3btzgX3/9ZXWOW7du8csvvyQgCQfXrl27wD5GArOs5aHP7e3tuWzZ\nMiYmJhrsfy9yYNYB80Re1d/7eKH62wRAjrkn06pVK65Zs4Znz54tEKBJcvfu3QZPRi6OOnXq8O+/\n/+akSZMoCAJr1qzJ7du3k5QUkJ8+fWpQFdpSjsJe4MaNGzM5OZlnzpyhk5NTsXLMmjWLoihy3759\nVCqVphSyKTeHIAicOnUqZ8+ezdmzZzMyMpIkqVQq2apVq2Lj0LBERUVxxYoVzMnJ4bNnz+jo6Fis\n5aHrV69eLUxg9kReVWgtC6TBp3CYqQrt6OjI1atXs2fPnnq/a968eUxPTzc0+CUbx+3bt3n48GGj\n533s2DHu3buXNWrUsBqHMVcoFExMTOSwYcP0vi93YA6D1C/iBiBV573pAHItPZkRI0Zw0aJF2sp2\n9uxZgycjF4e3tzcjIiL4xhtvsFatWvTx8eH69euZmprKH3/8kQkJCYyPj+fKlSsLrCSylMMQS926\ndfnOO+/k2ebs7MwpU6YwLS2N33zzjV7lcLk5dH3fvn1cvnw5K1SowF9//ZWpqal6Wyb5KrzsHBp/\n9uwZSTIjI8PUvrJzVK9enXfu3KGnpycHDRrEuLg4Xrp0yeAKVWuXh25gFkWRkyZNMjRlTxuI8EJK\nqS7UA1xqjn0wU3y0Xr16jIiI4NatW/VKOPXo0YPPnj0zNHAuG8eyZcuYk5PDRo0a6T3nwYMHMykp\niSEhIXkGBeXmmD59OqtVq6aXQRAEPnr0yGA3YJEDM6Q+5gRIj2SEJMkyHtK0Ek2fWQqAjKL+ymgs\nOzvb0D5nwSnJAAAgAElEQVSycdSqVYs3b95kbGwsw8LC+PjxYyYnJ3P27NlUKBRs27Yt9+7dy8zM\nTI4aNUoWDn0s1apVY2hoKB89esRBgwaxbNmyDAwM5J9//snMzEw+fvyYVapUkbU8TF0bQRAYHh6u\nXZ7euHFjZmVl8aOPPjJ2/bLVf5UAAtUMcXghC68C0MvSOqJSqYz+aFuTY9asWbx16xZr1apFBwcH\nfvPNN8zNzeWbb775UspDNzBrzMjspmxIj+4EcAFSvm5Rh+MWgHRzOEqXLs1t27YxOzubly9f5syZ\nM+nl5UV7e3sC4MSJE5mcnGxoSbRsHOPHj2dOTg7v3bvHXr165ZG4atWqFR88eEBRFLly5Uqrcnz8\n8ce8dOkSe/XqRTc3N23jSaFQsE6dOkxKSjI4PiRHYPYA4ANpBH0OJCn2FpCWQS9Q71MJRWj+N23a\nlPPnzycp9Sl+++23hvaVlaNDhw78/fffefXqVZ4/f569evUqsM+MGTM4cOBAWTj0sbRt21a7iELj\noihSpVLxypUrpuSEZOPI7zt37uT+/fvZqFEj1qpVi6mpqdy+fbveLhWdSv4hpBHufyANoiwFMKso\nHIDUZ6cJzNu2bTO1v+wcH3zwAZ8+fcq3336bNWvW5H/+8x+tIGpxcui6riUmJhobkJT1nvHz82NC\nQoK2noqiyCdPnvDq1avMysrinTt3rM7h4ODApUuXMjc3l2lpaQwNDeXhw4d5+fJl7cD5sWPHDD3R\nyMbRsmVLxsTEUBRFZmZm8u7du7xz5w4jIyOpVCr55MkTg91ucgTmPNJSeNEv8yeAA+ptHwJYaUkl\nmz9/PlNSUhgcHMzY2Fi+++67xh4RrcZRSLeIQx9L+fLlGRwczKioKJ45c4ZKpZJ37tzh6NGj2bx5\nc1NCl7Jx5PdJkyYxMzOTBw4c4J07d6hSqThkyBDtKkk9vlzn2HsAHISkCj27KBwA2L59ewYFBZkb\nmGXncHNzY1JSEp89e8ZNmzYxPj6eubm5BvsPrV0egNQ6JaWujA4dOsheRwwdT6FQsFmzZtqnyaCg\nIG1w3rlzp7GVu7JyuLu7s1+/frx16xYTEhJ48uRJpqamcuXKlRw7dqxJhXs5OBwcHPjWW29x1qxZ\nDA0NzVMeiYmJnDVrlsGxCDkCs6601G1Ij2TvQFL5zYD0yBwDwLOwlaxmzZpMSEjglStXWKtWLXPU\ndq3CYYFbxGGIRRCEPI9jZpSDVTh03d7enhs3bqS/vz+fPHnCb775RvvIasA1cj23Ic1IqAVpUCUb\n0lSkXQDKW3JtFAoF/f39SZLLly83tb9VOCZMmMDMzEz6+/szOzvbVDC0annoqzdy1xFzv/9lc+S/\nd8zgLhYOUyxFDsw6YC6QtOP6q19XhNSaNrjmuzCVzBx/1TnkZikpHMVxbTp16sQ1a9bQ3d39X11H\nbBz//3AUOTCjhEh+v+ocVmApKRyv/LWxcdg4ipOjyIEZ+fqYdbb/fys9bohD/bcXpMehFABzrMxS\nUjhK/LWxcdg4ShKHHIFZt4+5UJLfcvorwLEV0qquHADBkPoUr1iLpaRwvCLXxsZh4ygxHOa60SRG\nJH+HnmT6ghmS33JaSecAcEwQhI6QciNoWHZZi6WkcBhjKSnXxsZh4yhJHOaapSrZNQA8FgThAaTH\nZVcAZQCYJWcgo5UUDg1LSZBBt3HYOGwcrx5HHrNUJZs6fzsDmAdpOSMArQoyZXZ9yrIlhUOXpTPJ\nlpCkrnQ5Qv6lHHxVOaxcR2wcNg5jHEZVsi1tMUdBWq4NSAOEutL0pSAlpJbV1IVWUjk0LAVk0HU4\n2qv3+VdxGGEp0RzAS6mrrzTH8uXLkZSUhF27duHu3bsvjcNSK+EcBXYy1Wm+CdIkeV3Nv6qQ5Fhy\noM7JAGCJ+r2OKKSkk5lekjnKAzijfj8V0pr7hwBaaTjU+xU4niAI7Ny5s7HVSsXCoetxcXHG0q/q\nc6tw6Lqjo6OxlYeF5jBVRzp27Mi//vqL/v7+2uXH8+fPN5UzRHYOXd+xYwf379/PGjVqsGbNmkZV\nMqzBsXz5cvr7+7Nhw4aFrauycZQqVYqjR4/mmDFjmJycTJJcuHAhk5OTGRwczN69e+tN+mXN61JY\nN2fwz1KV7PmQpp7chxQMbwHoLghCN5ipgmyB6VOFLikciyDJoA+HtLKrOl7IoBvlaNCgAXbv3o2W\nLU3/iFqTQ9cuXryIMWPGFIbFKhwaa9y4MXbt2oXjx4+jefPmsLMzWG0LwwFjLO3bt0eTJk1w9+5d\nDB48GB06dMCNGzcwe/Zsc5Bl49BYpUqV8M4776Bnz54YPHgwTpw4gUOHDqFRo0bFykESubm5xnax\nKoeXlxe+++47eHp64p9//sGePXtw79492NnZoXPnzti5cycqVKhgdY6imGCGSrbJwEzyPICkfJvf\nAjCfpDeAppBOZA8k2W+aA+fi4oKlS5ciJycHp0+fxurVq6FQGO1ZqQNpSktVuTh69OiBhQsX4quv\nvkJYWBjeffddc9ANcWwluRNAM0iqCBoZdKMc9evXR4UKFeDt7Z1ne8OGDREcHIyJEyfC3t5e30dl\n5dC1v//+Gy1btkTNmjVN7yyZ7ByOjo7o1KkTduzYgQULFqBcuXI4ceIERFGUiwPGWFasWIEaNWpg\n165d2Lt3Ly5dugQ7Ozu4uLiYgy8bBwBUq1YNv/zyCzIyMjB9+nQsX74cr732GgRBwJEjR+Dp6Vks\nHADQunVrREREmNrNahwDBw7EkydPsGjRIrRt2xaDBw/G9u3b4erqiidPnsDNzQ3lypWzOoe9vT06\nduyIgwcPQqVS4c6dOxg4cCD27duHhQsXwtHR0dBHAaAxpMbkSoN7mNOshk6CafXrFEiS3846rzXy\n9GapU2/ZsoXZ2dlcs2YNz58/T5VKVSAvMfI1/wG8BiBbDg4XFxcmJyczOzubGRkZjIqKYmZmplmP\nIZZw6Ht0d3R05JYtW6hUKjl79uw8782cOZNKpZLTpk0zlo9ZFo78Pnr0aGZnZ3PRokXmPp7JylG6\ndGnu3LmTkZGRvHnzJj/88EOuX7+eX331Fb28vIw9qprNoX5tVl2tUaMG586dy3v37vH06dOylocp\nDkEQ+MEHH1AURe7cuTOPwGiZMmW4c+dOQ4rQspfH8uXLmZiYaG6dsArH0KFDDabTXLNmDUmjaVBl\n42jWrBnDwsJ47do1/vzzz4yPj9dmiDSVFlZ97CKrZG8CkIi8KtnG5OlNKv52796dOTk5VCqVBMDX\nXnuNKpWKy5cvpyAYTACyCdLjhkoOjvXr15OkNp1l5cqVef78eWOVvKgcBVShnZyceOjQIWZnZ3Po\n0KF53rtw4QIzMzONJaiXjSO/Dx8+nFlZWcZSsOZ32Tg8PDx48uRJ5ubmsmrVqixXrhxbt27N1q1b\n09nZmRs2bGDv3r2LzGFOHfH29uaZM2e0GoS5ubkcM2aMrOVhisPOzo4//vgjRVHkhAkTCrzfr18/\nPnnyRG/yernLY/ny5UxJSTGVjtbqHIZcY0YCs2wcAQEBTEhI0GbDFASBo0aNYnR0NEVR5OnTpw1q\nU6qPbVQl25zA3AFSk183MBvNYQppRY3BAty4cSMvXbrEhIQEAlIKvezsbN6/f59169Y19LkHAK7J\nwVGjRg3euHGDcXFx9PLyIiBlMfv555/5/PlzUxXAUo5b+Y/l4ODAQ4cOMTk5mU2aNCHUgal169aM\niYnh/fv3i4Ujv/v6+jI+Pp5nz541qPOWz2XhaNu2Le/cuaNtJev7LldXV37xxRecMWOGvvzQheIw\nVkdcXFy4fft2iqLInJwc3r9/n0+ePOHp06dZuXJlWcvDGIcmMKtUKr1pNUuXLs1Dhw5xyJAhVuUA\npMCsUqnyDP7VrVuXfn5+rFmzZrGUhyGvX78+SfLZs2fae8maHPv37+eVK1cKXKvGjRvz9OnTfPr0\nKX18fAxxhAI4DqC6xYFZDdc+3wkVKQ+yh4cHJ06cyNTUVH7++ef84osvqFKpuHv37jyParouJ0fr\n1q0piiK7du2aZ/v69ev54MEDoxXAUg59LJoWc25uLq9fv85z587x5s2bjI6OpkqlMhqY5eTI740a\nNeKDBw8YGRlpUMInnxeZo23btgwPD+e5c+eM5fUl1MFo2bJl+mZIyFYebm5uDAwMZGJiIj/++GPW\nr1+fffr0YWxsLC9dumRK9082Dk1gzszM1CeVRABs0KABL168qO99WevHV199RVEUteIRNWrU4Llz\n55idnc0LFy4Ye7qzSj3VuKurK3fs2EGSXLlypbFrIxtHYGAgd+zYkWebo6Mj3333XdapU4effvqp\nwXvHrJhrIiDnl5Z6DmAcgO8hNftFSHlMmxe2UL28vHjp0iWmpaVRpVIxOzubb731lrHPyMZRrlw5\ndu/evcD29evXm9PPbBGHPhZ7e3tOmTKFUVFRzMrKokqlYlZWFv/++2/m5uZy//79xcKhzy9cuMBn\nz56xW7du5twcReIQBIEXL15kcHCwWTciAA4aNEif1JTVykNzvTTT5wy0UGXn0ATmhw8fGmW7fPmy\n9ulPx3N0eALxIvewSr3tNwDu5pbHqFGjKIoi3333XQLgTz/9xKysLO7atYtJSUnGxiRk5cjv/fr1\nY0pKCu/fv29qKp9sHOvXr+f169fzCHt4e3vz8ePHXLJkiVFeOQKzB6TZDp6Qkktr5Fg2AJgJaVL2\ncQBhlhRq3bp1OW3aNKakpDAwMNBUK8RqHPkL28R+FnEYY/Hx8aGfnx8nTpxIPz8/enp6Mjs7m0eO\nHClWDl0PCAhgVlZWgb5vA15kjo8++sjYo5/W7e3t+dprr/G7777TJ3ZptfLQeLly5ZiYmMgtW7YY\nk9qSjUMTmHft2mWUa+vWraxXr17+7T0gZU3TSFx1ArBKzbII0vSxFeaWR9u2bZmVlcW1a9fSy8uL\nycnJ3L9/P+3s7Hjq1ClGR0cb4pOVQ+MVK1bkhx9+yJSUFCYnJ7NOnTqmrp9sHEOHDmViYiJ//PFH\nfvbZZ/zss8946NAhqlQqxsbGGl2XUOTArAPmiULKsZtb0T/++GOmpKSYXDxgbY6yZcvy6NGj/Oqr\nr6zCURiWHTt2UBRFo4s8rM2xfPly5uTk6B1w0uNF4hAEgTdv3tQnN1/AV69ezdzcXIqiyD///FNW\nDn3u5+fHMWPG5AnCCxYs4J07d4w9usvGoQnMjx49MlouERER7Nevn14O9bHzsECaFRCOQup1Xrp0\nic+fP+eePXsoiiIXLFjAOXPmUKlUGnvikZ0DANeuXUuSzMzMLEwDQhYOJycnbdeOxjUsKpWKr732\nmtF7t0iBGVJXxjlIUuzZkOYzu6n/j4KUgekxAKUlN7+npycTEhK4cOFCcwrVahyANP0lOTnZmBR8\nkTgKG5jT09Pp6en50jgWL15Mkly2bJk5zH9CekTPBbAA0iqqz9Usj9X7GFSFFgSBO3fu5JAhQ/KM\nMTg4ONDNzY1t2rThrFmzePbsWcbFxfH8+fOcMmUKK1SoICtHfm/UqJFWLDcsLIybNm3i2LFj+ckn\nnzArK8tYC182DkEQ+Pnnn1OpVLJFixZ6v8/Z2ZmhoaFs166dIY776jpSV6eOPIbU1WKWKrTGPT09\nee/evTwBSRRFPn/+XK+gsTU4KlSowEmTJlFjmzdv1t63VapUoa+vL7t168Y+ffpw8ODBVuOws7Pj\n0KFD+e2333LHjh187733WLduXT59+pTjx483WIZyBGYPAEchTSkRIfXFLIQkyx6NF6OLqYW9+e3s\n7PjTTz8xOjqabdu2NefmtwqHxnv37s2srCyrcZjLYmdnx7NnzzI5OZnlypV7aRzt2rWjSqXS14+r\nzxPVHE8AxEEKSHGQlsCaxdGgQQP+8ssvvHjxIo8cOcJ58+YxKCiIN27cYFRUFP/55x+OHz+ebdq0\nMTYrosgcut6sWbM8itCiKDI7O5s5OTnMzc1ly5Yti4Wjdu3azM7O5oYNGwoMjjs7O3Pz5s08efKk\nvhk0CZD6VXMgBaLDai4NR3UAKYWtH61bt+axY8eYkZGhLZfffvvN2HWRjcPV1ZWbNm3SBuWYmBj+\n97//5dq1a3nlyhWGhoYyISGBz54949mzZzl9+nSrl4cgCHmeqCIiIhgQEGBw6m+RA7MaSivHghfN\n/2cA/NXvF0oCXbfSP3z4kNu3bzcl9Klxq3Bo/J9//uG6deusxmEui5OTE7Oysvjs2TNTGndW5QDA\n+Ph4pqWlmbOvVq5HzRILYCkkVehCcXTo0IHbtm3j2bNneebMGQ4bNowdOnSgq6trsXJo/MKFCwVa\nh6IoMiMjw1hglp2jX79+fPDgAc+cOcPJkyezffv27NatGw8dOsS//vrL0IwNq94zhXBZOMqVK8fT\np08zv+Xm5jIhIYHXrl3j7t27OW/ePKtymPJLly4ZmiVDQJ4Ws1ZaClL/zENI+Ur/hNQaCIXUYb6+\nsCczYcIEPnz4kNWqVTP3hK3CAYBdunRhWloafX19rcZRmMB84sQJ/vnnnwanDhYHByCtzrx9+7Y5\n+2ok4TUs6wAcAxABqTUShkKoQtvZ2dHOzs6cpEVW5QDAWrVq8dy5c0xKSuLOnTt55coVfvjhhxwx\nYgTd3NyKjQMAW7RowdWrV3Pr1q18/vw54+PjGRAQYKylarV7ppAuC0eXLl20wXj58uU8cOAAZ86c\nyR49erB9+/bFxmHKX3/9dSYmJhqcZSZHYNbIsdwEkK6uWL0A1AdwSr39PoBdhTkZDw8Pzp07V++U\nNSMuO4fGr169yps3b5qaFVIkDnNZFAoFp0+fzs2bN5sKTFbl0LiRlZi6/jeAG2qWRZBylpxVc5yE\nNC3J6urD1uLQ5NEtSeWhyyR3HbHCdZGNw8zzfqnl4eLiwtTUVPbp00fv+0UOzGooWZVlS5cuzatX\nr3LixIlmjcLruFUUbl1cXBgWFsapU6dalcMKFb6kcFjt2tg4bByvKsfu3bvz929rvciBGVZQyXZw\ncGCbNm1YtmxZY8lo9LlVFG4VCgWbN2+eZ6K4JRzqvzaVbBmvjY3DxvGqclSoUMFgF5McgdliZVkr\nFGpJ5jBLnfpfylHSr42Nw8ZRojjMCcxWU8kmKeT/nNxWUjhgpjp1MbCUFI4Sc21sHDaOV4Ejv1kq\nxpo/s3+UeltxW0nhKEksNg4bh43j1ePIY5aKsRIABEF4AKkf0xVAGQBmSYDIaCWFQ8MyQhAEX7xc\nGXQbh43DxvHqceQxS1vMGnVqAugMYA2AFZo3i1Hyu6RwaFgUeCGDvh4v1HZ7CYIQ8i/lMCQLX+I5\nrFxHbBw2DmMc+lhemDkd0XoGBTWZ/R9BWrZ9BS+UZUsBiEQxdJiXFA4dllxISWocNCw6HCaVQ15F\nDhPXxiIOhULB999/n2FhYabyhVjM8ZLqqo3jX8YxevRoHjlyhGXLli0SR3432WIWBGGTIAjxgiCE\n6Gx2hrSUsQakaVk1Abyhfu91SCkPZTVrc7Ru3RqDBg0ypsBskEOQ1G4PqV/ehJS0JobkdQ0HyWhz\nWaZOnQpfX9+XxlGtWjVs3rwZH3zwAZRKJURRRIsWLYyxyMrx7rvvokKFCvj555/x4MEDU7iWcgBm\n1hEXFxcMHjwYkyZNQkpKCjZv3ox+/foVO4fGPDw84OvriwEDBmDSpEkFhHyLi8Nc+zdzuLi4oH37\n9oURLjbLzOnK2Axpnp+uLYI0J7AKpPX/BwGMEwShG8yU/G7cuDEuXryIKVOmmMvaFfrlx4vEoTFv\nb2/Y2dmZUrc1xnEEUitwtpqphiUcACAIApo2bfrSOARBQIsWLeDm5oaoqCjs3bsX3t7ecHNzM/QR\n2Tjc3NzQo0cPAMCtW7fMwbWUA4ZYnJyc4OTkpH09fPhwLFu2DH/88QeGDBmCvn37okOHDlbn0GeT\nJ0/G8OHDsW/fPmzZsgXr169Hp06dio3D29sbS5cuRenSpc3BtRpHfnvrrbdw5MgRbNiwIc+1syaH\nRuE+JycHKpXKbFZBEEIFQdim/mHQayYDM8nzkDIx6ZpG9jsBwDZIQWIPzJCnr169OgIDA/H999+j\nYcOG+PbbbzF8+HBs3boV3t7eEASDM1PqwLD8eKE58n9PZGQkGjZsiKysLGMfk50jv7m7u6NXr17G\nysHqHNHR0ejSpQuCgoLw9ttvIyQkBO3btzd2M8rGUa9ePTRv3hw1a9bEiRMnzEW2hAOGWGrUqKH9\nEVIoFJg8eTLmz5+PkJAQHD9+HNnZ2ahUqRIUCoNj57Jw6JqdnR3GjRuHJUuWoG/fvqhUqRKcnZ0B\nAAMHDsSJEydQo0aByQSyc/Tu3RujRo1Ct27dULt2bbi4uJj6iFU47OzsUK1aNTRv3hzTp0/H7t27\n0bt3b3Tq1AnVqlUrFo7atWujS5cuiIqKQmpqqilkXWsMafn3SoN7mNGfbEglOxovJmunI588PfT0\nrZQpU4Zr1qyhKIo8ePAgu3XrxtzcXG3i85MnTxpUllVzPAUgFpXDzc2tQBJ6Hx8fc6WNLOKgmRPV\nO3ToQKVSqZXvKW4OBwcHvvHGG+zZsyf79Omj1Zv75JNPjOXukI3j448/piiKnDFjhiX9iGZzqN/X\nW0fs7OwoCFI+Bm9vb+7evVurDG1nZ8fw8HD+/PPPxnKryMKh6wMGDGB6erpWHDYqKoo5OTnabHe5\nubk8ePCgVTmcnJyYkJCg/b5nz56ZoyovO4ezszO///57Xrt2jSkpKUxLS9OWRVxcnDE5NFk53nzz\nTYqiyB9++KFQCbfUxzaYMoEkzAnM+lSyswB8CSlRy9/QL09fAKhBgwZ89OgRVSqVNsn44cOHtZUr\nMTGR3t7ehk6oA4C1yCs/bhFH8+bNGR4enmdbs2bNGBERYU7BWsph1qCbn58fVSqVOYFZdg47OztG\nRkZSpVLlyUMcHh5uavm8bBxz5syhKIp8//3382wvVaoUFy5cyNu3b/P27dscP368vnSxZnOYqiMa\n79KlC1esWKE9/ylTplAURX2yVlbjqFixIuPi4rTX49SpU3Rzc2OfPn342Wef8f79+xRFUV8+cVk5\nvLy8KIoi4+Pjefz4cSYmJjI9Pd0cSSfZOFq2bMmoqCiKosiEhAROmDCBNWrU4KFDhyiKIrdt22ZM\n2V3W8tAE5nfeececuKF19bGnA9hncWBWHyS/uqzRHKYwIPndqVMnKpVK7t69W7tt6tSpTEpKoiiK\nfPToERs0aGDohEIB/CEHR8uWLQtI9dSuXZs3btzQp4ohF8ctUxdMEAQuXryYoiiyWbNmxc7RtWvX\nPDmHMzMzmZmZyT179mhbkAZcNo78gdnOzo7jxo3jmTNnmJSUxJMnTzIqKoonTpzQl72rUBzG6ojG\ny5QpwzNnzvC1115jzZo1+eeffzIqKspUfmjZOBwcHPj9999rW8rbt2/P892lS5fmjh07GBQUxE8/\n/dSq5eHn50dRFDlx4kQC0pPnrl27+Mcff8haP4xx9OnThxcvXuTnn3/O6tWrEwCrVq3KixcvMjc3\nl6+//nqxcADg8OHD9QZmJycntmnThu3atTOk/acRsqgud2C2KIdp9+7dKYoiAwMDtds8PT0ZGhpK\nURR56dIlVqlSRW8hyMmhLzDXqFGDN27cMBkQLeUwxKLrCoWCwcHBzMrKMib0aTUOHx8fZmVlMScn\nh7du3WKvXr04ceJE5uTk8O233zbGIxuHbmAWBIEzZ85kRkYGd+7cyaZNm7JcuXJs1aoVDx06xPj4\neKtx6PrcuXN5+/Ztnj17lkql0pSau6wcHh4evHjxIkVR5MOHDwuoQHfq1Inx8fHax3hrlscXX3xB\nlUrFVq1aabd17tyZWVlZbNKkSbGUh0KhoIeHR54fAn9/f+bk5PDcuXOmkpHJyrFhw4YCgblVq1a8\ndOkSo6OjGRcXx88//1zvvWsy5poIyDUhybHkl2NvDam/JhOS/HeBJrm+k/H19WVaWhqTk5NZrVo1\nlipVil26dOGjR48oiiJXrFhhrK9GNg4fHx8mJyfzrbfeYo0aNahQKFi2bFkeO3aMixcvZrNmzYzJ\nOlnEYU4AaNKkCTMyMnj06FFTN77VODp16sTu3bvnuQ7r1q3jxo0bjfWpysahG5hbtmzJBw8e8Nq1\na/Ty8tLuIwgC//Of/zA1NTW/IKosHJ6ennm61Bo2bMjIyEiKosjff//dnKyIspXHvHnzqFQqKYoi\nN2zYkOcaVK1alT/88ANVKhUzMjI4duzY/J/P0eEJhJR7OBjStLBsSNnU3M2tH0uWLGFsbGyBe0kU\nRVNiqLJy6LqHhwejoqKYlpZmThph2TgEQeDSpUspiiJHjBhBAKxUqRKDgoIoiiKjoqKYmJjIO3fu\nFFAykSMwewBoioJy7KsAzFTv4w8gyZyTKVOmDDdt2kSVSsXTp09z+/btjIqKolKpZGRkJOvXr2+s\nUGXj8PDw4MGDB5mZmcmbN29y9erV/O677/j48WM+fvyYJ0+eNNalYhGHORVt165dVKlUHDhwoMkK\naU2O/O7l5cWbN28a60uUjcPPz4+5ubmcP38+t27dyqSkJL7xxht59mnZsiV3797NadOm5e9PlIXD\n09Mzjzp4t27d+PTpU0ZHR/PJkyfs1KmTqTKThUOhUPDKlSvawbbOnTtr33Nzc2NwcLB20Gvt2rX6\nuld6QEpn6ZKfBdLgUwKAFebWj+7du3Pp0qV5tmkCs6Z7w4DLyqFxQRC4evVqKpVKfv/99+bUZVk5\n/P398wz+vfnmm8zJyWFwcDBbtmzJjRs38vDhwwViSZEDsw6YJ/LKsT/ACzn2uQDSClOoISEh2laA\nxnft2mW0UOXmEASBvXv35s2bN7WzQkRRpFKpZLdu3Qz2mVnKYU5Fi4mJ4YMHD8zKDW1NDn1ldfjw\nYTZt2tRYIJKFo0WLFkxLS2NWVhazs7P58ccf53n/zTffZHR0NFNSUjhq1CircDRt2jRPYP7qq68Y\nElmIvRcAACAASURBVBJCd3d3rl271hwdRFk4Ro0apa2XQUFB2u3Ozs7cuHGj9r3Y2FhDuX89AYSo\nj70HwHBI07QqQBp8OowiatyZ2WK2CkedOnUYHh7OzMxMU99vFY5u3bpRFEWmpKSwWbNmXLNmDcPC\nwigIAkeMGMHnz5/z4cOHBbpHixyYUbArQwVgqvpvDqRRzRQAGYUtVA8PD1atWlUbpLt06WKqUK3C\nAUgDLK1ateLevXt569Ytq3CYYunRowdJ8vz58+aK08rK0axZMx44cEDvDS4IAn/99VdjgTkbUq5b\nAtivZtCoQ6eouXqZw1G2bFkePXqUoihSpVJx27ZtnDp1KqdMmcLt27czOTmZf/75J/38/PSVkywc\n1atX17ZyBEHg2bNnOXjwYAJg+fLlGRYWZmrWjCwcH374obaxMG7cOJYuXZr9+/fnjRs3tEE5JCQk\nTzePAQ4lpKlgO9WvNRy3AKQXJTC///77VKlUpvrdrcIxa9YsZmdn88CBAybHZKzF0a9fP0ZERGgV\nwyMjIxkaGsqsrCyqVCquWrWqgHanHIFZ05XhAuA6pDl/LSDd+LN09iu05LfG09PTGRcXZ2yKi8at\nygFIgxtXrlyxCocplqlTp1IURX7++eemRritwtG8eXPeu3ePlSpVyrPd3d2dc+fOZUREhLEA0BbS\n4MkwSI+IaQAWalgKWx7jx49nWlqaNvioVCoqlUpmZGRw4sSJrFq1arFwAFJg3r9/f54+52nTpnH5\n8uXGro0sHCdPntSe/19//cXff/+dKSkp2nKJj4/nyJEjjdUXq94zrq6uDAwMZGpqqqkpc7JzODg4\n8O7du0xOTs7TxWPCZeews7PjsGHDtAOwGs/OzuZPP/2kd/aOOYHZVKL8eEEQnkFq4m8F4Atp/mmG\n+gQhCEIlSK03i8zZ2RmXL19Gdna2qV3vWpMDADIyMlCrVq2XwuHp6QmVSoWLFy9qKkOxcjx//hwZ\nGRm4efMmTp48iYMHD+KNN97A2LFj4erqii+//BKRkZGGPv4lgF9I7hQEYRCk1InOANIsKY9Nmzbh\n4MGDmDNnDl577TVcvHgRWVlZWLt2LRISjB5KVg4AIIkHDx5g+/btOHXqFGrWrIn+/fvj22+/tTrH\nmTNn0K1bN+0SeY3l5OTg8uXLGDRokKnysOo9U6VKFTRp0gQ3b940VjeswlGpUiU0aNAAFy5cwNmz\nZ839mOwcoihi586dOHXqFEaPHg0/Pz+kpqYiICAA+/btQ05OTmEO98JMtJi1mn+wguS3k5MTRVHk\nokWLzPm1s7r0uK+vLzMzM63CYYpl+PDhjIiIyD/LoNg4BEHgkCFD+MMPP2h/9U+fPs3bt2/zgw8+\nMNXvvVx9XA3LOgDHICkRxwMIA1C+KNfGTLcKR6tWrXj16lUeO3aMKSkpPHr0KOvWrWt1Dk9PT+0c\n/6CgIKpUKp47d459+vQxN+ue1e4ZhULBefPmMTs7mzNnzix2jgEDBmgXPxWiflg9hpjj5rSYTQVm\njeafVSS/hw0bRlEUzRnlpjU5dN2MbgSLOMxhMbMLo1g4NCxmMv0NafVUOqTEMOUBnFVznASwBMC2\nYgjMVuPQLQ8zykQ2jg4dOvC3336jv78/T506ZSxlQbHeMwMHDqS/vz+jo6NfCsfIkSPNWYFZbOVR\nGC9yYFZDWU3yu2zZsly8eDGrVatmzgm90hLoVmApKRyv/LWxcVjG4evry3bt2r0UjtKlS3PcuHHa\nHCYloTzM9SIHZuh0ZeTb/q+WHreEQ/23F6S80CkA5liZpaRwlPhrY+OwcZQkDjkCs6Yr46VLfpdw\njq2QHoVyIK0kqgVJCcGaLCWFo6RfGxuHjaNEcZgTmE3NyvgdenI2CyVE8rukcAA4JghCRwCf6LDs\negksJYWjxFwbG4eN41XgyG+WqmTXAPBYKKhO/aVMXK8ah4aloyAIN/Fy1XZtHDYOG8erx5HHLA3M\n1PnbGdIa9M66O6hHrmUzA79aJYVDl6UzyWeCIAyzJktJ4TDCYuOwcdg4zOfIY+Zo/umzKEjLtQFp\ngLAm8kl+W3hcgybol/wuKRwaFoWaA7osgiSBHgIZraRw6LC8chwaFhuHjeMlcOhjeWHmdETrGRTU\nZPZ/CGl5YwaAJer3DEp++/n5cfPmzUxOTuaECRO4a9cu7ty5k+3atWPVqlWN5oiQk6MobqJMciGN\n7t5UM7XS4TCqYOLk5MQPPviAV69e5bhx4/jBBx8YnbNqDQ5HR0fWr1+fvXv3Zu/evenl5cUJEyaw\nXr16hS6TopaHxl1dXdm8eXNOnDiRfn5+Rhe6FIbDnDry3nvvceHChUxISOD169fZsWNHcwQMZOeQ\ns67+WziqVavGcePGcezYsSxXrpzZib+sXR5ff/01MzIyCh3LCnCZEYQ3QVqtFKKzrTykQJgFKQ/A\nNwCuAegGoCP06GRVrVqVSUlJWtkif39/rXzRp59+yjt37nDcuHHGTloWDhncEMcp9UVNhTTCG63L\nQSOju46OjuzcuTNzcnIYHh7O3r17Mz09ndevX+eAAQP0ZVGzCsfAgQM5Z84cPn/+nM+fP+fcuXOp\nVCr1acnld1k5NF62bFnu3buXn3zyCYOCghgWFsYuXboYuwnN5lC/b7SOrFq1iv7+/nz+/DmTkpK4\nYMECbtu2zZw6IitH9erV2ahRIy5dupTz5883lR7XahxFcFk5+vfvz9mzZ2tjyYwZMxgUFGROulyr\nlkepUqV4+PBhU2mDzQrM5nRlbIY0z0/XFgHYQtIJwGcAHPFCXVav5HfZsmVRunRpBAcHo3bt2liz\nZg1q166NWrVq4fTp0yhbtiyWLFliTBa+K/TLjxeKQ9cqV66M999/H6mpqbh8+TKGDBlitCBMcBwh\nWRvAAgBHAfxgDodCoUDfvn0xZ84cXLlyBXPmzMGxY8fQpk0bPHz4EEOHDoWXl5dWEdlaHAAQExOD\n1q1bIyYmBgcPHkRYWBjCwsIQERFhqkxk5dDYe++9h3bt2uHWrVvo2rUrWrZsiXfeeQflypWTgwOm\nWO7fv4+OHTuiVatWqFixIry8vFC2bFlz0GXl+Oijj7BmzRpMmzYN8+bNQ0BAAGJjY3H06FGtmndx\ncNSpUwe1atVCnz59cOnSJZw+fRr+/v7mKLrLylGxYkX06dMHJBEREQEXFxekpaVhz549mDFjRrFx\nKBQK2Nu/OJyrqytI4u2338bTp08NQgiCECoIwjZBEMob3MmsZrVOHlP16/tqaGcAFdWvNSrIwyGJ\nHhb4pdixYwcjIiK0KRR13dfXlzExMQUkn3RcAPA9dJKMW8oBgFWqVOG5c+cYHh7OlStX8u+//2ZK\nSoo5S14t4tDXQrS3t+fkyZOZnJzMb775pkAmKoVCQR8fH+7evZs///wzS5cubRUOXW/VqhVHjx5N\nQFr2+vfffxtTc9G47Bzt27dnbGwshw0blmc5dEjI/2PvvMOjKLv3f08qIRBCIBCqFClSpYMYAelF\nQDoiIlWkg0ovRuGligoKSO/lFQGBlw5SpfcqLUIqaaRn69y/P2Z32Wy2TJLZEL6/PNd1rmRnZ2c/\ne+aZM8885dy37bUYZXMY3rdbR7y8vPj06VNTBrf9+/dz27ZtclpPinK0aNGCX331FT/55BN27dqV\nQUFBvHr1KjUaDffs2cMGDRo4ncPHx4cbNmxgZGQkY2NjuWnTJu7atYsRERH20sE6xR/169cnSR47\ndsykQJQvXz6S5NKlS3OMo2/fvmzTpo3pdc2aNblz50459UOAdFPIsCw/s10Z0UivlWWUYTFK5Zir\nINuU/G7QoAGDg4OpUqnYt2/fdI+kgiDw3r17VKlU/Oijj6z9mLWwLj+eaQ4AnD9/PtVqtalSV61a\nlSEhIen0CG1YljisBaKSJUsyLCyMv/zyi93v9Pf3Z3R0tKXem2Ic1qxNmzZMTk7m8uXL5VQ0xTl+\n+OEHrl+/3modsZPARzaHnDoCQ1AcNmyYSa1i9OjRivpDLoelubm5cd68eXz8+DFTUlJsqcsrxlGr\nVi0mJSVRFEXTjbt8+fJ88OAB58yZk+P+SEhI4NatW+np6ck1a9bw448/piiKLFq0aI5wuLu7c/36\n9SZZKUDKzbxnzx6H585wbJspE+QG5kBIKgzmgdlmDlM4kPyuWbMmg4ODmZKSwpUrV7Jly5Zs0KAB\nJ06cyNjYWB4/ftzWDwqEdfnxTHMUK1aMZ8+eTaeO4erqynnz5lGr1WZIbK0QR7rBLkEQ+OOPP/Kv\nv/5ypLhMAGzSpImldpgiHJZWtGhRHj16lBqNhjqdjps3b2bjxo0d8SnOUbhwYf7xxx/pgvCoUaN4\n4sQJe0rmsjnk1FVA6uc+c+aMKePey5cvOXHiREe6f4pz2LJ69eoxNDSU3377rbUBJ8U4Fi9ezMTE\nRO7Zs8f0VCkIAufMmcNr164pVj/k+qNChQqMiIjgrVu3+N133/HgwYNykqEpxlG4cGEuW7YsXcOh\nS5cu/OOPPxyeM8OxR8OG9qOswGw4iKW6rBx5eqtQLi4ufPvtt7l69WpqNBqTltrq1as5bNgwWxI5\nhJSWL1Py47Y4ypQpw7Nnz7JQoULptvv7+7Nv376OLrqsctyxZHj58qWtp4MM1qZNG44ZM0ZxDktb\nvnw51Wo1lyxZwsGDBzMqKoqhoaGOblaKcwCSgsfhw4cJSIo3UVFR3LZtm2WXTpY5HNVVQJKVMibp\n//nnn3n16lWqVCpHGneKc9iyli1bMjY2lg8fPrQ2e0YxjrVr1/K7775jgQIF0mXXmzRpEmNiYuyd\nE6f4w9PTk8OHD2dqaipjY2OtCdE6laNYsWIZuk26dOnClStXyuG4D+AQgFJKB+Zs5TD19vbmrFmz\nGBsbS51OR71ez7Zt29ptOSrJUbRoUe7Zs4elSpVKt71t27acOXOm3bSOWeWwZKlYsSKfPn3qqEKb\nbMiQIelk0pXisLT+/funk21q2rQpIyIiOGLECHs3LMU5YLj4NmzYwMWLF3Pfvn3U6/X85JNP7H1G\ncY7Nmzfz8OHDpi6vwMBARkdH8/r16/ZyZzvFH0YTBIE+Pj6mp8wXL15w5MiRTuVwcXGxev4nTZpE\nvV7vaEql4v7w9PTk5MmTuWfPHh4+fJiRkZFy5OkU4yhRogS3bt2arsEyevRo7t69m4D0BG4rjsiK\nuQ4CsqXmn2w5dlvO8ff35+bNm5mamspVq1Zx2rRpTEpKYnx8PBctWmQvjZ9iHF5eXlyxYgVv3LjB\n6dOnc9y4cZwzZw5v3rzJhIQERzJXWeKwZHn//fdlB2Z3d3euWbOGVatWVZxDjvXu3Zvnzp1jQECA\nrX2cwuHr68tff/2VGo2GWq2Wu3fvpq+vr73PKM4hCEKGgNS5c2eGhYXZmsboNH8Y6+7HH3/MXbt2\nUaPRMCoqir1797b1RKMx4/kvpNzDf0GaGmbsX/XNTv0wBmYH3QiKc6xZs4azZ882aYdeunSJERER\nfPfdd3OEw8vLi1u3buWWLVvYqFEjFihQgD/++CN3797N4sWLc9CgQRmeyI2mRGA2av6VQybl2G05\nZ+nSpdTr9dy4cSPz589Pd3d39u3bl2q1mlqtlosWLbLlVEU5SpQowfj4+HS6cmq1msnJyY4Cc5Y4\nLFmaNGnCrVu3OgzM7u7uHDRoEAcMGEAPDw/FOeSYIAh8+PAh69WrZ2sfp3AYL3pRFHnkyBE5rDnm\nj+PHj/Phw4c5xlG0aFF++OGH/OOPP0wCrdevX7fX305IKQpuQ5JOSscCafApCsDP2Q3MoiimUxV3\nNofxO42v/f39eebMGf7999+cPXt2jnG0b9+earWaoihSpVJRp9ORpGluta3PZTswm4GVQybl2K0B\nBQYG8unTp9y7d28G0c+RI0dSo9EwISHB5o9RisO8sg8YMIBDhw5lw4YNWbduXer1enp7e9t1alY4\nLFl69OhBlUrFWbNm2V0l1LdvX8bHx2cIikpxWFr+/Pmttkrnzp3LyZMn2wtEinL4+PgwMTGRq1ev\n5u3btzlhwgQ5gUJRDjc3N/bu3TvDLBA3NzcuXryYT58+zRGOgIAA/vnnnxRFkRqNhmfOnGHv3r1l\n+8Nw7J2Qpn89AVAE0uDTfljvV5VzbAqCwPnz51Oj0TiS2lKMw83NjWvXruVvv/1m2lamTBkGBQXx\ngw8+4Nq1a+1dT4r7o0aNGvz++++5adMmPnnyhH///bfDQchsB2Zk7MrQAxhh+KuBNKqZCCBVzo8Z\nPXo0dTodDx06lKGlmD9/fj5+/NhmYFaSw5blz5+fSUlJ9lSYs8xhyVKwYEHev3+f4eHh/PLLLzN8\nj3GWSHh4OOfOnWutsinCYWmnTp3ijBkzMmz//vvv+fPPP9v6nFEWngB2Gxgi8UoWXg+gnVwOd3d3\nHj58mAcOHGD9+vX59OnTdP3rdkxRjiZNmjAtLc10U3R3d2fTpk25f/9+xsbG8vvvv3c6R5UqVXjs\n2DHq9XrGxcVx0KBBDAgIcDRAbcmhgySntN3w2shxB0BKdgLz7NmzefDgQbq5ueUYx+jRoxkeHm56\n7ePjw1KlSjEoKIirVq2yN0bkNH94eHhw7ty5jlrsBJQJzMauDEUkv319fblt2zbqdDpevHiRO3bs\n4PLly9m0aVOuXr2a8fHxjImJsfWDnCrFbuRLTU11tOQ1SxzWWHx9fXn06FGmpqYyNTWVQUFBPHz4\nMOPi4rhr1y6qVCoeOnTI1qCoYhzmptVqeeXKFbZv3541a9Zk1apVWbduXT579oxTpkyx9bkGkAZP\n+kB6REwGMMvIklmOkiVLUqfTcdiwYZwyZQqfP3/O2rVryzmHinKMGDGCoigyOTmZ8fHxTEhIoFar\npU6n440bN1itWjWnchQtWpQhISGMjo7m2LFjbc1VVryuyj2+h4cHt2zZImces6Icvr6+fPToEY8d\nO8Zy5cpREASWLFmSycnJXLJkyWvzR2amy2UrMBugTDpZePVoJmeaiVWoUqVKccWKFdy9e7dprfvh\nw4ep0+n4+PFj9ujRw9YPUpTDlr18+ZLt2rWzt0+WOGyxVKpUiePGjeOKFSuoUqkYEhLCEydOMCoq\nihs3bmTlypVzhMNo06ZNY1paGtVqNffu3csXL14wISGBS5YssTf4Z9JRM7BEAJgP4KuscHh4ePCP\nP/7gvn37GBERwVmzZsk9f4pyFCtWjAsXLqROp2NSUpJJNXzSpEmOBpmyzeHr68sjR44wNjbW1owL\nOebUayYgIID//PMPx48fn+McxYoV461bt3jmzBkOHz6c165doyiKbNq06WvzR926dRkcHOxojCr7\ngRlmmn9wguS3pRqzA/XhHJEef/nypaNlnVnikMOSSXVqp3F069aNBw8e5NSpU6nT6Xjw4MEMYwIW\n9qPhuEaWFQAOQlIifgHgAQC/zHB4enry8uXLPHTokKPHZKdyZOG8KMJRp04dR3O25ZhTr5lixYox\nMjJSzgIpp3D4+Phwy5YtnDJlCvft2+e0ayYzPpdTP5QIzEbNv9cu+Z1THL/++ivXr19vrw8vSxxO\n8Elu4SAknbSbBpYgSFm7Tho4jgCYByt5AfI4bHP4+fk5mnHx2q+Z0qVL8+HDhw5biM7myC3+kGvZ\nDswGqFwh+Z1THJ6enqxYsaK9O1+WOJzgk9zCkWPnJo8jd3F4eHhYzq3//9ofci3bgRlmXRkW2/+/\nlR63xWH42w5AOKQR3klOZsktHLn+3ORx5HHkJg4lArOxKyPTkt9K2hvAsQnSo5AG0kqisgAuO4sl\nt3C8IecmjyOPI9dwyDW7Yqwkz8KKLqAcyW8lS27nAHBQEIQPAEw0Y9nhLJbcwmGPJbecmzyOPI7c\nxCG3ZFUluzSAEEEQ/oX0uFwQgDeA2QpxvWkcRpbcIIOex5HHkcfx5nGkK1kNzDT72xzSGvTm5jvk\nsPT46+YwZ2nOHJBBzy0cdljyOPI48jjkc6QrcjT/rJVQSMu1AWmA8HVJfucWDiOLVRl0QRDaCYJw\nW8axsWDBAsycORNqtRorV65ElSpVcpwjs+VN5TCy5HG82RxlypTBhQsXIIoihg8fniMcrq6uWLZs\nGYYNGyYX05LDGsurIqPT3JoacwlIKQw1MORkADDP8F6WJdA7dOjASpUq2UpC4hSOIkWKMDg42CSX\nI8NsqVMfN7yfBGnN/TMAdc047Cp2ANLk9AEDBnD8+PGmrHczZszgqVOn2KdPH0t1aKdxZMGcxuHh\n4cG33nqL3bp147Rp0/jZZ5/x+PHj7N+/v7W55rI5MltXv/jiC44ZM0bu0nCncTRo0ECOLqXTOLp2\n7Wqqm19++SUHDBjw2vzh6enJlStXcurUqVy/fj3nzp3LM2fO2BN1UIyjVatWjI+P57BhwzJ9vcgZ\n/MuqSvZUSFNPnkAKhncAtBYEoRWARpBSHmaqCIKA3377Dd27d4evr2+Ocfj4+MDHxwdly5aVi2qN\nIwjAPkjZqpIhBR03SCe+EYC7JMMcHZgktm7dik2bNqFt27ZYsmQJdDodAgMD8fXXX8PPL52orlM4\nvL29MXToUNStWxdvvfUW+vXr5wgbzuAAgFKlSmHnzp3o1asXNm3ahFmzZqFcuXJ47733oNFojBdX\nVjmATNTVTz/9FC4ush8wncbRrVs3NGrU6LVwVK9eHTVq1EBMTAzOnDkDf39/LFmyBLt373akHu4U\nf9SqVQvt27dHSEgIxo4di3nz5mHChAlQqVRO5RAEAXPnzkVycjKCg4MdYWatyInesK6SbUxjWBTA\nYwBTDPYJ7CjLwqwVZJ5IumjRokxLS+OePXtsrSS6DylT1z2lOABJsujRo0dyRTazzGF4L9N31wED\nBvDEiROcMWOGpeyWohz58uXjwoULefToUer1eqpUKu7atYubN2+Ww6moPwoVKsSaNWsyLCyMOp2O\nf/zxB+fMmcP33nuP1atXZ61atbLNYdgmq44A4NmzZ7l582ZH6S2dzjF37lyH4r3O4ujevTtPnDjB\n/v37093dncOHD2dCQgJFUeT//vc/+vj45Kg/1q1bx4cPH7JMmTI56o+3336bSUlJ7Nq1a6avZ7y6\ndjfDyrL8zLSYrRV/AGmCIOQnGYNXk7TvGr7YbunZsyeuXLmCmjVrmraJoghRFBETEwO1Wm3tY9Ug\nPWaUUIoDALy8vAAAjRs3lrO70zhslZo1a6J58+YYO3YsfHx8nMYxaNAgdOnSBUePHsWMGTNw6dIl\ndO3aFa1atULhwoUdYSrGUaxYMSxevBhnzpxBsWLFsGHDBqxatQoXLlxAt27dMHDgQOj1eiU44IjF\nvAiCgA8++AAFCxaUs7vTOADgvffeg6enZ45yeHh4oE2bNqhWrRrOnDkDrVaLDRs2YM6cOSCJ1q1b\nY+LEiU7nMBZBEFC7dm0sXboUISEhjnZXlGPIkCGIjIzEzZs3bX5RxYoV0bRpU1SoUMHak1Y1SDeF\nJTYPILOPORrptbIcytPDzh3j8ePHvHr1KkuWLGnaNnbsWIqiaC/v7lpkQn5cDgcAlitXjo8ePbIn\nE6QIR1ZazN7e3gwNDaUoirx48aJl7gTFONzc3BgcHMxBgwaZtgmCwJ9//pmiKDI0NNRR/l/F/LF9\n+3ZTH+a4cePo7e3N//znP4yJiTH5wU76S8Xk6S3t7NmzmUk/6jSOuXPn8sGDB45yhivOUbhwYR45\ncoRz587N8N6UKVNM6VFt+Edxf3z22Wem1LBy/KYkx9mzZ3ny5EmrybWaNWvG8+fPU6vVUq/XMyEh\ngd26dUu3j+HYNlMmkIScwBwIKT2epbrsDMP/6VLlwYH0eLdu3ajX6zlv3jxTl0VAQADj4+P59OlT\nVq9e3ZZTA5FRfjzLHEYzBmaZj+zZ4cgw2FW4cGH26tWLv/76K3/88Uf27t2bH3/8MUuVKkUPDw8u\nXLiQoijy+PHj1h7fFePo27cvY2Nj2bJly3TbjVpqoihaylpZmiIcAwYMoF6v55MnT9i2bVsKgsAa\nNWowNjaWoaGhDAoKYvHixRXhyEwdgeFifPLkCStVqiSnjjiNY9y4ca+F45133mFERIRVAdqyZcvy\n5s2bFEWRX3/9dY74IzQ0lCqVit27d5d73SrGsWTJEl67do2FCxc2bXN1deX06dMZGhrKbdu28Zdf\nfuGaNWt46NChDGlbDcceDRvaj7ICs+Eg1tRl9xj+Hw9gicX+ViW/CxUqxP/+97/U6/Xp5HrGjRtH\nURS5bt06e5mq7iOj/HiWOMzNGJj37dsn9+RmleOO+XE6dOjAixcvMjU11ZSXOi0tjcnJybx9+zan\nTJnClJQUiqLI2NhYa/13inAA4OzZsxkZGcnGjRun2y4IAhs3bsxr167Zlb9SgsPT05OXLl1iXFyc\nSTbJ39+fR44cMdUNGecmUxxy6wiQ6Raz0ziMswHat2+foxzt2rWjTqezqQw+YsQIarVa/v3339ae\nrhT3x8uXLxkVFWWvIec0fxw9epSxsbFs1aqVadsXX3zB2NhYjhgxgvny5SMgPYnOnj2barXa2rV7\nCECpLAVm2FbJ/glSs1+EpABQy8pnMzhmzJgxTElJ4fz58+np6cmiRYsyICCAq1atoiiKGZr8FqYY\nh7mVLl2aDx484K1btxzlHM4WhzlLwYIF+ddff5lEYGNjY3nw4EHu37+fFy9eNAmQGjXeLAOmUhxG\n69atG1NTU/n8+XOOGTOG7du3Z6NGjfjNN9/w2LFjFEWRgYGB9nySbQ5jYNZqtfzhhx/o7e3NIUOG\nMDk5mWFhYezcubOcc6OIP6zZd999l5nA7DSO999/n/Hx8ezYsaMcDktV6Hl49ciuBXAKMlWh161b\nx4SEBJvKz40aNWJ4eDjv3btn7alGMQ6jxcTEMCYmhh06dGCpUqXk5slWhMOYp9yo3FK8eHFev36d\nGzZsyNCAGTt2LOPj49Ntsxdz5QZmWyrZqyApywqQIv8DOU69dOkSo6KiOH36dG7ZsoWnTp3iGT3X\nIgAAIABJREFU2bNnGRsbS41Gw1KlStlzqmIc5ubu7s6TJ0/y/v376fq8leYwZ6lZsyY1Gg1FUeT5\n8+fZpk0bUyujQYMG1Gq1psB86dKldI9MSnKY27x58/jy5UuSpE6no0ajoU6nY1hYGEny22+/teeT\nbHO4uLiwd+/ejImJoVqt5ubNmxkWFkZRFOUKsSrCYct27tzJmJgYtmjR4rVyFCpUiLGxsXIDs6Uq\ndDO8UoUOgpQYXpYq9Lp16+yJz9LHx4e3bt3i5cuXrSXOV4zDaKtXr6ZOp2NsbCwvXbrE3r17m1qq\nzvZHQEAAw8PDmZqaysmTJ3P8+PFMS0tjp06d0tXnjz76iBcvXuTixYvTfT7bgdkMrBzSq/6aTzOp\nDkDj6Mfkz5+fycnJpsf2c+fOsV+/fqxevTqjo6MZGxtr16lKcVizMWPGMDQ0NIMStZIc5iwFCxbk\nqFGjeOLECa5cuTLdyVy3bp0pKIuiyJs3b1pViFCCw9J8fX05atQofv755+zQoQPr169PNzc3kuTG\njRstF7hYBiJFON566y3euXMnnQ8yMS1JUX+Y27Zt26z2w+c0BwAmJiayT58+sjkMx07HAmnw6TFk\nSimtW7eOsbGxLFCggNXv6tChA+Pj460KCyvJYbTBgwdTp9PxwIEDJh3R06dPO0rarxjH4MGDTY0r\noy1btoxjxozh+vXref/+fapUKv78888ZbhhKB+YHkKab+ABIMntvNACtnB9TtmxZ1q9fn5UqVTKt\nzvnoo4+YkpLCmJgYu05VksPShg8fTrVaLWtmRlY5zFmMyg+iKHLnzp2sVq0a27Rpw2PHjplayzqd\njqIo8sGDByxatKhTOOSYi4sLHz9+zF27dtHb29tehVeEw9XVldWrV+fBgwdNXTpJSUk8efIkv/ji\nC5t9nEpzWFqfPn0y07fr1PNy5cqVdDNoHHDcxisppQowiI0aOHZBpvhor169qNPpOHHixAzXqaen\nJ1etWsWXL1/a0txTjMNogiDw2bNnVKlUHDNmDOfNm0dRFLl8+XJ7K/8U4/D09OSgQYN48uRJJiQk\nmK5XjUbD2NhYnj9/nrNmzbI6WJ3twIyMfcwpAAZB6pPRQOovSwSQmtVKtnTpUoqiyD179jja12kc\n9erVoyiKHD58uBzmLHGYs/j6+vLUqVMURZFarZb//vsv4+LiTCf35cuXnD9/PjUaDS9cuGCrXy/b\nHHJtwoQJjI6OtidAqjb81UHqu9MAiMQrWXg9gHaZ4fDz8zNNkTNaWloa7969y08//TTHOIxWq1Yt\najQafvHFF3J85jQOALxw4YLcwKyG1K9NAOcg5esWzTjuAEiRwxEQEMBz585RrVZzypQppsHoypUr\n8/Tp00xLS+OUKVNsDRIrxmFuCxYsoFarZVhYGHfu3ElRFBkcHMyKFSs63R+AdHMoUqQIa9euzUOH\nDlEURYaHh7Nt27YsXry4Ta1KJQJzcQDvQkogPQmv+szsTjPJTCW7d++ead29g32dxuHu7k6dTsff\nf/9dDnOWOKyxLF++nMnJyaYWckREBFesWMFy5cqxcOHCvHnzJmfPnu10DkdWsWJFiqJoT8H8HKRR\nbWPfXQgkVegJ2eEwKlSHh4dz165dfP78OTUaDdPS0mx1KTiFAwArVKhAnU7HEydOyPGZ0zgAcPHi\nxXKVsxW7Zjw9PfnLL7+YHt+jo6Op0+mo1+upVqu5bNkym90cSnKYm4+PD9etW8eIiAjT01VERIQ9\nuSunxRBXV1euWbOG0dHRfPDggV3JLTmB2VHazygACyEtY5wvCEIDSPNPHwGoZ9jnUwAHHBzHannr\nrbdQpkwZnDhxAmfOnHG0+wRncej1ejx58gSpqanw8/NDXFxcjnCMGzcOR48eRdGiRfH8+XMkJCTg\n6tWr0Gg0AIAePXogMTHR6RyOytOnT3Hs2DFUq1bN1i6XSP4IAIa8th4AakHKa5tljtOnT2PYsGG4\ne/cu3NzcsGjRIgDAggULsGDBArz33nuWq0SdwgEAYWFh2LJli+XqS1vFaRwAcOvWLbz11ltydlWs\njqjVasydOxdHjx7FzJkz8e677+LYsWNwdXXF/v37sXbtWiQnJzudw7wkJiZi4MCBeOedd/Dee+/B\n1dUVT548wcOHD3OUA5BiyLBhw7B582ZUqlTJtKI4y8VBi9lcjuUupEeyj/FqmokKkrZcuazcZZo0\nacLw8HC5j4dO4wBky9JnmSMrLdXcxNGxY0dGRUXZymxmlOu5CymDV1lIgypqSMlhdsBKXoDMnBfz\n8yMIgq3z5TSOTNYTp3KUKFFC7kpVp1wz5v6X6Q+nXruZsFzBIafF7HAHA1gBSNpxXQ2vi0Ka+iNA\nmmbidEn4N51DaZac5ihTpgx/++03q3O93/Rzk8eRx5HTHNkOzLAh+Y1XyrIPAUTnwN0uV3OYsdyH\n1DJytjp1buHI9ecmjyOPIzdxZDswQ7qLWJP8Lo1Xyc7HAngJC2VZJzg1N3MUw6uk2tMhpRfMoE79\nf5Qjt5+bPI48jlzFIScwC4YvtloEQXgfwGkAtwwHBaTk9OMANAEQBmk+4CVIk+adIoL6BnB8YuAo\nDmlEfjCk5Nv5nMGSWzgcsOSWc5PHkceRazjkFruzMmhb8rswgKckvzS8ziBgqGTJ7RwADgqC8AmA\nQDOWUGex5BYOeyy55dzkceRx5CYOuSVbKtmCIPwLaWJ2QQDeAGwrITqn5BYOI0s/QRCa4vXKoOdx\n5HHkcbx5HOlKdlWyCenusgzAz8Y3DSrIVNjsqWS/bg4jixskGfQ6AH6DhSr0/1EOvqkcTq4jeRx5\nHPY4sqeSbWNQ0JhA+jmk/szLyILib2YsN3OYsWghJalxN7LASerUuYXDwbnJtRyvqa7mceRxyBr8\nc9hiFgRhrSAILwRBuG22OT+kpYylIU3KLgPgPcN7WVLJBoAaNWrg7bffRseOHU1WqVIlp3IULlwY\n8+bNw8uXL1GlShUMHDgQkZGRCAwMRPHixTPsb41DEAQ/SGq7gDS4kAQgnOQ1ZEIVGgBcXFwwZswY\nVK5c2e5+zuYAgClTpmD//v0O93M2h9ySSQ5ARh3x8fHBN998g4sXL2Lq1KmIiYlBp06dcpwjK+X/\nOkfp0qXRr18/ufqHinPUrl0bdevWRa1atWR9f2aKnK6MdbAu+70RQACArwDsBTBQEIRWkIKkbHVE\nHx8fVKpUCSdPnsT+/fvRvXt3rF69GsuWLUPXrl2NdzUA+BBSvlRXpTjc3NzQtm1bTJgwAUeOHEFa\nWhoWLlwIf39/NGvWDN988w0EQbD8mC2O/0FqBX5lYCqdFX8ULFgQPj4+6YRqbRSncgCAu7u7vWXY\n5sWpHJkomeGAI5YCBQqgX79+mDt3LipVqoQXL17Ay8sLy5cvR758+XKMIxtFcY7SpUtj/vz5WLFi\nBQYOHIht27bhyy+/dBQcneKPpk2bYuXKlahTp46jXZ3C0alTJ3Tq1AmDBw9OFydcXFywYcMGDBgw\nAH5+fhk+JwjCfUEQNhtuDNaLzK6LcjDkMTW8tidP3xcypMfz5cvHb7/9lnFxcTxw4ABv3brFQ4cO\nsUOHDrZk0AVIShAvleDw8PDgmjVreOzYMT558oQVKlRg3bp1TfmiT5w4wd9//91a8vwscVDmfMi2\nbdvy2LFj/OSTTxzt61QOADxx4oTd5OhmpgiHj48P586dy7///psnTpwwZZUzqr2IosgPPviAgmBz\nGbBsDsM2m3UkX7583LJlCw8dOsQpU6awUKFCLF68OO/du0e9Xm8vYY9iHMWKFePjx48piiLXrl3L\nZcuWcdmyZSxfvjxr1qzJmjVr0tfX155QrmL+8Pf359GjR3ns2DGq1WrGxsZy7969pjS1R48etalu\noiSHufXp04dpaWn88ccfZdVnpTk8PDw4ePBgnjt3jsWKFTNtDwwM5N27d1m+fHl7167NlbkksxyY\nEyF1I+Q3e30KQGfIVPwdNWoUk5KS+PjxY/bt29feSSUg9csAaAhAnV0OQRA4dOhQarVaPn36lPXq\n1aOrqysnTJhAURR55coVhoWFUafTZdCayyqH3IA4evRoiqLoMDA7m6NAgQKmNIoy9leE46effkon\nq2XN5s6da09/UDaH4bXNOuLt7c2dO3fy66+/Nt0IypUrxwcPHjA8PNyROK0iHL179+aTJ0+oVqtN\nptPpmJyczKSkJCYlJfHQoUPs2bOn0/1Rr149pqWlcdy4cRw8eDBbtWrFNm3acNasWSaJtLp16zqd\nw9zatm3LuLg4Hj58WE4ddQrHTz/9xOjoaJNye758+RgdHc3jx4/byitjvHazrZK9FkA00osY2pOn\nt6tw27JlS4aEhDAhIYFXr16Vm76QBo5kpFe5zRJH7dq1GRERQVEUOXbsWNOFFxQURL1ez86dO3PR\nokWmlIYWisRZ5XA42CUIAr/77juSlNNidhoHAM6ZM4eiKMptMSvCsXLlSlMA3rx5M7t06cIuXbrw\nyZMnpu2DBw9WhENOXS1btiw//PBD0+s6depQpVLx8uXLivnDEYf5aH6BAgX43XffmQKhudlQi1aM\no0yZMrx06RIHDhxo2ubh4cFFixaZBB3MBZadeV6MVqVKFT5+/JihoaH2bgpO5bh79266wFyoUCGK\nosjVq1fbfJIxHDt7KtmQ7hodkD4wO5L9tqpwO2/ePEZERPDSpUv84osv6OXlJceZRvsXwNXschQu\nXJj79u2jXq/npk2b0sk2BQYGUqVSsUKFCmzYsCF37drFmTNnWuq8ZZUjgzq1pbm4uHD9+vUkaUsJ\nIkc4AHD37t0URZEHDx6Uc24U4fD39zfdMGvVqkVAkiR79OgRRVHk2bNnbSYfzwqHvbpqfk6M/y9f\nvpwajcZeon6ncZhbQEAAlyxZYgrKz58/tyo/pjSHl5cX27Rpw/z587N06dJcsGAB1Wo1w8PD2aNH\nD3tdTE7zx+7duxkXF8c2bdooXk8dcZQtW5YqlYrPnz83Nd4+/fRTh4EZ2VXJNoN7H5mX/c4ApNPp\nuGHDBpYoUcLeSbRqSnF07tyZer2eFy5cyCDZlD9/fn788cem17/++iv1ej3DwsKyzWHLJ+bm5ubG\nI0eOkKRDYVhncnh4ePDYsWPU6XQcNWqUnPOjGEfjxo25bNkyU/CrUaOGqR9ThiirU/wBgCVLlmRK\nSgofPHhgryvF6RyA1Hq9fv069Xo9nz17xubNm9u6npzC0alTJ16+fJkajYYhISGsUaOGo+vZaf7I\nZGBWlKNjx44URZEXLlxgQEAAAempW06L2WHMdRCQLaWlZMuxWwM6dOgQU1NTef78ebZs2dJhv7KF\nZZvDx8eHf/31F/V6PWfMmGH3+/z9/bljxw7q9XrLboUsccipaMWKFWN8fDzv37/vqGXoVI5q1arx\n33//ZUxMDJs3by7n3DiFA5C6D4zdGDLqi1M43N3duX//fmq1Wk6ePPm1+gOQWu56vZ5arZYfffSR\nvaCoMeP5L17lHtYbtp0C4CuHQxAE+vv787fffjOdD61Wy+3bt7NTp062lNwV57C0fv36MT4+Pp1C\ndU5x9OzZk6IocsWKFXR1daWrqyuXLFlCURSZmJjI27dvs0iRIhk+JycwO5oup4E0LasSgHuQgsE1\nSMuev4I09eSk4Uc6LH379sXQoUOxY8cOLF++HFu3bsXkyZMREBAg5+PZ5vDz80NCQgKSkpJw48YN\nm/vVqlULmzZtgp+fH/r374+dO3cqymGr9O7dGz4+Ppg4cSJ0Op2j3Z3GUa9ePZQoUQJarRYqlUrO\nR5zCAQD+/v6m/7/99lv06NHD3lQ1p3A0b94cjRs3xpMnT7B37145H3GaPwCgTZs2IImffvoJhw8f\nNgYPa6UTpC6jwpBklQ4CWGNg+Y+BK0jOd5YsWRJbtmzBkCFDAABarRY6nQ4ff/wxdu7ciaCgIOTP\nn9/pHJbl5s2b8Pb2Ro0aNeTsrihH1apVAQDx8fHo2LEj5s6di3btpJnFCQkJmDhxImJjYzPxa8yK\nrGZ1FuTY4eDuVaNGDd6+fZt6vZ7379932N+sBEebNm0YGxvLy5cv2+qTo5+fH8PDwymKIqOiotis\nWTNFOBz5xNPTk5GRkdTr9Y5G/J3KAYBbtmyhKIo8cuRIBul1G+YUjj59+vDFixfpZmXExcWxevXq\nOcYhCAKvXr1KURTZr18/Ob5wmj+8vLz4559/kiS3bdsmm8Nw7HQskGYFPIZMjbv69eubzsHixYtZ\nvHhxCoLAhg0bUhRFhoaGsnLlyk7nsLQaNWpQFEX+8MMPOeoPV1dX/vrrrzZnD9kbpJYVcx0E5DKQ\nUuU9gDSC+RKSHLsa0hrz65AmYOuy4lRfX19+9tlnvH79OtPS0tijRw97/XfZ5hgyZAj1ej3Pnj2b\n4XvKlCnDESNGMC4ujnq9nsHBwRw6dKi1x8QscTjySfv27UmSV65ckdON4TSO/PnzMzo6mqIocs6c\nOfT19ZXDchHSI7oWwAxIK6i+NbCEGPbJtCr0hAkTeOfOHVNlP3z4MD///HN78vSKcri4uHDq1Kmm\nKXypqam8c+cOL168yAULFthTY3aKP4YPH86UlBTGxcWxc+fOmTkvTwx1pIJZHQmB1NUiSxXay8uL\nDRo0SLetQIECnDp1KkVR5KZNm+jp6el0DkurXLky1Wo1o6OjHc0tV5TDw8ODGzdupCiK1Gg0fPr0\nKTdu3Mh//vmHer2eH3zwgU0OJQJzcUjihBGQ+sf0AGZBkmUPw6vRxaSsOBWQWiSlS5emKIrcs2eP\nzZasEhw9e/ZkSkoKX758yTlz5rBHjx6cP38+f//9d969e5dqtZp6vZ7nz59nvXr1FOVw5JP+/fuT\nJDds2GBvNNfpHAEBAaZAGBISImd2CCFNpxQBxACIhBSQIiHp3WWJA4Zg0Lp1axNP2bJlc5SjZcuW\nTEtLs9oi0ul09masOMUfGzdupF6v55o1a+TOaIqC1B2pgRSI9hu4jBylACRm5dp1dXXl6tWrmZyc\nTK1W62h6p9M4PDw8OGPGDCYmJpqmrOUEhyAIbNGiBVevXs0hQ4awUqVK9Pb25vbt250fmA1QJjkW\nvGr+xwGYaXhftuR31apVeezYMXbs2JEVK1ZkQEAAK1euzEmTJlGv1/PHH3+0d9fNNkeJEiW4evVq\n0zQj8/mgarWa9+/f56RJkxxV+ixxyA3M8+bNkztjxSkc5oF5586dLF68uBwWk1yPgSUCwHxIfXdZ\n4jDaO++8w9TUVIqiyGrVquUYR+vWrU2r7p4/f8558+bRz8+P3bt35+LFi/ny5UtOnTo1x/zh5uZm\nai137dpVzjlR5JqxNBcXF37wwQemKadPnjzhZ599luMc5la5cmWGhITImUHkVA5PT09u27aNoihy\n0qRJNvfLdmCGmbQUpP6ZZ5DylV6E1Bq4D2n9+W9yfkzx4sW5efNmajQabtu2jRcuXGBISAgPHDjA\npUuXWh3BNDNFOKpUqcI1a9YwPj6eoihyw4YN3L59OydOnJhuWaXSHI5OcOvWranT6fjRRx/Jveic\nwlGwYEGmpaXx77//lhuUCYNcjxnLCkgDK08htUYeIIuq0K6urhw/fjxFUeT169cd9XkrxmFcBr52\n7Vo2atQoXdeXu7s727VrR29v7xzxh4eHh6kbw3yBh7PqiLVj5cuXj8OGDePYsWMZFhbG1NRUjh8/\nnrVr185RDmtWuHBhnjt3Tk5gdiqHi4sLZ8+eTVEUuX79erq7u1vdT4nA/D6kpv4tACmGitUOwNsA\njhq2PwGwIzM/plGjRqxWrRp79uzJbt262cqNYWmKchhXU8l1enY55JzgTPI4lSOTLDcA3DSwBAHw\ngzT74BaAI5CmJWVZfbhYsWJ89uwZRVFkzZo1c4QjG/VDcX9MmjSJM2fOZFJSkqPf77Rrpk6dOlSr\n1Zw5cyYjIyPZsmXL18Jhy3r16iUnMDudI1++fDx9+jS3b99uc7ws24HZAGVTjdnwvtU135n5MTLt\njeZwAktu4ciRc9OvXz/GxcU5aqG90XXE2rHc3Ny4aNEizpw5k+vWrZMzwOUUDm9vb44bN46BgYFy\n+nL/z5+X7Fi2AzNsq2QXwyvJ7wgAd3LAqbmaw/C3HaS80IkAJjmZJbdw5Mi58fLyYo0aNWw+Hr4J\ndSQrHC4uLqxQoQJLlCiRma6l/7P++L/AoURgNnZl3IA0Bes6pLXjWyBNM3kE6Q50A86XHs/NHJsg\nPQppAPwFoCwkJQRnsuQWjtx+bvI48jhyFYecwJxVlewUAIVIdjK8/hpAR8OPNX42Q4Z5pUtu4YCk\nTv0BgIlmLDteA0tu4cg15yaPI4/jTeCwLFlVyS4NIETIqE49WyGuN43DyPKBIAi38HrVdvM48jjy\nON48jnQlq4GZZn+bA2hj+GsqhhFtxYqNu1Zu4TBnaU4yThCEPs5kyS0cdljyOPI48jjkc6QrcjT/\nrJVQSMu1AWmAsAwsJL+zeFybxYbkd27hMLK4GThgziJIEui3oWDJKQ4fHx9s374dM2bMwKNHj+yx\nvFZ/ZIXDyPKmcNSqVQv//vsvunbtinfeeQelSpV6LRyZLXkcVjmssbzax9C5ndkD54M0SV4AEAug\nKqRcppMFQfA0vFdOzrFq1qwJFxcXNGzYEHq9HocPH0Z4eDgsuazdZZTkKF++POLj4+Hn54fq1avj\n+fPnaNCgAURRxIMHD3Du3DmbHGYsSYbvJIBCAD6GpLL7ANJAaqiNzyIgIADfffcdOnXqhHLlyqFg\nwYIoW7Ysbt68Cb1en+EzzuCwLG5ubpg7dy6++uorDBgwAE+fPjX5wRGLkhxyS2Y4SF7LbB153Ryr\nV69G9erV0a5dOyQkJLw2DldXV9SqVQvJyclo1qwZACA8PByHDx+WXVezy1GiRAl07NgRAHDhwgXk\ny5cPd+7csZsN0dn1o0CBAvjwww/h5+eHnTt3Ijk5WTaHtZ0czcxYC2m1krnmnx+kdIYqSHItCyGp\nA7QC8AFs6GQVKVKEkydP5qBBg+jq6sovv/yS//77L6dOncqUlBSmpKRwwoQJHDBggLXJ/YpxmFv+\n/Pk5e/ZsPnr0iKNHj+bjx4+ZlJTEmTNnUhRFqtVq3r59Ww7HUUiriZIgjfCGmXPYG9319PRknz59\nTMvEBw0axOvXrzM0NJTdunWzlYdYcQ5LK1myJKOjo5mQkOBoVabTOLy9vdmgQQPu27ePFy5c4Icf\nfsiOHTtmm8Pwvs064u3tzRYtWvDtt99m+/bt2b59e1aqVIlz5szhpUuXuHLlSnurEBXjMJq7uzvj\n4uLSCTnIMMU5AHDkyJF8/vw5J0+ebEpp8PLlS3uLXxTnaNu2rSl1wLRp0xgWFsZr1645Wr3rFH8U\nLFiQCxYs4IgRIxgZGcng4GBLObp0JmdWhpyujHWQ5vmZlyAAG0nmAzAdgAektecNYEPyWxAEDB48\nGEFBQZg5cyZWrFiBn376CU+ePMHSpUvh7e2NcuXKoUiRImjWrJm1nLsfwrr8eKY4LEvnzp0xdepU\nlClTBrVq1UJkZCTOnz+P+/fvo2LFiihWrBhq1qwph+N/JN+ClE3sAIBf5HAULFgQ586dw5AhQxAd\nHY0XL16gefPmpty2I0eOxFdffZVOHt0ZHJbFz88PU6dOhbu7Oz755BNHeWWdwtG9e3dcv34dQ4cO\nxd27d3H37l0MGjQIjRo1UoID9lhq1KiBjRs3YtmyZdi/fz/27duH5cuXY+LEiahfvz46duyIokWL\nOp3DWDp27Ijz58/jxIkT9nZzGkehQoVQqVIluLu7Y8iQIYiPj4ebmxtGjBiBc+fOwcfHB02bNnU6\nBwDUrVsXX3/9NRITE/HDDz8gJCQEbm5uePfdd7Fnzx6ULFkyRzgAoGjRoli9ejVGjx6N8uXLo02b\nNihfvrzNbj8AEAThviAImwVB8LO5k5zojYwq2U8M0PkhyX4/wSsVZKuS30WLFqVarWZiYiJTU1OZ\nnJzMadOmZUidGBAQwH/++YeNGze2vNMIsC4/nikOS+vevTsTEhL46NEje2KS2eaw1kL08vLi4sWL\nqdVqefz4cTZu3JiNGzdmqVKlWKpUKb7//vu8dOkSNRqNNekcxTgszc3NjUuXLqVareb3338vxyeK\ncwwcOJDXr1/n4MGDTWrDVapU4d9//20vmZFsDsP7NuuIl5cXGzZsyP79+zMoKIjjx4/nlClTuHz5\ncoqiyD///NNeJkTFOAApJW1MTAwnTJggN/Og4hxfffUVQ0NDuWbNGm7dupV9+vQxvffnn39Sr9dz\n4cKFOeKPFi1aUBRF7t27lwULFqS7uztbt27N27dvU61Wc//+/TnCUadOHd64cYOJiYmcOXOmScWl\nUKFCjpbzC5BuChmW5ZvYZHZlZEYl26rk99ixYymKIs+cOWPKrWsr1++jR4/YoUMHy+1rIfUji9nh\nsLS+ffsyNTWVhw4dklvps8RhLRBNnz6dWq2WN27csJlkvGvXrkxLS+OGDRucxmFpLVq0YHR0NC9f\nvszSpUvL8YmiHC1atKBer0+nYF6gQAE+e/aMs2fPtlfpZXNkpo6Ym1Gl+ttvv1XEH3I43n//fWq1\nWruPx87m+PTTT6nT6UzdBydOnCAAVqpUicnJyRRFkbNnz84RfwwcOJCiKHLZsmXptru4uFCv11On\n09mSRFOMo1SpUrx69SpJcu7cucyXLx8FQWC7du2o1+s5evRom+fFcGybKRPkBmZrKtkqABPMXiea\n/W9V8nvBggXU6/XcuHEjHz58yGPHjplaQpYWGhrKoUOHWm4PhHT30meHw9KM4okyE49nh6OU+XH8\n/f2ZmprKxMREu+ksGzRowNjYWF65csVSPFYRDmu2YcMGqlQqjhgxQu4yYEU5Fi5cyKNHj5qUXIxP\nFufPn3ckUiubIzN1xGglS5Y0iZAaVbxzgmPgwIFUqVQEpDSomzdv5tq1a9mlSxdHWnu5JzgQAAAg\nAElEQVSKcRQtWpTbtm1jfHy8qV/51KlTPH36tEnc2M65UdQfX375pUlrz/wmLQgCExMTGR8fn0Fo\nWWmORYsWUaPRcOHChXRxcWGVKlX4008/MSkpiST5n//8x+Z5MRx7NIBdtuKuwz5mkmcgLd4wL6kA\nCgCAIAj+kBJQG/dXAfjS8jgnT56ETqfDqVOn8PHHHyMxMRFeXl4Zvq9hw4a4d+8e7t69a/nWSgB1\nICUdzzKHZalduzYA4Pz586ZtLVq0QMGCBW19JKsch80P4ufnh/Pnz+PatWu4d++eTb7r169jxYoV\nWLduneWIsyIclqV3797o1q0bXrx4gd69e+Pw4cMoX768vY9AaQ6tVovY2FhotdIhK1eujLZt26J7\n9+4IDw9XhMOCRVbp3r07ateujePHj+P2bbuz/RTlKFeu3KsDpabC3d0dVapUwcaNGxEUFAQfHx+n\nc8TExGDUqFFo3bo19u3bB5IIDAxE06ZNkZiYiOHDh9s7N4r6Izg4GADQunVrfPjhhyhevDi8vb0B\nAM+ePYNKpUJMTIxTOXr37o34+HjExMTg999/x4EDB9C1a1esW7fOFrapCIJwH9LqwtE2d3LUYjZE\nd2uy35nKYVqrVi0+e/bMpNdmLSWeq6urKYuYZZ+qUhzmVrRoUdMdtkePHjx16hRTUlKo1+v54sUL\nq4oZWeUwZ3FxceGOHTuYlpYmq6W+detWPnjwgCVKlFCUw9IKFizI27dvmx5XjbNETp8+7UjuSlGO\n4sWLMykpiT179qS3tzePHj3Kn3/+2aGflOaw9E10dDRfvHhhT9rKKRxBQUFUqVQZEjg1bdqUYWFh\n9tQynOKP1q1bMzY21lRHjN0aOeWPQoUK8fjx40xNTaVer2dCQgJDQkJ47949iqLI8+fPO53jxIkT\n1Gg01Ov1jI+P5/Xr19mzZ09u27ZNVovZYcx1EJDLQLqLWMqx14PUX2Psm8nQJLeEWbBgAV+8eMH3\n33/fJnDp0qV5/vx5/vPPP9b6NhXhsKzYRpkglUpFlUrFPXv2MCoqiqIosm/fvtY+lyUOcxZfX1+e\nOXNGVmDOnz8/L1y4wPv376cLzEpwWFq3bt1Mj6mHDh3ilClTeOnSJapUKvbq1csep6IcgCQDdvbs\nWf7yyy+8d++ePaFPp3IAUoPhp59+ok6n44IFC3KcY9SoUdTpdGzSpEmG9/bu3cu9e/fa4tCY8fwX\nUu7hvyBNDTP2r/pm1h/dunVjQkKCKTCHh4c7mk6pOEeBAgX46aefctasWfz++++5fPlyxsTEUBRF\nzps3z+kcAQEBHDNmDCdMmMB27dqxcOHCDAgI4IULF0iSI0eOtMmuRGAuDqAGpFkZdwE8BFAbwFIA\n4wz7zITZSKetH/PJJ59QrVZzyJAhNoFnz55NrVbLb7/91tpAnCIc5mYMzKIoMjIykj179mTfvn2p\n1Wr5/PlzW5/LEoclS7du3XjkyBEOGjTI7kVQtWpV7t69myNHjrTMxasIh7n179/f5I/jx4/zyy+/\n5Pbt2ymKIseNG2ePU1EOo33zzTfUarV260xOcNSpU4ehoaGMjY1l69atc5zj/fffJ0n+8ssvGZ5c\n/vjjDwYHB9viaAMpnWUBSxZIg09RAH7OjD98fX355MkT6vV6Xrp0iX/99Rf1ej0///xze/5QnMOa\nxcbGUq1WW5vRlSMcNWrUMIk521h7QECBwGwGVg7p5dj/xSs59skAkh39GG9vb4aFhfH06dMZQAVB\nYGBgINVqNbVardXBMKU4AKkrQRAEurq6slOnTuzXrx9HjBjBa9euUa1W88KFC2zYsKFNp2aFw5LF\nqHMYHR3NJk2aWO3a8fDw4NixY6lSqbh27dp0gVkpDnP7+uuvTRp3Rp09jUbD1atX25saRqU5jDZ5\n8mSGhITw0KFDNgeKc4Jj/vz51Gq13LFjh2lAMic5PDw8uG/fPt66dcu04KhQoUIMDAzko0eP7LXO\nysEwzdXA0hfSlLAikPo39yMTGneurq4m1fAzZ86wYsWKPHDgAJOSkmzNglCcQxAE5s+fnwULFjTd\npARBYJs2bajRaLh//357QVFRf1haUFAQSfLq1at298t2YEbGrgw9gBGGvxpIo5qJAFLl/JiLFy8y\nNTWVXbp0Sbe9ZcuW/Pfff6nVarlkyRJbgqyKcUyYMIFVq1ZloUKFOH36dF64cIFJSUl88eIF27dv\nz5IlS9qbkpUlDksWHx8fhoSEUK/XMzg4mAMGDEhXoUqUKMFly5YxKiqKUVFR1h4VFeEwt379+lEU\nRSYmJlKr1VKlUnHOnDn2BHKNpoaU65YAdhsYjOrQiQaudpmp8IIg8PTp02zbti337t3L/v37y7k4\nFOcoUqQIo6KimJSU5GgmhlM5AgICGBcXx/j4eN66dYu3bt1iVFQU9+/fb29mhpFDB0lOabvhtZHj\nDoAUuRz169dnWloak5OT2blzZ86cOZMajYbz5s2zKaOkNEeZMmV44MAB3rx5k2PGjCEANmnShDdu\n3KAoivYEchX3h7m5u7szODiYJB11+ykSmI1dGQUgLX0Og9T8tzvNxNaP6dKlC1+8eMHIyEhWrFiR\nvr6+bNmypUnPbenSpfb0/7LN4enpydGjRzMmJobbtm2jVqulXq9nREQEV61aRX9/fzkXXZY4rPnE\n29ubO3bsoFqtpiiKDAkJ4eXLl3n58mXGxcUxJiaGZ86cYYUKFZzKYbR8+fJxz549vHLlCvft25eZ\n5b8NIA2e9IH0iJgMYJaRJbMcgDTecODAARYuXJh169bld999l+McHh4ePHLkCPV6PdetWyfXF07x\nBwDWrVuXW7du5ZUrV3jlyhVu27bN0fRBxa5dQFqKrdfrqVKpGBkZSZ1Ox02bNjntmrF2rGrVqpn6\nkrdv386WLVtSpVIxKSmJ58+fd3QNK+oPc3vvvfdIksHBwQ7XQ8gJzI4S5b8QBCEOUhN/E4CmkOaf\n2p1mYqscOHAA06ZNw8qVKzF58mSUKlUK7777Lu7fv4/Dhw9j/vz5SEy0nJlnKv9kl6Nnz5746KOP\nULhwYXTs2BEnT57Ehg0b8PjxY1y5cgU6nU7Oz8g2h7GkpKRgwIAB6NmzJ4oVK4bJkyejfv36+Ouv\nv7Bnzx5s3rwZ//zzDyIiIpzKYSwqlQpdu3bNzEeMZTaALSS3C4LQA1JO2/wAkrPCAQCiKCIqKgpJ\nSUnmF0iOcrRp0wYuLi6IiorCL7/8kpmPKu4PALh27Ro++eSTzHxE0Tri5+eHkydPonnz5vD398eq\nVavk+kUxjpcvXyI4OBi3bt3Cxx9/jE6dOuHQoUM4c+YMVq1aZS9+KMphWZo0aYKTJ08iMTERoihm\n5RDpi4MWs0nzDwpJfru4uLBJkyYcM2YMRVHk48eP5bZUs80xYMAAjh8/nt988w3z58+fVRXkLHHI\nufMKmVNmdhpHFuxHw3GNLCsAHISkRPwCUoYuv8xweHl58caNG/zoo484YsQI9uvXL8c55s6dy5kz\nZ/Kff/6Ru1zfaf7Ioil67TZr1owzZ86kXq/n4sWLHU2hdAqHIAgcN24cZ86cSZ1Ox3Xr1snt91fc\nH+ZWu3ZtTpgwwdEgOQFlujKMmn9OlfyWaW80hxNYcgsHIemk3TSwBEHK2nXSwHEEwDxYyQvg6Ljt\n27fnihUr2KBBA3uZ3JzG0b9/f3bq1ImffvppZnNUOMUfOVVH8jicy5HtwGyAyhWS3286hxNYcgvH\nG39u8jjyOHKSI9uBGWZdGRbb/7+VHrfFYfjbDkA4pBHeSU5myS0cuf7c5HHkceQmDiUCs7ErI9OS\n30raG8CxCdKjkAbSSqKyAC47iyW3cLwh5yaPI48j13DINUezMs7Cii6gIEPyW8mS2zkAHBQE4QMA\nE81YdjiLJbdw2GPJLecmjyOPIzdxyC1ZVckuDSBEEIR/IT0uFwTgDWmaUE6W3MJhZMkNMuh5HHkc\neRxvHke6ktXATLO/zSGtQW9uvoOQs9Ljr5vDnKU5c0AGPbdw2GHJ48jjyOOQz5GuyNH8s1ZCIS3X\nBqQBwtcl+Z1bOIwsVmXQBUFoJwiC1QS+hQoVwsuXL1GrVq3XypGd8qZyGFneNI7PPvsMoihCr9dj\n3Lhxr41DbsnjsMphjeVVyWJHujGz/zNIyxtTAcwzvOcJIBg5MJKpJEedOnXYtm1bqlQq7tq1y+ak\ndQc+0UIa3b1lYKprxmFVsaNjx47U6/Vs0KCBIiO7WeWwZt7e3vz7778ZGRmZ1XOjCIcCdSQDh6M6\n4u/vz1atWrF8+fLs0qULBw8ezNq1a7N169YOFzQoyWFuZcqU4f79+zljxgxTyk17CxqcxWG0okWL\nsl27dvzss884ZMgQVq5c2eoCKWdzvI76ERgYyEOHDjn8zoYNG7J+/fqyrl1zc9hiFgRhrSAILyxa\nOPkBxEHKpVEZwK8AWguC0ApAI0gpD60Wb29vbNmyBZ6eno6+2qkc5qV///7Yt28fGjZsCA8PDwQG\nBqJYsWKyOQRJ7XYfpClq5QB4QboL+xk5SIZZO54dRV+7RWkOa8XFxQX58+c3VmB7LIpw1K1bF0uW\nLMHevXsxdOhQXL58GefOnUPp0qVl8WaSA7BTR3bs2IEdO3agZ8+e2Lx5M1atWoXOnTtjx44d2Lhx\no10mJTnMS926dREYGGhNMT1HOARBQIUKFbBx40b89ddf6NevH7Zv3441a9Zg5cqV6N69O9q2bet0\nDstSpEgRjBs3DpcvX8a4ceNs+kdJjoEDByIwMBD+/v42uTw9PbF161bMnz9f7k8xFTldGesgzfMz\nL0EANpLMB2A6AA9IafTsytO7uLhg/vz5KF68uEk2yLz4+vpizpw5qFy5srWPfwjr8uOZ5jAvTZs2\nxaJFi1CyZEm0aNECJFGkSBFMnDjR1s3DFoctGXSHHKIookiRIlbf8/b2tlXRFOewLCVKlEClSpUc\n5R+AUhxDhgzBqFGj8OGHH+KDDz6Ar68vateujRUrVmDChAkm+SCFOGCPxdvbGyRRvnx53L9/H+vX\nr0epUqUgiiJ69eqF6dOnw93d3ekc5kUQBAiCgGbNmgGQcq3Ex8fb+4iiHEOGDMHKlSvRuXNnVKxY\nEZUrV8bVq1exdOlSxMfHo2XLlpbyZ07hMBYXFxc0btwYa9aswcKFC1GvXj188803KFWqlK2PKMLh\n6uqKDh06IF++fIiOjrbJ16tXLzx69AiLFi1Kt10QhPuCIGw23BisF5ldF+VgyGNqeO1Qnh5WmvUB\nAQE8e/aszUfBwMBAPn78mC1atLD2voBMyI/b4zBaoUKFeOfOHYqiyGvXrpkeD1NTU6nVajl9+nTF\nOAz7ZTje0KFDmZSUxHr16qXbXrp0ac6aNYsHDhzgTz/9xGLFijmVw5oZ8xEsXbrU0b7Z5ihSpAjv\n3r1rSjX61ltvsVy5cuzZsye3bt3KGzdu8I8//uCoUaPsZSBUTJ6+QoUK/Oqrr9Jtc3Nz45QpUyiK\nImNiYuyJ6CrGYW5du3ZlYmIiU1JSeODAAU6YMMFSPMGpHCNGjOC9e/fYoUMH1qxZ07R93LhxTEtL\n49OnT22dG6f447333uPTp0+p0Wi4efNmk+BF1apVneqPdu3amRTDbbEFBATwzp07jIyMZNOmTa1d\nu0GwsizfxCYjKK8FEI30WlkO5emtwTZq1IjHjh2z+WO+/vprHj582Nb7a5EJ+XF7HEYzSp0HBQWx\nVatWVKlUHDNmDFu1asXY2Fg+fPiQb731liIc9gJzfHw8K1asSEBSiBg2bJhJU82Yp3rZsmWW+RoU\n5bBmV65coSiK9iq60bLNUbVqVQYHB/Pp06esUqVKhu9wc3PjmTNnKIoiN2zYkG0OuXXE0gIDAymK\nItVqNd99990c4xAEgfv27aNGo2F4eLg9lQ6ncbz77rvs2LFjum3Vq1dnamoqdTqdPZ07p5yXgQMH\nUqfT8dGjR6xevTpFUeSzZ8/49ttvO5Vj586d1Ov1fPLkiU22sWPHUqvV8u7duxmU5g3HtpkyQW5g\nDoSkwmAemOXI06eDcXV15f79+21mCRMEgVevXmWfPn1s/dhAZEJ+3BYHIOVlnjVrFkVR5K5du1i4\ncGEWL16c58+f58iRI1m2bFk+fPiQ+/btY6VKlZTisDrYNXToUMbExLBQoUIsU6YM9+3bR1EUee7c\nOU6dOpWenp5ct24d+/bta5mMXFEOS6tatSpFUWRYWJicLGLZ5hAEgfPnz6dKpeKoUaOsfk/fvn0p\niiLj4+OzzeGojtiyadOmmfxiR4dQcQ5BEBgaGmrS2JMZmJ3qj/79+/PGjRumhoOvr2+OchgD86BB\ng/j5559TFEVHWe8U4Zg9ezb1ej137txp9XtcXV15+PBhiqLI//73v2zRogWbNWtmet9w7NGwof0o\nKzAbDmKpLhsHYKbhf39YyLFAWuqYDvazzz7jnTt3bCb29vX15Z07d+ylV7wP4EJ2OQCwQ4cOjI2N\nZUpKSrrWYGBgIJs1a0ZfX1/evn2bUVFR1iRzsspxxxrL0KFDmZyczNGjR/P+/fvU6XTcu3evSYzW\n29ubDx8+5P79+y0zrCnKYWnr16+nKIo8ePCgnItUEY7y5cszNjaWDx48yCDt5ePjw0uXLlEURb54\n8UIRDnt1xJp5eXmZNBCPHTtmT4BUcY5PP/3UJIAaEREhNzA7xR9eXl6cNm0aU1NTqdFoOHLkSHvd\nS07jGDhwIJOSktipUyeTuvuIESOcyuHn58fr169Tq9Xy66+/Tnd8V1dXtmzZkgcOHKBKpaIoilSp\nVDx06JDpiRivrt1DAEplKTBDmtN3GlLfiwhpqS8gdaIbJYwSAKyz8tl00IsWLWJYWBhDQ0P58OFD\nnjp1ivPnz2eDBg1Yvnx5btq0ievWrcsg0W5minD4+vry7t27Vh1rtO7duzMmJoZHjx5VjMMaCwyB\n2SiAqlKp+OOPP6brsmjcuDFfvnzJTZs2WfpGUQ5z8/f3N1W+77//Xk4AUIyjVatWjIiIYFpaGrdu\n3coffviBP/zwA8+dO0dRFEmSP//8s9M5rFnVqlX54MEDiqLIwYMH54g/AEkR+vnz5yYF80y0mG8Y\nOP4BMBFS7uFYSIoqqZAGtmSrUwuCwOLFi3Pnzp3UarVMTU3llClTcpzDvK4cPXqUGzZsoE6n44kT\nJxxpU2abo2XLloyJiWFaWhrHjBnDfv36cdy4cfzf//7H8PBw07UsiiLDw8M5ZMiQDLJb9mKu3MBc\nHNJI5Qu80saaCSlL0z+Q5v3FAHjoyKnVqlVj27Zt2atXLw4YMIATJkxgUFAQN2/ezJMnT1Kr1fLB\ngwf2BlQU4TDK0J88edLq9/Tu3ZshISGMjIxknTp1FONwFJi1Wi3Hjx+fQUhy/fr1TElJsdafqSiH\nuXXv3p0pKSmM/H/tnXtUVWXex79bEBVILopEkgpOYzSg5ZCW5o15p8yFpG86eaHlDbMmp5paNvkW\nTM7SVlqM6auWVqOOr7fJG82QaV6oRk2NFLTRMkFEyARvwOHAuezv+8ezz/YA5wZnb8SZ/VvrWcA5\nm30+57ef/Xue/Vx+34sXOWjQIF9uPM04AgICOGrUKK5bt47FxcW0Wq2sr6/nxYsX1QrvQalaF38A\nYHBwMLdv30673c7Dhw+7mozVjePZZ5+l2WxWA3NlZSVnzZrFwYMHNxm/bFQqFY4LEJqDqQDOQywP\nOwuRD8JnVegRI0bw0KFD6nW4fPlyE/3O1uBwlI4dO3LRokW02Ww8deoUQ0JCdOd46qmnaLfbabVa\n1Xkgx3Wprq7mDz/8oP7tbljW78DsBNYLDVV/z+KG6u8vAFha2gsBREJ0WZYZHx/vNiG5FhydOnXi\n6tWraTabOWnSpCaf8dJLL6lBwMVMql8c3gLzhg0bmrz38MMP02q1cubMmbpzOJf169dTlmXu3r3b\n1wT1unBIksQuXbrwwQcfZGBgIM+dO0eSngKzLhzBwcF89913KcsybTYbx40b16r+ePvtt9Wb3bk4\nFDzGjx/vbry7FxqqQqssEJNPP6AZqtDOKurHjh2jLMsuVe/15nCUxx9/nDU1NayoqHC3kktzjv79\n+3Pv3r3qNZBlmV999RVffPFFdu7cmc8995yqi+hucljrwHwaYldMZwDVTu/9DoC1pYFZkiT++c9/\n5oULFzzKKmnBMXnyZNbV1fH69escPXq0+nrfvn35/vvv02Qy0WQyMT093a3qb0s53PkkLi6Oq1ev\n5uXLl9mjRw/19UGDBrG6upo7d+50OZapNYejREVF0Wq1UpZlPvLIIz5dQz04XJWDBw966zFrztGx\nY0cuWLBAHTPcuHEjhw0bppYHHnjA1ZI1TTlcBWbnnprdbueOHTvcBiLckFKKhzLBpXBsQzPERwMC\nAjh06FBKksTY2Fh1dYqP9UMzDij3zf79+1lXV8c33njDl96yJhwPPPAAc3NzuW3bNr7zzjscNmyY\nOtnomKi32+0sKCjguHHjGBsb2ySu+R2YIcaYL0E8khFCkmU6xLISx5hZFYDalt50YWFh3Llzp7s1\nw87Fb47Jkyezvr6eZ86c4bBhw5icnMz333+f58+fp9VqZU5ODvv16+dNir1FHJ58EhcXxytXrjA/\nP5/33nsvH330URYWFrKyspJ33HGHuwZLcw4AnDVrlvqoOmvWLJ+uIcSyI0LIwv9NYbiIG7LwdgAj\n/Q3MeXl5lGVZla3XmyM0NJSffPIJTSaT6pPq6mpWVFSo5ezZs0xJSdGVw4/AXA/x6E4AByDydctO\nHCcBmJp7XUJCQvjxxx9TlmW3Q4J6cgQEBPCTTz6hLMtcsGABO3To0Jx66jdHeHi4y4YgJCSEW7du\npd1u57Vr11hRUcHNmzc3mTfTIjBHA7gXIoH0HyCk2PtBzGZmKse4m830yVl33303S0pKGBcX5+1Y\nvzkSExO5a9cutWI7xnZLSkqa0+q2iMOTT9q1a8fXX39dnXWXZZlFRUVuh1P04gDAU6dOUZZlms1m\nZmZm+lrhDwD4PYTa8PcQkygLAbzYUg5XxbFcztWwj9YcP/vZz9SbX5ZlmkwmlpWV8eTJk8zPz+fR\no0e5atUq3n333a4ack39MXv2bNbW1roMzHV1dTx27BifeuopXe4ZR+nZsycTExOZmprKLVu2sL6+\nnuXl5Rw7dqxu94yrcwUGBnL+/PmUZZnbt29nREREc+qQrrHMsWrHbrfzypUrfOutt1zOAfgSmL2l\n/bwE4C0A/yK5UJKk+yHWn54B8EvlmHSIiagWWfv27bF27VqUlJR4O/RFfzmsViu++OILDB8+HNev\nX0d5eTnWrFmDffv2obCw0FdkvzkamyzLyM7OxtGjR9G9e3eUl5fjwoULKCgoaFUOANiwYQP+8Ic/\nYMGCBc3Z43+E5GIAUPLaBgHoC5HX1q/64WyXL1/Gvn37kJycjNDQUNTU1OjG8eyzz2LkyJHIy8tD\ndHQ0lixZgv3796OyshLXr18HAE8y9Zr6Y9myZTh16hR69+4NACgvL1dzrJjNZmzbtg0mk8nVv2pS\nR+Lj45Gbm4vY2FgcOXIEycnJ+Oijj5Cdne3rfaNZXY2MjMTw4cPx2WefYd26deq18NF0uWccZjab\nsWbNGvzwww8oKCjAjh07XKae8Mm89Jid5Vi+hXgkGwuh8lsL8chcDqBXS1uZsWPH8tFHH/XlWM04\nJElSi6+c/nK0pId4szha4BeHXM+3ECsSekBMqtRDLEXaDCDSX39IksRJkyaRJOfNm+eKUzOOESNG\n0GQyccKECb4+SbW6P/SqI43PExsby6tXr/LEiRN88sknmZCQcFM4ADEfVFZWxjvvvPOm+cPf4kuP\n2esBClgohHbcGOXvrhD7vd3u+fYVMi4urkmeCHdfRk+O5ji1JRxas7QVjta+NjExMXznnXeYnp7+\nb1dHDA7vHAkJCb525Nq0P/wOzHAj+Y0byrLfA6hohda/TXM4sZyC6BnprU7dVjja/LUxOAyOtsTh\nd2CGaEVcSX7H4kay8+cBXEUjZVkdnNqWObrhRlLt1wBshwt16n9TjrZ+bQwOg6NNcfgSmCXlg12a\nJEkPQWz9LVROCgD/A+AFAA8CKINYD3gEYtG8LiKotwDHJIUjGmJGfgZEysCOerC0FQ4vLG3l2hgc\nBkeb4fDVPK7KoHvJ7wgARSSfUf5uImCopbV1DgA7JUmaBGCIE8sFvVjaCocnlrZybQwOg6Mtcfhq\nfqlkS5J0DmJh9m0AQgA8rQ3WLcfhYJksSdJg3FwZdIPD4DA4bj2OBuavSjYhWpcVAJY43pSECjI1\nLp5Usm82h4MlEEIG/T4AK9FIFfrflIO3KofOdcTgMDg8ceiqkn0eYjzzKG6ewu1N53BisUIkqWnv\nYEEzVKHffPNNVlVVMSsri3PmzLlpHM4lKCiIy5cv56uvvuo2d0ZrcPhZR5pw3KS6anDowBETE0OS\ntNvtt6w/Ghd/VbJjIRZl3wlgkPJesxRuJ02ahF69enk9Tm8OX80Vh3RDbRcQkwvVAMpJfgMf1ak7\ndOiAKVOmIDQ0FEVFRdi6dWurcUhuVIU7duyIjz76CM888wwAIDDQ9ciXHv6477778NVXX+GLL75A\nXFycp0NbygHoV0d04RgxYgS2bt2KWbNm4euvv0ZVVRWmTp3a6hwAEBUVhb59+yIjIwOpqakYOnSo\nW3Fava9Leno6zGYzAgICPB7XVuqHL+aXSjaA2wG8BOBjANMkSfovNFONef78+UhJSfHlULcq2f5w\nREVFITEx0VdcTxy5EL3AlxSm2OZw9OrVC9HR0SCJnJwcFBUVtQpHaGgoZs6c2eTkHTp0QFpaGkaO\nHAmLxYLc3FwcOnTIHYvm/igrK8PSpUvRu3dvpKamol+/ft7+pbkc8JWlBaY5R0JCAjZt2oQxY8Yg\nOjoa/fv3R0hICM6fP9+qHIBosBcuXIi0tDSsWrUKGzZswJYtWzB27Fj06NGj1dRB6ikAABGSSURB\nVDgAYOrUqQgODsaiRYt8OVwXjoiICEybNg1jx47F1q1bkZaW5vF4yQeVbK+BmeSXEGv7nG0UgHUk\nLwH4P4ggsQVC9pvezulsR44cwWOPPea21+ZkcRD72mO04pAkCW+88Qbmzp2rvrZ06VK8+uqrePjh\nh/HII48gJSUFo0ePdq5wmnMAwNChQwEA586dc5f3oLFpwlFTU4NVq1Y1eC0iIgIbNmzA008/DZPJ\nhHHjxuH48eO4cuWKOxbN/XHp0iXs3LkTpaWlGD16NAYOHOjLvzWHA65YwsLCMG/ePMiyjM2bN2P4\n8OEYPHgwEhISEB4ejsjISERGRiIsLAwRERGIjo7WhcPZ2rdvj5dffhlRUVEwmUyqLyRJQp8+fXT1\nhysLCAjA6dOnUVBQgA8++ACbNm3C9evXMWvWLIwfP77VOH7+85/jj3/8I/r27YtPPvEpxYWmHNHR\n0Rg6dCiOHz+O5cuXY8yYMbj//vuxdu1abxz3QGzRX+r2CB/HlHtBSTCt/F0FMYwQ7PS3Q56+WcrD\nmzZtos1m86Q4rI7LABgAoF4rjqlTp7K0tLSBakpcXBzXrFnD/Px8Hjp0iCtWrOCECRNULcKWctDD\nQvWAgAB++OGHlGWZBQUFvoif6sLhKJmZmayvr6fVamVmZqZb8QKnogsHAObk5FCWZX744Ye+1Cef\nOZS/m9SRX/7ylywpKWmQgbCmpoaVlZU8cOAA9+3bx3379jE3N5eHDx/mwYMHXelY+s3hXEJCQhpk\nHnQuzzzzjK7+cJTQ0FCOHDlSTWEZExPToJ4+8cQTrK2t5cGDB3XlcC6pqamsqqrimjVrvElKac4R\nHx/PvXv3sr6+nsePH+eMGTMYGxvLlJQULlq0iEOHDuX8+fM93bt+q2T/BUAFGooYepKnb5bSrkPc\ncvr06d6O/QtEAhi7VhzXrl3jtm3bXCU6V2dQNeRwO9l12223sbCwkLIs84MPPnD3ubpzACJJjMVi\noSzLPHTokK9pFTXncBRHYHajv9hiDk91JCkpiX/60584ceJEHjhwQBUOcFWOHDniSohUEw7nMmfO\nHNpstgafbbfbmZycrLs/ANFg2e12FhcXNxHKBW6I9y5evFhXDkeRJIl5eXlUopyvRTOO/fv3qx2p\n7t27ExDpe4cMGcK9e/fSYrHQZrO55FDO7Z9KNkSrMQpN1WXd5jCFG4XbpKQkzp49W21pJUnitm3b\nKMuyL6Kf5wDka8EBiBbfarW6q0h6cLhVp46IiOCPP/5Iu93uViC2NTiSkpL4008/qZJB3bp1Y0RE\nBFNSUpiRkeFJvkdTDufy4IMP0mQysb6+ng899JC345vF4a2OOEpiYiJnz57NuXPnct68eWri/IsX\nLzIpKanVOB577DHOnTtXfbq6evUqY2JiWsUfMTEx/Mc//kG73c7vv/+eKSkpDAgIoCRJHD9+PGtq\navjNN98wKiqqVfwhSRJJsqioqDn3rmYcjs7La6+9xtdff53btm3j0aNHefz4cZ47d85bZ8I/lWwn\nuIcafaHDAHYov/8ewFIX/9ME6P7772dlZSWzs7MZFBTE5557jlevXqUsy1y6dKlHp2rJAYghC0cL\nHxAQwLS0NM6dO5dvv/02e/bsqTmHJ5Y77riD169fp91ub6AaEhgY6Lb3rDVHUFAQV6xYQVmW+dNP\nP3HgwIEcOHAg9+zZw8rKSlosFlZUVDA+Pt4Vj6b+cC4BAQEsKSmhLMt8+umnvR2vGweUYPCb3/yG\nNpuNVVVVfOKJJ24KR3FxMWVZ5nvvvdeq/ujatSu/++472u12lpWVccGCBXzhhRdYVVXF06dPuxMv\n1sUfr7zyCquqqlSZsT59+vCVV17hu+++y9tvv113jqysLLVXfO3aNb733nscMWIE4+Li+N1331GW\nZT7//PNu712vMddLQG4sLXUNwDQA70B0+2WIPKZ9fb35Fy9ezPr6em7evJm1tbXqY9lf//pXb5VM\nMw4AjI6OpsViYXFxMYuLi1lbW6v2hLw0Ei3i8MTyi1/8QlVTmT59On/3u98xLy+PJpOJp0+fdie7\npSnHkCFD1HHMgoICnjx50uUj/LFjx1wpRGvqj8bFEYh8CMy6cvTs2ZMnT56kLMv8+OOPGR4erjtH\nu3btGBERwV69ejEyMlIV+6yqqmL//v0bHNu5c+fGPVaLE8/fcCP3sF157XMA4c3xR1paGpctW8ba\n2lrabDbabDZWV1dzxowZnobgNOUIDg4mSX777bfs0aMHx48fz6qqKjrMQxphzTg6dOjAwYMHc9iw\nYQ1eT09PpyzLPHXqlNsOnhaBORpAIsTk37e4IcfyPkTyDwmiS37aV6fefvvt3L17N81mM2VZZmlp\nKc1mM48dO+btxtCUAwDnzp3LAwcOcPXq1Vy/fj3LyspYW1vLUaNGac7hS2B2aMpZLBYWFRWpwzw5\nOTmuJgQ145Akif/85z+bBGGTycSNGzdy0aJFPHLkCG02Gzds2MDIyMjGLJr6o3FpRmDWlWPx4sW0\n2Wzq2K6HQKQJR1BQEOfPn8/PPvuM33//Pffs2aM+Ya5evbrJ5w8aNIjTpk1zfu1hiHSWDomrYQD+\nV2GZB7F8bElz/TFgwACWl5er9fXxxx/3ppOpKceoUaNIkmVlZczOzmZj8xCYdfGHo4SFhfHvf/87\nZVnmypUr3WoR+h2YncB6oZly7J6+gCRJHDBgAGfOnMl77rmHZ8+e5cWLFz1+aS05JEli3759GR4e\nzoEDB/LLL7+kLMv88ccfm/RCtOLwNTDbbDZOnDiRAQEB3LJlC2VZ5uXLl5tcZC052rdv3yAgl5eX\nc+XKlezZsyeDgoI4YcIEVlRUUJZlLlmyxFVA0tQfziUxMVF9svIxMOvCkZCQwPr6esqyzLVr13pb\nqaIJh+P6Oz9ZOvQg+/Tp0+DY6OhoHjx4sPHut15QVlM1ZoFYFfADmqlxJ0kSd+3apbIcPnzYl6Cl\nKYdDxcaV7d6929OTjOb+cC6DBg1ifX097XZ7k560c/E7MEMMZXwBIcVeD7GeubPy+wUI+ZxSALaW\nfpnu3bszPz/fa2DWimPAgAHcvn07S0tL+fnnn9NsNjMvL4+ZmZneJlL84vDkk7vuukudTFixYgUl\nSeLSpUtpt9s9TVBqxjFp0qQGS8PmzJnDMWPGcMaMGersc3V1NRcuXOiul3gY4hHdCiATYgfV6wpL\nqXJMi1Syp0yZorJlZGR4O14XjnvvvZdFRUWUZZmFhYW+LB/0myM1NZXXrl2j2WzmiRMnGgRmi8XC\nXbt28be//S1nz57NN998kwUFBaytrW3sIwfHWaWOxDvVkVKIoRaf1anbtWvHjRs30mKx8OjRo7TZ\nbMzJyfHlntGUw1NgbvTEoCuHcwkPD1d7y7m5uR6fILQIzNEQ4oQ/QoyP2QH8EUKWvQw3ZherWxqY\ng4KCuG7dOtbW1rp6RHYumnA4WntHQJ4+fTq7du3qE6s/HJ58Ehoays8//5yyLPPrr79mdnY2q6ur\n1eVzbtZoasaRkpLSQDW8oqKCNTU1tFgsrKur444dOzhmzBh26tTJnU8qFI5KABchAtJFCL27ZvvD\nUdq1a6f2Gq9cucIuXbp4uza6cKxcuVKVpJ84caIvdcRvjuTkZJaWljYIyMXFxWqv2HGtHPMAly9f\nZkZGRuNrdAliXNUCEYj+oXA5OLoDqPLVH08++aSqyr1y5UrabDbOnj3bF39oyhEZGdkkIFdWVjI5\nOZnBwcGtxuEonTp1YnZ2tqqO7WaCXC1+B2YFSpVjwY3u/xUAWcr7fkl+9+jRgydOnKDFYnEp9e1U\nNOGIjo7m6NGjmxuM/ebw5pNp06axsLBQXataWVnJiRMnehrH1IyjXbt23L9/P+vq6ijLMuvq6nj+\n/Hl++umnHh/JnIoq16Ow/AhgIcQ21xb5AxBPEo6e6urVq28KR1paGs1mM+12O5cvX+7T5h+tODp3\n7syMjAy+/PLLnDhxotpAJyQk8IUXXuCePXu4fft2ZmZmuhMn1eze7dKlC/fs2UNZlllSUkKLxcIz\nZ86wX79+ut0zns75q1/9ivn5+czPz2dOTo6rTT6twgGA/fv354ULF2i3270mHwO06TGr0lIQ4zMl\nEPlKD0P0Bk5BDJivbGlg7t27N9evX8/t27d7m0DQlaMZpUUcvrB069aN06ZNY2pqKn/961/r4g93\nHBEREZw8eTJTU1M5efJkJiUlMSgoyFefLFbO62B5D8BOAEUQvZHTaIEqdExMDAsKCrhnzx4uWrSo\n1TmSkpK4Y8cOtaFshlq2Lv5oQdHsnunfvz8tFgv37dtHm83Gs2fPcuDAga3O0Vb84VwWLFhAq9XK\nLVu2cMiQIV45tAjMD0F09QsBmJSKNRLAzwB8prx+FsBmfwJzRkaGunvGQ9GVoxmlRRw6sLQVDkJI\nwhcoLPMARALIUzh2QyxLapH6sI+7IHXhWLJkCbOysnzdANUq/miNOuLqXPHx8Txz5gyzsrL41ltv\n+boFWnOOtuIP5/Lpp59SlmVOmTLFJw6/A7MC5VaNWXnf5Z5vHZx6S3PowNJWOG75a+PufFlZWczK\nyuLx48fZo0eP/3h/GByuy6hRo7hs2TKGhYX5xOF3YIZ7lexuTr+73POtg1NvaQ4dWNoKxy1/bdyd\nr0uXLoyJiWHPnj2b23P/t/SHwaFN8SUwt1QlexKAvgCCIMZqZrBR4nOlImtpvJU5dGBpKxwtZjE4\nDI7/RA6SXnMcewzMhhlmmGGGtb61VIzVMMMMM8wwncwIzIYZZphhbcxcq2v6aYos91sQ+lomCHVk\nC8T6zViIMZ5OEFshoyF2rEVALGeRIRZ9myC2TwYrx15STj+X5KcGh8HhL0cjllgAYRBbdA0Og6Mx\nRwCA3hCdWRtE0n0ZwGWIddD9IVZ9tFNeC1V+doVQRimESJWQDrEz1DOLLzOEzSloKE8fCLFw+xKA\nfynvDwGwEULVOhpiTedXAOZDJH/vB7Eg/5Ly+04AXxgcBoeWHC5YhkM0DkUGh8Hhpq5aAMyASFA1\nBMB9EEH5NYhsjzsB/BNiPfR/Q2Suexkik90ihfNFXz5bj6EMVZ6epA3AhxAzngAACnHXQQCukfwJ\nwNsA7oLYu/614oRfK1+iO0RLc4/BYXBozNGYJQ+ilxVqcBgcLjhsEMmo7nPiuAqxe/BdkieVz7ob\nomdcB7Hl+0Pl9W8UTq8rMgB9hjIaS35fgHgMiJMkqRDAKoidUFUAQLJSkqQQAM9DKNjaAXRT2L6E\nUKyNlCTpFIQ0zHMk3co1GxwGh48crlhsyrkMDoPDHcdEAMGSJM2GSIIUSPKy8n6twvaYwhEFEbjv\nhxBMWAPgWUmSMryx6NFjdrX+bhdErtNfKYABjd63Qjx6jId4DAgB8DzJagDLIcZzvEt+GxwGh+8c\nrlj+DOC6wWFwuOHIhMhCV6xwDG70/hrlf8ZDjId3BPCRE4sVYpzaK4segfkCRB5nh90J8UVAsgIi\nq1M9FOdKkhSj/L4eQC7EY4oMMVYDiK7/JYpBn5UQrY/BYXD4y+GK5TYAVoPD4HDDEQYxtm1XOPoC\nsEmS1FWSpPYAVgO4QnIHxBBGIIAckjskSYoC8BMV88aiR2A+CiBRkqTuCuwEAIcAQHnkGAkx3hIu\nSZIE4GOI1uMd5csQYgdOunK+pyFyDwPA4xCSPQaHweEvR2OWzgBGA6g2OAwONxwTIJJRSQrHGYhx\n53TlszsC2KhwbYEYbqlRzpUOYL/TuT2y6LLzT5KkRyGWmDgC/10QrZodIu1hAMSMqh2iVbkGsawl\nCIAZwrHdIZabdFB+BsLDNmODw+BoLkcjlp7KZ0gGh8HhgqMDxJhzoFKsEJOSIRCNQRDEGLQNol4H\nAfgOIjFSewD/ggjkCfCSMgEwtmQbZphhhrU5M3b+GWaYYYa1MTMCs2GGGWZYGzMjMBtmmGGGtTEz\nArNhhhlmWBszIzAbZphhhrUxMwKzYYYZZlgbMyMwG2aYYYa1MTMCs2GGGWZYG7P/B5ftWZCug9tI\nAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWYAAAEACAYAAACAi9xRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4FNX3xt/ZJKTTQYGAVKV3UGIo0hEEFDQoKiBVBIK0\nUASlKIKgIgiCUgVBQb8gFnqXgJTQQ0mkJCQkIaRuki0z7++P2V03YVs2syH42/s85wnJzg6fOffO\nmTu3nFcgCXdxF3dxF3cpPkX1qAHcxV3cxV3cJW9xB2Z3cRd3cZdiVtyB2V3cxV3cpZgVd2B2F3dx\nF3cpZsUdmN3FXdzFXYpZcQdmd3EXd3GXYlacDsyCIHQXBOGiIAhXBEEIVxLqceQoTixuDjeHm+Px\n48hTSBbYAHgDuAmgCgBPAKcANHPmXIWx4sJRnFjcHG4ON8fjx5HfnO0xPwvgMsm7JPUAfgTQ08lz\nFaYUF47ixOLmcHO4OR4/jjzF2cAcBCDW7Pc4w9+KuhQXjuLE4uZwc7g5Hj+OPMXTye8RAARBuAUg\nA0AgAH8Ao5TBeuw4jCwDBUF4HoBoYNnn5nBzuDncHAUtzgbmOABVIV9UBwBDAZQwP0AQBEWTcJAU\nijGHkcUTQAeSDwRBmOxKluLCYYPFzeHmcHM4zvHQQc4MmPsAuAXgDoAnIA+YN893DJW04sxhxqID\n0ACAl6tZiguHnbopFMfQoUOZnZ3N9u3bP1KO4uIPN0dea9euHRMTE/n666+zZMmSj7U/HuJyIAiv\nAZAI4KLZ38oCOAtAgtz9vwdgjCsvxtUcVatWZefOnUmSM2fOpOEpWRCOvYYKFgHkAthhwZdF4Y9C\nc4waNYpZWVmsVauWLT+Ym+Ic/v7+vHXrFhcsWFAQnyjKUapUKZYvX56DBw/mt99+y5EjRzIpKYmS\nJPH06dO2goFiHFWrVuWcOXM4efJkSpJEvV7P/v3785lnnnkk9QKAlStX5gsvvMA6depw2LBhHDZs\nGHv27ElPT88i5dixYwc//PDDR9Y+jPWTmprKZ5991mEORwKzI5N/awF0z/e32QA2AHgSwEQAvwIY\nIghCZ0sn6NOnD5o3b47XXnsNISEhePbZZ/N87u/vj5CQEPj4+LiUw1qpW7cu/vjjD7Ru3Rrnz5+H\nl5eXsUIKwvE75CU3Ew1MQQXlKGBxGYe3tzd8fHzQrl07lCpVypGvKM7Rv39/pKenY/ny5Y5+RVGO\nSpUqYdWqVRg4cCBWrFiBHj16ICkpCStXrsSGDRvQtGlT1KhRw6Uc9evXx65duzBt2jT4+vpCq9Xi\nt99+g7+/P5o0aWLvEhTjAACVSoXg4GD069cPu3fvxtatW9GvXz+sWrUKq1atwqZNm9CwYUOXcxhL\nq1atEBISgu3btzv6FZdwaDQa+Pn5PVQfISEhqFixYkHY8haHutVAdeR90sQAKGf4d3kA0QCmAZiW\n/ykjCAIvX77MP//8kzqdzvTU37FjB1NSUvjgwQP+8ccflCSJq1evtvrULSyHNQsKCuKpU6eYmZnJ\n/v37Mzg4mLVr17b5tHOGwx6LSqVix44defDgQe7fv593795lqVKlipwDAPv168fMzExu377d0WEE\nRTl8fX25fft2rlu3jl5eXgXpESnGMXfuXMbGxnLFihWcOXMmAwMDTZ999NFHlCSJY8eOdRlH+fLl\neeHCBYqiyMTERC5atIg1a9a02nZatGjB9evXs3Hjxi7xx5w5c6jT6fjzzz8zJiaGZ86c4YQJEzh2\n7Fj++OOPlCSJ33//fZG0DwDcsmULT548yUqVKj2S9mFud+7cYWRkpOn3atWqMSkpiXPmzLF679qN\nuQ4E5TUAkgHkmv1NA+AugHMAIgGoARwG0NvSxbRo0YL9+/dnWFgYV61axd27d5vs4MGDTElJoSRJ\n/Pnnn+nn52fNAYXmyG+CIHDTpk3U6/VcuHAh+/bty8zMTO7Zs4c1atRQlMMWi6enJ8PCwpiZmckH\nDx7w3Xff5fHjxzly5EhbDUJxDqPVqlWLMTExVKvVDA0NdaTBK8rRo0cPSpLE9957ryA3naIcdevW\nZZMmTfIEZAD08vJiTEwMNRoNX3zxRZdxDB8+nKIo8vbt2+zRo4fVDsuTTz7J2bNnMzY2lpIkMTU1\n1SX+mDdvHnfu3Mk2bdqwZs2aLF26tOmzd999l5IkMTo6ukjaR+3atSlJEhctWmRr+MTlHABYrlw5\nZmVlUa1WmzpSERERvHbtGqtXr27xO0oF5rYAXsx3QbkA5gE4b7goEcAcRy9GEIQ8Nn36dEqSxG++\n+caWUxXnmDp1Kkny119/NQUkY7lw4YKiHLZY6taty/T0dN65c4d16tQhAA4cOJAajYYTJ04sMg6j\nVahQgVeuXKEkSVy/fr0jDV5Rjo8++oiiKPK5554ryE2nOIcla9CgASVJolqtzt87VZRj8ODB1Ol0\nHD9+vFWWevXq8caNG5QkyRQYn3/+eZf4Y86cORw8eLBFjsOHD9sLzIrWy/z58ylJEt98881H3j6e\nf/55SpLEjIwMBgQE8LnnnqMkSa4PzAawkHwX9ADALMO/KwCIdraxBwYG8tdff6UoijZ7Z0pztGjR\ngrm5ubx06VKeV8RBgwYxPj6eJBkWFvbQE9lZDlss69atY0ZGBjt16sTGjRtz4cKFPHv2LCVJ4ubN\nmy32ClzBYTTzwHzy5ElH6lFRjmXLllGr1Zrqxdvbm4MGDeKPP/7Izz//nPXr1y8SjvxWpkwZrl+/\nnpIkcdu2bbaGmgrN4eHhwUmTJjE9PZ3r169n27ZtTcM65cuX54wZM5idnU1JkqjT6fjxxx+zTJky\nLvNHxYoVHwo0Xl5enDFjBkVRpEaj4SuvvFIk9TJ//nyKomjqxBjNz8+PISEh7NatG8uXL18k7aNb\nt26UJIkREREEwPDwcEqSxH379rFs2bIWv+PKwHwSwH0AUQBOA1jpbGMPCgpiZGQkk5OTbQ1jWAtE\nTnH4+fnx+++/J0mOGzeOKpXK9JlKpWLv3r0ZGxvLpKSkh8ZYneWw5ZPdu3dTo9EwMjKSd+7cMfWA\nJEnioEGD8vC5ksNoCgTmQnEsW7aMWVlZpgC1fPlyJiUl8cGDB8zKyuKVK1eKhCO/9evXjzk5ORRF\nkW3btnW5P0qXLs3XXnuNZ8+eZVJSEn///XeGhYXx+PHj1Gq1lCSJaWlpHDduHMuVK1ek/hAEgWFh\nYUxOTqYkSVyzZs1Dwz6u4rAUmLt27cqjR48yMTGR9+7d4549eyz1WBXl8Pb25pYtW/IMu82aNYuS\nJPHw4cOsUKGC1VhWqMAMefNGEuTlJASQBmAIgBYAUgDkAMgG8Iuzjb1Hjx7MyclhcnIyGzRowAYN\nGvCZZ56xVMmKcTRp0oRZWVm8desWfXx8LHINHz6cer3e0uubUxy2fBISEsJTp04xJyeHcXFxTEpK\noiiKPHHiBP39/a35TnEOozkRmBXj8PLy4rp160yBecqUKczOzuaYMWMIgD179mRqaqq1SUmX+EOl\nUjE0NJSpqanMzs5mt27diswfAFi9enWuW7fOFASNlpycbK1naDStGc9PAGoDOAggE/L4agKA0gXx\nh0qlYtu2bbl///48LG+99ZatiVpFOebPn0+NRsOnnnqKpUuX5tKlS00PrqZNmxIAb9++zTfeeMOl\nHG3btqUkSczJyWGTJk0I/BuY9+7dy5CQEDZq1Oih7ykRmJ8A0BDybOZlANcBNAGwFMB4wzGzAKQW\npHI9PDzYr18/Lly4kBcuXDCt1EhLS2NqairXrFnDNm3a5P+eYhzDhw+nTqfja6+9ZpHP29ubc+bM\n4a5du1ivXj1FOGz5RKVSsWXLlnzjjTfYoUMHXrx4kWq1mrVq1bJ10ynOYbTatWszJiaGkiTxu+++\nsxeEqDTHsmXLqNFo2KRJE545c4Z//vmnqUfYp08fpqWlWVs54xJ/tGzZkjdu3KBer+dXX31V5P4A\n5PFkY52o1Wreu3eP6enpfPfdd229aXYFcBFAQH4WAJUhP9yXFIQjJCSEqampeYKyJElMSEhgeHh4\nkXDMnz+fhw4dor+/P1euXMnY2Fj26dPHtK68QYMG3Lx5M6tWreoyDl9fXy5btoySJPH48eOsVasW\nn3/+eW7fvp2SJFGj0fDq1avs0KHDQ98tdGA2A6tuuKBtkAfQb+HfZSZTAWQVpHKffPLJhyo2JSWF\nW7du5aeffmqaFMx/MUpxZGVl8Z9//rHK99ZbbzE9PZ1//fXXQz1qZzkcCQCAPOkjiiK/++47mzPO\nruTo06cPMzIyKEkSJ02a5GggUoxj7ty5FEWRL7zwAo8cOcLly5ebPps9ezZv3bpVJByA/Mp+9epV\nSpLEyMhISzd7kXBs2rTJdK9s27aNfn5+pg0vO3futMlhOPc2AK/DsEQMwFgAv6GA80MNGjSgWq1m\nTk4OP/nkE/bt25ejR4+mJElMSkpiQECAyznmz5/Pc+fOcfr06dRoNA9ttjl69Ch37drlUo6aNWua\nJl41Gg3VajVFUTTV0eHDh1mlShWr926hAjMeHsoQAYw2/NRCntXMAJBdkMotVaoUf//9dx46dIiS\nJPHq1auOLHtRjEOtVvOLL77I8zeVSsUaNWpw8uTJfPDgAQ8dOsS6desqxuFIQPTw8OAPP/zAzMxM\nNmjQwCX+cIRjypQplCSJ6enp7NmzpyOBSAN59yUB/M/AcM/Al2Hg6u4oR82aNfngwQMePnyYK1eu\n5JUrV9i/f39+9NFHTEpK4oABA1zOoVKp2KZNG548eZKiKDIpKYmdO3emr69vkfujc+fOpps+IiKC\n5cuXpyAIrFq1KiMiIihJEufOnWuLQw95KdgWw+9GjksA1AVtHz4+PvTx8aGnpyfbtWvHX375xdRz\ntOIfRTkGDRpESZKYmJjI+fPnE5CXrY0cOZJLly7lsmXLrA0BKsZRt25dJiQkmCZfjePaxmBtazWN\nEoHZOJQRAHnr813I3f9cABPMjssoaOWWLFmSK1asoCiKjr4eKsahVqu5ePFi0+/e3t6cOnUqr127\nRlEUuWHDBqtPO2c5HPGJt7c3MzIyuGHDBpf5wxEO44RGAQJzK8iTJwMgvyJmAfjQyOIMR8eOHZmc\nnMykpCRqtVqmpqYyNzeXI0eOpLe3t8s5atWqxaioKFMPSKvV8vLlyzx48CDffvvtIvVHv379TGOZ\nc+fOZb9+/Thv3jxeu3bNtGnr5Zdfduk9Y24lSpRg165duWnTJlNwun//fv6lei7j8PPz4+3btymK\nIq9fv86///6bly5dYnx8PMPDw21NQirGUbJkSY4fP56LFy/myy+/zLp167JChQqmNxsr9UFAgcBs\ngPICsBvA+/j31azQy+UqVKjAyMhIZmRk8KWXXnLk5leMIy0tjQkJCVy/fj23bt3Ku3fvMjc3lydP\nnmSPHj1cwmHPJ15eXtyyZQuTkpLYsGFDl/nDHocgCPz7778pSRLj4uLYrFkzR1h2A3jfcO5tkCdR\nFkDe5ur0MrXGjRvzyy+/5F9//cXly5fz6aefLjKOEydOmHqpOp2O2dnZzM3NpSiK1Ol0HD58uK0H\nhKL+EASB69evz/OqLEkSRVFkcnIy58yZY3HljrNtJP95PD09Wa1aNbZp04bh4eE8e/YsRVGkKIqm\nt8tOnTpZY1D03jVaUFAQV65cyZ07d3LLli0MDQ115G3GJbHMaF5eXty4caPrAzMAAfL+8S8gj8/c\nhpyvtNDL5YKDg5mRkcHk5GTTjKYdU4xj1KhRvHLlCknyp59+4urVqzlgwACr6w6V4LDnkyeeeIJ6\nvZ5Lly51qBG4igMAlyxZQp1Ox8mTJzv66v6F4bxGlm8A/AngH8iJY64CKOtsgy+AKcaxe/dupqen\nc8KECQwLC2NoaCi7du3Kffv2UZIkbtmyxZZvFPdHpUqVuHDhQq5fv57r169nVFQUlyxZwk6dOtla\nDaHIPRMaGsorV64wJyeHBw4coE6nY1xcHCdNmsQuXbpYXdmkNIcC5lIOlUrFr7/+ukgCcwjkMZgL\nkMdk/oGcCKQ25KxMFyAPnv9Y0IupV68e1Wo1r1y5YnP9spkpymFpgtFBc4rDnk86dOhArVbryFIs\nl3KY+6cAPjkHefeUGnJimLIADhk49gD4FMDGIrjxFOOw1j7Md6w+Sn84WD+K3DMvv/wyb9y4wezs\nbIaGhrJHjx623hZcfu8WwlzO4UhcKXRgNkCZuv9WPq8M4FpBL6ZEiRKcOXMmx44dSw8PD0cu2iUc\nTphTHLZYVCoVu3TpwuTkZEvL84qMo6h94uZwc/x/5Ch0YIbZUEa+v1eE/LS5CHn87FIROLVYcxh+\ndgcQD3mGN7wgLL6+vmzQoIGtcboi4fgv1o2bw81RnDiUCMzGoQxj9qVIAD0AbIK89OQG5CfQOeST\n/HaBU4szx/eQX4W0kHcSVYMFGfT/KEdxrxs3h5ujWHE4Ephtav6RPAYLStqCIKgBlCLZy/D7JMiS\n35Fm37Wva1XIUlw4APwpCEI7AFPMWIwy6EXJUlw4ik3duDncHI8DR/7irBhrEIBYC+rU8xTietw4\njCztBEG4gEertuvmcHO4OR4/jjzF2cBMs58dIO9B72B+QBEpyxYXDnOWDpTVdge4kqW4cNhgcXO4\nOdwcjnPkKY5o/lkqcZC3awPyBGFVALHGDwVByK+tVegiCEKkwczPXVw4jCyeBg6YswiC0F0QhIuP\nK8eHH36ImTNn4urVq3j++eetsTxSfzjDYWRxczyeHCqVChMnTsS4ceMQGxuLDh06PBKOghYb9+6/\nxZGBaAuTgj6QE7Pchry9MRvAp4bPvAHcRBEMmBcXDjMWHeTZ3QsGpuZmHFXsndvLy4utWrVikyZN\nOHjwYIspA4uCw2glSpTglClTqNVq+cYbb7BatWoFrZtCcbRp04ZxcXGcOnUqL126xBkzZthN7OQo\nxyNqq05xqFQqVqlShaNGjeKNGzc4YcIEBgcHFzmHeTtt3rw5n3nmGQ4dOpS9evViu3btrG64cRXH\nwoULmZuby1mzZjEnJ8euDFpxbh8PcTkQhNfAsuz3Wcj7zLMAfAbgDIDOANpBztLkEGRwcDAHDhzI\nU6dOMSQkxNaxLuGoWLEiJ06cyKeeespR/TBrHHsNlZoJeYb3rjkHbczu+vr6sm3btjxz5gzj4+M5\nc+ZM6nQ63r5929ZCfsU58luLFi2YlZXFpKQkW3mh6SqOffv2MSsri6+88govXbpEnU7HJ598UhEO\nw+cW20jfvn25a9cutmvXztmbTxEOQN6wMHbsWE6cOJGxsbEcNmwYx44dmyfXS1FwmNuwYcN4584d\nTps2jaIoMiMjg0lJSRw5ciSbN2/uco7y5cvzhRdeYHR0NEVR5Lhx49inTx9Hdqm6xB/m1rZtW+7c\nuZM//PCD1Y1zjgRmR8aY10LOWbrB7G+zAWwg+aUgCOMB1IC897yV4SJjHzpLvuLn54dOnTph8+bN\nOHnyJJo3b45+/frh77//hlartfSVjpC3TJprxheKw8fHB0uWLEFoaCg+++wz7NixwyRDfuLECQDA\nX3/9hYiICJw9e9Yex+8ku5hx3HOEw8PDA8uWLUONGjXQpEkTZGRkoGTJkhg8eDDq16+PEiVKQKPR\nFMQfTnHkLw0aNMDs2bORk5OD5s2bQ61W2zpccY4qVaqgZs2aePXVV3Hr1i2UK1cOycnJ1nzhDMc+\nGCaP85/k2LFj+Oabb7B792706NEDCQkJIIns7Gz4+/ujQoUKePvtt5GdnY0ZM2ZY8o0iHADw9NNP\nY+zYsdi6dSsaNGiAjIwMtGzZEu+99x4mTpxoyxeKcpiXCRMm4KuvvsKBAwdw6tQpNG7cGC+88AL6\n9OmDZs2aYcKECcjOznYJR2BgIFatWoVSpUqhRo0aSE9Px82bN7Fz50572C7xhyAIaNiwIYYOHYqq\nVauiS5cuCAgIwPnz5xEYGJjfD8bvREHuQI4j+cDiiR3qVluW/Q4C4AdZ9jsGBnVZyDlOV8DOk2XN\nmjWmxDAbNmxgSkoK4+PjraXaJOQxoC9hlmS8sBwvvfSSKTHM+fPnuWPHDh47dsxk+/bt46JFi/Kr\nVTvFYa2H2LJlS+bk5DA2NpZTpkxhly5d6O/vzyeffJLLly9n165dFfWHIz3VOnXq8Pjx48zMzGRY\nWJgjPQXFOLp27cp+/frR29ubTZs2pbe3N7/99ltKksS+ffsqxmH43GobGTVqFNPS0kiS9+7dY3x8\nPOPj43nv3j0aS25uLp966imXcrz11lvMysrKk+f4ueeeY1JSkqL1Yo/DaIIgcMGCBQ/t1vXx8eGJ\nEyd4+/ZtS0m4FON49dVXmZKSYtIZHDNmjL23OZf5Q6VScerUqYyNjWV6ejqXLVvGiIgIiqLIPn36\n2NqaLUB+KDy0Lb+gQxmWZL8T8K9UjkldFrJ6s83uf9OmTU2S3yNHjmSTJk2oVqspSRJ79+5t7Xtr\nIMvzSEpxnD9/3pSpyygkmV/BWykOS4FIpVKZUp/OnDkzz2fr1q2jKIpWlYmV5Mhv7733HkVR5J9/\n/ulog1eMo0WLFrxy5QrXrFnDkiVLslevXkxISODdu3cV5XCkjTz77LP8448/qFarSZJZWVmMjIxk\nZmYmSTI9Pd3lHBs3buTChQsf4srMzCxSfzRp0iSPaHF+a968OePi4qwFZsU4jIFPFEWuX7/e0Tw7\nLmkfn3zyiSkvdEhICGvVqsWYmBgeO3bMJofh3FZTJjgamNvCsuy3xRym+HdCziKUv78/b968yezs\nbL7wwgvs0aMHjx07RkmSGBsby5YtW1q7oLaQn16iEhzNmzc3jY+9++67BdkK7SzHQ5NdKpXKJKO0\nbt06vvHGG2zUqBHHjBnDiIgIfvzxx7bGvRXjMLegoCA+ePCA0dHRBcnboShHnTp1+PPPP/PMmTM8\nd+4cNRoNx40bpyiHI23EaIGBgSxbtiwDAwPp5eXFO3fukCQ///xzl3MsXryY06ZNM7UDLy8v/vnn\nn5wzZ06R+uP69evU6XQ8e/YsBw0axNKlS5s+8/X1NeXwnjlzpqVgqRiHMR2rKIocPny4o+1TcY7m\nzZvz3r17TE5OZs+ePVmlShWGhoYyLS2NJ0+eZKVKlaxyGM49Fla0Hx0KzIaTFEj2G/JWR4tQFStW\nNMmx7Nu3jykpKaZk30uXLmWJEiWsXVAUgBNKcdStW5eSJPHChQuOygUVluOSpfNVrVqVY8aMYb16\n9Xju3DneuXOHly5d4po1axgUFFRkHICcd/fgwYPU6XQcPXq0KQ9vvXr1OHLkSJOmmgVTlAOGYPjt\nt9+SJI8dO2ZNBbpQHPbaiCUbNGgQSTItLY2tW7d2OUdwcDBv3brF9evXs1SpUhwzZgw1Gg2PHj3K\nRYsW2ctRrRjHW2+9xfj4eEqSxNTUVJPQacmSJblt2zbqdDpGRUVZW7mjGMeJEydMuagbNmxIHx8f\nzpkzh1988QWDg4NtpUBVlKNLly4mSbxz587x6tWrJrFcURQ5ZMgQe/fuLgBVnArMkNf0HYE89iJB\n3uoLyIPoRgmjdABrLXzXIlTJkiV56dIlajQakxS8UV7KTpJ6RTlat25tUoFu1KgR27dvz6FDh3Ln\nzp3cvn07u3btaq2SneKwxWK09u3bm7T2vvvuO1sPKZdwNGjQgLm5udy3bx8rV67MLl26mARA9Xo9\nP/vsM2ssLvHHypUrKYoiMzMzHX2rcQmH0cqVK8d9+/aRJCMiIli5cmWXc3h6ejIsLIy3bt1iamoq\nRVFkdHQ0jx49yhs3bvD48eO21HbOGTiuAZgCOfdwCuQVTNmQJ7YcUoUWBIENGjTgH3/8wYyMDOr1\nei5evJjHjx+nXq/nb7/9xieeeMLlHOY95h9//JGJiYnU6/XU6XQURZEXL15k586drd27inG0bt2a\nsbGxzMjI4NWrV7l582bOmDHDpIJk46FNWzHX0cD8BIA/IC8zMWpjzYK8QuMa5HV/9wFcL0hjr169\nOocPH86hQ4fywYMHlCSJvXr1sndjKMpRr149k+LwhQsXmJOTY5IQSklJYVpamrWetFMc9nxSokQJ\nLlmyhGfOnOGWLVuYlpZmcx2z0hwqlYqLFy+mKIpctmwZv/rqK96/f58pKSn8448/GBcXx/v371sb\nZ1TcH5UqVTLl6/7555+ZmprqiDCs4hzm1rdvX+r1epK0t2ZWUQ5BEFivXj1OmTKF8fHxrFWrFlUq\nFatVq8bTp0+b5kcs2H0DRxzk1Qa9ANyBnHkwBnI+iAKpZANgeHg4MzMzTffLypUr7b11KsbxzTff\nmIKwcShy06ZNDAsLY3x8vElVxYpPFONQqVRs0aIFX3rpJQYFBZnqKCkpibm5uaxYsaJVfxQ6MJuB\nVUde1d8Y/Kv62wCA1pnGXrlyZaalpVGSJLZt29bmsUpzGHuHxsm/yMhIBgcHMygoyORcS2tmneWw\n55O2bdtSFEW+9957BMBdu3Zx8+bNivvDGke5cuV44MAB6vV6Uy/59u3b7Ny5M4cMGcJLly5Rr9ez\nfv36lngU98drr71Gkpw3bx4rVqzIY8eOUavVsk6dOrbaieIcRvPz82NqaipJ8vLly/YSxbuEY/z4\n8XkUwwF5dZMNjcjqyKsKbWKBPPkUDSeklJYsWUK9Xk9JkpiQkODI+n/FOGrWrMnr169TFEXevn07\nj2jxnj17TAH7o48+sjR57xJ/GO3999+nXq9nZGSkzeMcibkF2ZLtBXl93zHIeX9TDH/viH+3Mzpc\nPDw88Omnn8Lf3x+LFy/G33//XWQcKpUKarUa7dq1w+DBgxEcHIw5c+Zg2LBhuHTpElQqFX744Qc8\neGB5iaFSHMYiCAIaNGgASZKQlJQEAFi9erWxUdgrinB4eXnB19cXKpUKNWrISz0rVaqEX3/9FatX\nr4a3tzcGDhyIK1euuJTDWD7//HPExcVh48aNePDgAWJiYuDp6Yly5crZvRQlOQB57eyHH36I0qVL\nQ6fTYcSIEfbWU7uEQxAsf83a380+r25guQqggoGlH+QefEVH///SpUtjzZo1GDNmDC5cuIBffvkF\nFStWxKDXNLXBAAAgAElEQVRBgxzlLzRHfHw8fvzxR+j1evj7+6Nu3boQBAEqlQoBAQGm41555RWU\nLl3aZRyWyogRI6BSqXDy5ElnT/FvsdNTrgogCfIrGSFLsrwDeVmJccwsA0B2QZ8yFStW5Pnz56nX\n6zlr1ixHnkiKcFSsWJGLFy/m7t27+fTTT/P777/nyZMnmZmZSY1Gw7i4OHbq1MlWj8gpDns+qVSp\nEu/cuWOaPBk3bhyPHDlia5xZUY6AgABu27Ytj9inJEnMzc3l1q1bWa9ePVtKMxrDTz2AnwwM9/Cv\nLLwIoHtB/HHw4EHevHmTtWrV4vPPP2/qxT/33HO22ojiHICs2J2YmEiSXL16tSNt1SUc+XvMgiBw\n7969XLFihS0OyfDvvyDn65bMOC4BUDvCoVKpOH36dNOEeceOHXn48GFqtVq2aNHCEX8owmFsq/v2\n7aMoikxISOD+/ft54MABqtVqU4/5r7/+srS+WVGO/KbRaJibm2trLwYBBYYyII8xN4WcQDocshR7\nE8izmTMNxzilLGtc95iYmMgOHTo4cuGF5qhevTp/+uknk/KxRqNhamoqY2NjeeTIEb766qsu47Dn\nk9KlS/Opp55ipUqVuG7dOmq1Wm7fvt3WInXFOSpUqMAff/yRp0+f5k8//cRFixbZC4RG+wuy8nCA\ngSUWsir0BGf90aVLF+bk5PCXX34xLdX6888/7W0mUJxDEAQeOnSIJJmSksKOHTs+En8AYP/+/Xn5\n8mV27NiRtWvX5pIlSxgbG2srECh271atWpUXLlygJEncvXs3o6KiqNPp+OuvvxbJvZvfvL29uWTJ\nEiYkJDApKYkZGRnMzs42TRaPHj26SDiMNn36dJLyWndb670BxwKzvS3ZSZDzT1whuUAQhFaQ15/e\nANDCcMybkCeiClQCAwNRsmRJREZGOjqMMaGwHJUrV0ZMTAw+++wzxMXFISsrC5cuXYJGo8GlS5cg\nSVKRcOQvKpUKPXr0wKhRo+Dn54eMjAzExcVh4sSJtoYzFOdITk5GaGhoQb5iLH+T/AIADHltSwBo\nDHlbq1PtY+/evdi4cSOGDBmC/fv3Y8+ePZg0aRJyc3OLlKN27dpo1aoVAHl4JSIiwpGvKc4ByOkB\nTp8+jYkTJ6JKlSqIjY3F6NGjER0dbe0rirWRwMBAVK5cGYcOHUKXLl2g0+kQFhaG/fv3O/J1xduq\nRqPBBx98gB9++AE5OTmoUaMGfH19UbJkSVy5cgXx8fFFwgHIw7LBwcE4ePAgEhMTcevWrYKe4uFi\np8dsLi11GfIr2cuQVX6zIb8yxwOo7szroSRJ9pbImZtLOJwwpzjssfj4+PD+/fuUJImTJ0+2Oxnq\nKg4nzSjXcxnyioRqkCdVNJCXIv0IoKwzHDbeGIqEY9SoUSTJmzdvFgt/mPvFAd8ods/4+vryk08+\n4axZs3jq1Cmby8FcyVFIcwmHr68vz507xxkzZtjNcAcoMJRhBhYAWTuur+H38pAnMKzu+bYHV7ly\nZX722WcsX768Q051FUdBzVkOpVmKC8d/oW5snfPpp5/m8uXLra1G+X/nDzfHw2bMANixY0dba7nz\ncBQ6MKOYSH4/7hwuYCkuHI993bg53BxFyVHowAz5KVIsJL+LO4fhZ3fIr0MZAMJdzFJcOIp93bg5\n3BzFiUOJwGw+xlwgyW8l7THg+B7yGkgtgIOQxxRPuYqluHA8JnXj5nBzFBsOR83mqgySx2BBF9AR\nyW8lS3HnAPCnIAjtIOdGMLL86CqW4sJhi6W41I2bw81RnDgcLc6qZAcBiBUE4Rbk1+VAAP4A5inE\n9bhxGFmKgwy6m8PN4eZ4/DjyFGdVsmn2swOAaQB+MX5oUEF+KOl8Ic2Ssmxx4TBn6UCyGYAP8nFc\n/I9y8HHlcHEbcXO4OWxx2FTJdrbHHAd5uzYgTxCaS9N7Q05IrWgxOK24chhZHpJBN+MIMRxjs4wZ\nMwZlypRBhw4d0LNnT6sbKlzNUZBio26KLQdQ8DbSvn17bN++HWXKlHmkHI4WN8djxfHQQfYGzS2p\nMVeCLMeihSEnA4BPDZ8VWFnWQSvOHGUB7Dd8ngl5z/1tAM1RAFXogIAAHjt2jLNmzeLIkSMpCDY3\nELiMw9vbm+PGjeOsWbMoSRJjYmLYsmVLW/lDXMLhhDnMUZA24uvry8mTJ3PWrFk8cODAI+MoLv4A\n5JQKb7zxhilD4/vvv28rX/Z/3h8FMUcm/xwZylgLeTmJeZkOeelJDORgeAlAF0EQOsNBpV1LpVOn\nTujduze8vLwsfWxUhfZwNYedYoljNoCdkMUbsyBv9fSEXPEOcahUKmzZsgWtWrXCjh078P333xsb\nT5FyAMCgQYPw0UcfAQBIonr16ggODsbAgQOtfUVxDn9/f/Tq1QsLFy40bcseP358ngxiheSAoywN\nGzbE2LFjkZ2djUWLFtk73GUcThSXcDRt2hTr1q1D7dq1TffquHHjULVqVWtf+U/7o6BFEIQoQRA2\nCoJQ1toxdocySB4V5DR55uVFAK1JpgiCUB6yZMtqyKn0bjkDW7FiRUyePBl6vR4HDhyATqfLf0gN\nAF8ACHaWo1GjRujatSsWLVqE3NxcREZGYv/+/UhNTcWzzz6LpKQktGjRAiSxbNkybN682RKqPY59\n9jgslTZt2uDFF19EVFQUbty4YVH2vCg4Zs6cienTp6NEiRJo37696e99+vRB27ZtcfnyZUtpDW8o\nwSEIAurUqYNx48YhKCgIHh4eiIiIQFpaGk6fPo2ePXuiWbNmOHToENauXWvpFAXh2Ae5B2OzCIKA\njz76CFWrVoWvry/27XNoXkhxjvzF09MTlSpVQoUKFZCWlobExESo1WqXc5QsWRIrVqxAw4YNcefO\nHSxduhSvvfYaqlWrhjVr1mDv3r1YunRpfhaX+CMoKAivv/462rdvj5MnT+LEiRPYu3evra8UmsPL\nywujRo3ChAkTMHHiRERERMDX1xeBgYEgifbt26NTp06IiorC/PnzkZGRYYmjPoCPAHwFOT/Hw8WR\nbjXMEkwbfs+ALPntZ/a7UZ7erjp1fnv++ed57NgxiqLI0aNHW3yFN/w/rQFonOWoUaMGT5069VBq\nS0t25swZq68hznDYenVXqVQmZYYRI0Y4/DqkJIeHhwdfffVVkqQkSTx9+jTDwsIYGRmZxy+7du2y\npP1XaI7AwECOGzeO586d46pVq/jSSy9Z9NN3333HpKQk+vr6WvKLwxyG3+221REjRlCj0TA6OtqW\nhJPiHNay6JUsWZJvv/02V6xYwUuXLlGSJObk5HDs2LFF4o8pU6aY5ODef/99+vj4cPbs2aZ0m3Fx\ncWzWrJnLOdq0acNz586ZEvaLomirXShaL7t376Zer2daWhpjYmIYExPD1NTUPPeJTqez2Ibx771b\naJXsNQCSkVfE0JY8vUPKw0Zr3Lgx7927Z9L9q169urVj10B+3RALw1G6dGnWr1+f9erV47hx47h2\n7VquXr2aa9eu5WeffWbS3LMWmAvBYVUVulSpUrx16xbv3LlDHx8fR29+RTnq169vEpO8du2aSSE7\nPDzcdNNJksTk5GR27tw5//cLzdGpUyfev3+f77zzjtVr9vX1ZUpKCq9du2btGIc5HGmrPj4+jI+P\nZ0ZGhi31dkU5unbtyujoaB45cuQhTcFu3boxOjraVB+JiYn8/fffqdVqOXfuXJf7o1u3bszNzTW1\nhRo1ahAAJ0yYQL1eb9LcM1fQdgUHIOfrNj6UzAVaQ0JCXFIv5iYIAt9++21GRUWZArGxQ2Nu/fv3\nt8hhOHfhVLIhPzVexMPqslZzmMIB5WEPDw926tSJp0+f5rFjx6jX6/nVV1/ZmvC6BeCM0hzm5ufn\nx8zMTIqiaEt41FkOq6rQb7zxBvV6Pb/++uuC3PyKcahUKn799dcmtfL58+ebPvP29ub+/ftNN+P+\n/fstNf5Cc7z++utcuXKlxWv19/fnm2++acq5ayPzXoE47LWR0aNHU5IkHj9+nJUqVeL8+fP5+++/\nc9GiRQwLC7Ol3O00R5s2bThr1ixOnDiRH3/8Md9//33+73//Y3Z2NnNzc3n//n1u27aNI0eOpJ+f\nH6dOnUpRFK090BTzh7e3Nzdt2kRRFJmTk8NvvvnG1IkQBIHnzp2jKIrcvHmzpcRkitZL//79qdPp\nuHr1arZv3547d+40BcPx48fbumcU4/Dw8OCgQYM4b948zps3j3PnzmWbNm24ceNGk8BEt27drHEU\nTiXbDC4k3wWdBLDd8O/3AXxl4Ts2A0v37t159+5dHjt2jEOGDKEoirYuhK7iMLfXXnuNoigyNjY2\nj5aYEhy2WD744ANKksQxY8YQAOvWrcsePXqwcePGVuXYleQYNmwYMzIyTD2x9u3b5/m8d+/e1Gg0\npl7J9OnT8/MUikMQBEZERDA6OpqVKlUynbdEiRLs27cvDx06xN27d/PIkSO8f/++rUxvitVL6dKl\nuWvXLtPN7u3tbXo4SZJEjUbDPXv2KM5RpkwZfvvtt8zKyjL5OzU1lTdu3ODo0aPZuHFj+vn5mf6v\n6dOnUxRFaz1mxfzRsGFD3rx5k6Io8sKFCw+Jr44ePZo5OTnMysqyJISq6P0yZ84cnjlzhpUqVeI3\n33zDrKwsHjlyhJIkccGCBbbucUU58msdlilThrt37zY9zC1phsJw79qNuXYCcn5pqTQAQwB8Cbnb\nL0HOY9rY0Yvx9fVlaGgo09LS+PPPP7NixYrcunUrT5w4YcuhVJojv3l5eXHDhg2UJIm//vqrpXHU\nQnE4Epg//fRT/vLLL9RqtaabcuvWrdZSoyrG8fPPP5sCTmxs7EOpCz09PXnixAmSpE6n44QJE/Kz\nFJqjS5cujI6O5j///MNPPvmEy5cvZ1JSEi9evMhp06axZMmSjI+P519//WVLgVixemnYsCETExOp\nVqtZs2ZNenh48NSpU9RqtabXdlEUrb2uFpqjZs2abNOmDdu0afPQkIa5TZ8+nWq12trDSmvG8xP+\nzT0sGv52GEBpR/wxZ84c0zV/++23D0me9evXj1lZWdYCs2IcAPjpp59Sp9Pxn3/+oVar5VdffcXn\nnnvOkcCsKEd+a9OmjUk9fNu2bVbnCRwJzPaWy2khL8uqA+AK5GBwFvK254mQl54cMlyk3VK+fHks\nWrQI69evx6pVqzB06FC0bt0ajRo1ckTQUTEOS6V69epo0UIWMtizZw8yMzOLnCMsLAzdunXDxx9/\njA8//BDHjh1Dt27d8OabFiduFeO4ePGiqUFERUUhMTExz+dvvfUWmjdvDpLYtm2bpdUqhebYu3cv\nunXrhrlz50Kr1SI9PR39+vVDu3btMH/+fAQGBloV11SSw1hq1aqFcuXK4eTJk/jnn38giiJ69OiB\njz/+GBMmTMC6desgSRLq1avnEo5//vkHERERiIiIsKbGAQBo0qQJYmJirInk9oI8ZFQGsqzSn5BX\nHUwE8ImBa7Y9FgAIDQ01ib7u378fWq02z+flypWDh4cHjh49aolFMQ4AOHPmDCRJQlBQEHbs2IHw\n8HB4eHjY/6LCHPlLy5Yt4e/vDwA4fvw4cnJynD2V7R6z2ROjOgoox458TwkfHx+ePHmSGo2GQ4YM\nMf3d+Jqa//j8phSHNZswYYJpbMjGBKTTHLZYypcvb1qov2XLFtPwhSAIvHjxIrOyslzKsW3bNlNv\nyPz1vEyZMly9erVJS02SJPbp08fSNSjqD0s2ZMgQSpLEjRs32hKoVYwjNDSUkiTx1KlTD22c8PX1\n5Q8//EBRFPnhhx8+En8Y28f169e5a9cum/4wnDsPC+RVAdFwUOPu6tWrFEWRer2erVq1yvNZixYt\n+Oeff1IURV67do1BQUEu4zC/dvP5qNGjR5MkP/jgA1s+U5zDaAEBAbx37x5J2pqcNt27dmOunYBc\nFcARyDLfGgCpAEoa/h0HOQNTLAC9vYvx9fXlzp072bdvX9PfevXqxezsbEdFUBXhsGSenp6MiIig\nJEm2Jv0KxWGLpUSJEnmC4+7duzl//nx+9913zM3NZWRkpEs5zP/vr776isOGDeOMGTP4zz//mIZU\ncnNzuXLlSgYGBlpiOQn5FV0HYCbkXVQfGVhiDccUWBXa3MLCwhypH8U4mjRpwsTEREqSxG+++Yb9\n+vXj22+/zdmzZ/PmzZvUarXctm0bS5Uq9Uj8AYBNmzalJEl877337PkjxtBGapq1kVjIQy0OqUIb\nA7MoigwLC2OJEiXYvXt37t27l2q1mjqdjsnJyWzUqJElNXXFOKzZ4sWLKYoiX3jhBUfah6IcHh4e\nXL58ualjt3DhQpvHKxGYn4AsTpgAeXxMBPAhZFn2u/h3djHTkYspU6ZMnqfc6tWrefnyZUtPWEum\nGEd+e+WVV0w9wqefftolHPZYQkJCmJ6enmdpmiiKnD9/vmlZkqs4zAOz8f/N//vq1autBWVCXk4p\nAbgP4B7kgHQP8hZYp/yR37744guTHqKN4xTj8Pb25tKlSylJEvV6vSn4GFclzJgxw1pQLhJ/AOC8\nefMoiiKHDx9u7ZgkyMORWsiB6DcDl5GjCoAMRzj+97//meYhUlNTefbsWd6/f5+iKJIkExISbE3e\nK8ZhyTw8PLhq1SpmZGTYqhOXcTz33HOMi4szzU/ZeKMjoEBgNkCZ5Fjwb/f/AYBZhs+dkvyuUaMG\nr1+/bm022ZK5hEMQBH733Xck5Ymt/LPNSnE4wlK6dGlOmjSJc+bM4cqVKxkSEmIr/4BiHOPGjTMF\nHfPAnJ2dzaioKIaHh9tbX22S6zGwJABYAHnszml/GK1EiRJct26daVNDUXGoVCq+//773L9/P0+f\nPs2jR49y8uTJjmw0cak/jPbFF18wLS2NDRs2dPk9ExISwoSEhIce2Dqdjn///Tdffvllxduqo34o\nW7Ys9+3b54hgrks4xo8fb3qAT5061S5voQMzzKSlII/P3Iacr/Qk5N5AFOT95ysLejFNmzblrVu3\nHBZjdRVH9erVGR0dTUmSOHfu3IeWwCjF4cyNV1QcZcqU4apVq6jT6XjgwAGKosiMjAz26dPH5ni7\nmX1hOK+R5RvIEyv/QO6NXEUhVKF9fHxMPTZri/aLgqMAViQchw4dYlpamq06Uuye8fT05IABA/jt\nt9+aAvOWLVs4Y8YMR+5hl9y7RgsMDHQ0MLuE4+effyZJ7t+/n0uWLLHLq0RgNsqxXACgNjSs7gBq\nA9hr+HsMgB8LejFlypRhREREQRqiSzhq1arF1NRUZmRkODKM4TSHCwKA4hzGYab8EysO2DkA5w0s\nsyEngTlk4NgDeVmS0yrIZcqUYUxMDCVJMu1IfBQcxcUfRvv000+Znp7OChUqFOk940T7cAmH0QIC\nAnjq1ClHArNLONLT00mS06ZNyzOHZs0KHZgNUC5RlvXz8zNtqHDQXMLRuHFjajQaHjlyxJHestMc\nLggAxYXDZXVjNG9vb06bNo3Lly+3lwuhWKggFxXHJ598Qr1ez8aNG/+/9kfZsmUZGxtrbw2zyziM\n49vdunWzNZxjskIHZvw/UMn29vZms2bNWKtWrUJxGH66VbL/g22kuHK8+eabjI+Pt7UB5f+FPzw8\nPNi4cWNbbw4u5ahQoQIbNWpkd9LPaEoEZqeVZV1QucWZwyF16v8oR3GvGzeHm6NYcTgSmF2mkk1S\nyP89pUtx4YCD6tRFwFJcOIpN3bg53ByPA0f+4qwYa/7M/nGGvxV1KS4cxYnFzeHmcHM8fhx5irNi\nrAQAQRBuQR7HDIS8z3yUMliPHYeRZaAgCM/j0cqguzncHG6Ox48jT3G2x2xUpyaADgCWA1hi/LAI\nJb+LC4eRxRP/yqCvxL9qu90FQbj4H+WwJgtf7Dlc3EbcHG4OWxyWWP4tjgxEW5gUNGb2vwN52/Yp\n/Kss6w3gJopgwLy4cJix6CAnqfEysphxWFUwsWStW7dmZmYmBw4cmCf/blFzFLJuii1HYdtIeHi4\n1V2IRclRXPzh5igcR36z22MWBGGNIAiJgiBcNPuzH+StjEGQl2VVxb8ih88CuGzvvMZSqlQpNGzY\nEF27di0yjo4dO2LZsmWIjIzE5MmTIUkSoqKi0KNHD2sK3TY5BFntdqfh1wuQk9bEkzxr5CB51+aJ\nzUqJEiWwYMECqFQqnD9/Hrm5uUXO0bhxY3Ts2BH//PMPJEnChAkTMGnSJIvHutofjpYCcgAFbKvG\n8tJLL2H06NGWxE+LlKNz584IDQ1FiRIlHimHvfIoODw8PODj44PKlSujQ4cORcIRGhqKDRs2FAbb\nVBwZylgLeZ2feZkNeU3gk5D3//8KYIggCJ1RQMnvJk2a4KWXXsK6devsHdoRluXHC8yxePFijBw5\nEtWrV4der8eePXtQvXp1tGrVCmvXrrXa0O1w/A65FzjRwBTkjD8AoGfPnmjZsiUGDx6My5cvQ5Kk\nIuWoXbs2Vq9ejeDgYPj7+yMrKwsBAQEYP368ta+41B8A8Morr+DUqVNo1KiRrcMKwgFnWF599VVs\n2LABQUFBiIiIeGQc9erVw8aNGzF27FhbnQmXczhYXMpRpkwZzJ49G0uWLMGSJUvQvXt3TJs2DW+/\n/TaqVatmnjPbpRz+/v7o168fqlevbvM4QRCiBEHYaHgwWC4ODl1UR16VbPP8suUh5zGdZrDXAayA\ng936BQsW8MCBAzx//ry9YwXIShCpheX4/vvv2atXrzx/69ChA3/77TeKosjWrVsrzkEH10OGhoZy\n37593Lx5s70F64pyeHt788svv+SQIUNYtWpVjhgxgn379qWXlxe//PJLHjhwgBcvXrTGorg/AgMD\n84h6Ll68mJIk2UsR6zCH4W8OtdUKFSrQz8+P1atX58WLF0mSBw4csJXJzCUcRitZsiS3bdtmL+Vn\noTlI8scff7QpRFu2bFlWqVKFzZo145gxY7hq1SpL2+Zd5g9fX1+uX78+jwjqvn37mJWVxZs3b/KT\nTz5h3bp1Xc4hCIJJ789KzvL89+5sWNiWb2JzIChbU8m+i38Xa6uRT57e0UYWHx9PSZL4/fff2zt2\nDYAUAFJhOSwFvODgYKakpDgSmJ3icCQw+/j4cOvWrdRqtXzuuedc4g9rHH5+ftyyZQslSeKJEyfY\nu3dvli5dmj179qRarWZ6evpDDzMzU9wfmzdv5qpVq1iqVCn6+flx69atlCSJc+bMsbV13mEOw+cO\nt9WAgAAePnyYer2eOTk5bN++va3tty7jAMAVK1ZQq9Xyzp07tgRhC81hzCD3999/89VXX+XTTz/N\nhg0bsmvXrhw0aBCXL1/Offv2MTIykmq1mqIoUqPR8O233y4SfzzzzDP88ssvmZGRwY0bN3LBggVc\nsGABJ02axH79+rFRo0ZFVi8eHh5MSUlxKDAbzm01ZYKjgdmSSnYugHmQE7Wcg2V5eocamfEp165d\nO3vHtoX89BKV5vD19eXhw4cpSRLv379vr6fqLIfdya769etTFEXOnj3bEd8pzlGtWjWeP3+esbGx\npoflvXv3KEkSv/zyS6vCsK7wh1qtZmxsLOvUqcOyZcty//79lCSJt27dYu3atQvNUdA2snHjRlPK\ny7feesve8S7jCAgIYFpaGtPT0x3J/FcojieffDKPvmFubi5zc3NNKWItWWJioqV7WXF/DB06lOnp\n6ZQkiVOmTHHkfnFpvXh5eZlEeu0lQzOceyyAX5wOzIaT5FeXtZnDFDakx43m6enJZcuWUZIk3rlz\nx5E8yFEATijJIQgCO3XqxOvXr1MURd6+fduWAnNhOS7ZOu9TTz3F+/fv88qVK44mU3IJB/CvsKbx\nofnLL7/Yy8esOIdareaZM2dYuXJlVq9enVFRUZQkiUuXLrX1gCgQh6Nt9a233mJ6ejo1Gg2//vpr\nR+rGJRyA/PCWJIn/+9//ioSjRYsWXLRoETMzM/Pk6b579y7Pnj3LnTt35gnMX3zxBQXhocxzivnD\n39+fU6dOpVqtZlxcHKdMmeJQ4iBX18vTTz9NSZKYlpbm6L27C0AVpQNzoXOYVqxYkZcuXaIkSdyx\nY4fdi1Gaw8fHh4sXL2ZiYqIpv2xqaipPnz7NhQsXWn1FdJbDnk8GDBhg6i0/8cQTnD59OuvUqaO4\nPxypm1GjRpnUfiVJ4qVLlx5Szs5ninOo1Wr+8ccfLFWqFHv16sWsrCxmZGSwS5cuRcohCALPnDlD\nSZIYExNjPl5ZpBxG++6775iZmelIr10RDg8PD5YtW5YdOnRgaGgoQ0ND2b17d9arV49VqlRhu3bt\nTEFZr9dz8ODBLvVHeHg4s7KymJSUxF69ejmcOMjV9TJ8+HBKksTLly/bPdahmGsnIFeFLMeSX469\nBeTxmhzI8t8PdcntwbVs2ZJxcXHU6/WOpv9UlMOoIWeUCoqPj2dmZia1Wi1FUeSpU6dYqVIlxThs\nsXh4eHDp0qVUq9V87733ePXqVWZnZzMnJ4fVqlVT1B+2OEqUKMFhw4YxNzeXt2/f5meffcasrCyK\nomjthjOaohwAGB0dzeTkZI4bN840fjl69Gh7bURRDpVKxXfeeYd6vZ6SJDEpKYlnz57lwIEDi5TD\naBUrVuSFCxd4+fJlRwUmtGY8P0HOPXwQ8rIwDeRsaqWdCUSAPC+xatUqU1BetWqVyzm2bt1KnU7H\n7OxsrlixgsHBwSxZsqRDvK70x9SpUylJEmNjY+0eq0RgfgJAQ8irMi4DuA6gCYClAMYbjpkFs5lO\nRy8mLCyMGo2Gd+7cYZMmTRxxqqIcnTp14rVr1/jll1/y9ddfZ6tWrdi3b1++9dZbptez6dOnK8Zh\niyUgIIDnzp2jVqtlcnIyDx8+zLCwMGZmZtqSDVKUw9/fnzNnzqRWq2VUVBQ7derEgIAAbt++nZIk\n8YcffqC/v781FkX9AYDt27fntWvXmJOTw8zMTKampjrSO1KUo2rVqqaHgrnkVnx8vLWHtsv8AcjD\nCjlga74AACAASURBVHfv3uXRo0dt1YW5dYWczjIgPwvkyackAEucDcwDBgxgamoqRVFkVlaWrUlz\nxTieffZZTpw4katXr+bNmzeZmprKzZs3O5q212X+2L17NyVJ4sGDB+0eW+jAbAZWHXnl2G/h32Um\nUwFkFfRijFJBUVFR9hq56WKU5rAwFkYAfPfdd6nX63n8+HHFOGyxlCxZkjdu3DCpVKtUKr7xxhvU\naDR86qmnFPWHNY4BAwZQo9FQFEV27NjR9Pe+ffsyKyuLp0+ftpX3V1F/mNdP+fLluXXrViYkJDhy\n4ynKMWPGDFMw1mq1DA8P5/nz5ylJEsPDw4uMw2ihoaHMzs7mRx995IgvTByGc2+DvPwrBkA5yJNP\nv8FJrb0GDRowOzs7j7q6jQenSzi8vLw4d+5cJiQkcN++fY/MH56enjx48CAlSeLYsWPtchQ6MOPh\noQwRwGjDTy3kWc0MANkFuZhSpUoxOTmZkiRx7dq1luTOLZniHID8uioIAr29vVm/fn1+++23TE5O\nZk5OjrUes1Mctli6detGSZJ4+PBhArJQbWRkJMPCwhT3hyWOUqVK8cSJE5QkiaGhoXka3Ouvv86c\nnByOGzfOFosGcq5bAvifgcGoDp1h4OrubM/shx9+cDQwK8ZRuXJlnjp1iqIo8syZM3znnXf4yy+/\nMDc3l2q12t4qIpf4Y8SIEczKyuIzzzzjkN/MOPSQl4JtMfxu5LgEQF1QjgoVKnDXrl2moJySksKa\nNWsWCUeDBg0eGroYMGAAExISHHlgucQf9erV461btyhJEkeNGmW3XpQIzMahjAAAZyGv+WsC+caf\nYHZcgSS/586da1qGY2dSydwU42jVqhX79evHtWvXcsuWLfz444+5d+9e3rp1yzTmPGrUKGuz/05x\n2PJJVFQURVFkdHQ0hw0bxitXrvDIkSP2xs4U42jWrBlFUeT169cJyAG5QYMG/Omnn3j//n2q1Wr2\n6NHDFksryJMnAyC/ImYB+NDIUlB/5LezZ886GpgV43jiiSd4/PhxiqLIBw8eMDk52dQ2+vXrV2Qc\n5jZixAimp6c7er8oes+YW58+fZiRkWHyR/fu3YuM49ChQ9y5c2eetzqjSvapU6ceiT969OjBtLS0\nogvMBijFJb/37t1LSZK4Z8+egjSyQnMEBATwm2++oU6ny7NTSBRFqtVqXr9+nUePHmXnzp1t9eKd\n4rDlk9u3b3PLli2mIBgdHc0XXnjBJf6wxFGmTBkmJSVRo9Fw8+bNTExMpFarZU5ODi9cuMDmzZvb\nYzHpqBlYEgAsgLzNtcD+MDcPDw8mJiYyMjLSkTaiKEfPnj2Znp5OnU5nWrHz4osvFjmH0T7++GPm\n5OTYW7qo6D1jyT777DPq9XrqdDpu2rSpSDn69OnDhIQE5uTk8MaNG1y8eDH3799PjUbDd95555H4\no3fv3szIyKBer+fw4cPt+qPQgRlmmn9QUPI7LS2Ne/fu5YgRIxxtYFSC44knnuCCBQsoSRJTUlIY\nGRnJBQsWcO7cuezfv7+jvXenOGz5ZMCAAQwMDGTHjh352muvObKmW3GOcePGMT09nQcOHKBOp+OR\nI0f44osvOuqTLwznNbJ8A+BPyErEiQCuAijrTGCuUKEC9+7dy++++67IOTw9PRkcHMwhQ4awW7du\nLF++vNV5iaLwx8SJE6nVavnSSy8V2T1jySIjIymKIn/++WcGBwcXKYeXlxdfeOEFTpw4kdHR0dRq\ntdy5cye//vpre7sgXeYPY2D+/fffHdmOrUhgNmr+KSr5feLECQ4YMMDRJT9GU4zDPDdqAf7/QnE4\nGogeJYfRH0745hzk3VNqyDkAygI4ZODYA+BTWMgL4Mi5K1euzFmzZnHnzp2PlKOA5hIO4+TfyJEj\n8+QRUbqN2DvvvXv3KIoix40bZ3eXmys5PD09WbZsWXp7e7v0nnHk3AW5XwodmA1Q/y8k0F3N4QKW\n4sLh0rrx9/dnSEgIX3nllf98G3lcOMLCwnju3Dn27t3bYq7w/2/+KKgVOjDDbCgj39//cxLoheUw\n/OwOOS90BoBwF7MUF45iXzduDmU5fH19GRQURF9fX7c/nDAlArNxKOORS34Xc47vIb8KaSHvJKoG\nWQnBlSzFhaO4142bw81RrDgcCcw2xVhJHoOFZPpCMZH8Li4cAP4UBKEdgClmLD8+ApbiwlFs6sbN\n4eZ4HDjyF2dVsoMAxAoPq1PPU4jrceMwsrQTBOECHq3arpvDzeHmePw48hRnAzPNfnaAvAe9g/kB\nhllKxYqVp1Zx4TBn6UDygSAIA1zJUlw4bLC4Odwcbg7HOfIURzT/LJU4yNu1AXmCsCrySX47eV6r\nxYrkd3HhMLJ4GjhgziLIEugXoWApLhxmLI8dh5HlceQoU6YMZs6ciZiYGAwYMOCRcThS/sscrVu3\nRt++fe3+3+Y6ojbu3X+LIwPRFiYFjZn9b0Pe3pgN4FPDZ1Ylv6dPn86EhARTesuoqCguXryYtWvX\ntps5TEkOo3l5eTEoKIiDBw/msGHD2KxZMw4bNoz9+/e3OuNsxyc6yLO7FwxMzc047CqYFMSKC4ed\nulGEw9PTk8899xyHDx/OunXrMigoyOK60YJwONpGXO0PZzj8/Py4bNkyU9J6a5sa/mv+EASB4eHh\njI6O5syZM6nX66nX6/nBBx/wr7/+4osvvmhzTbPS/vDx8eGQIUO4fft2BgYGWjzG29ubEydO5Pjx\n41mxYkWb924eLgeC8BrIu5XMxVjLQg6EuZDzAHwG4AyAzgDawYJOloeHB7Ozs3nlyhV+//33fPXV\nV3n48GHqdDqGh4dz//799vIxKMIBw40+YMAA7t27lxMnTjRt0Z41a5apsffu3bugHHsNlZoJeYb3\nrjkHlZ/dVYSjSpUq3L9/P3fs2GE1k50D5jJ/+Pj4sEePHkxISKAkSZw+fTqvXbvG119/vVAchs+t\ntpH8NnDgQA4dOpTr169njRo1FPNHQTlKly7NLl26UKfT8eLFi3zjjTdsdWpcxuGq9mGLw9vbmzk5\nObx16xaDgoLYvHlzNm/enI0bN+bZs2eZlpbGqVOn2trsoag/XnnlFc6cOZPffvutVdWhF198kSkp\nKezatavpb44EZkfGmNdCzlm6wexvswFsIPmlIAjjAdSAvPe8leEiH5L8FkURkyZNwu+//47bt28D\nALZu3Yonn3wSI0aMQEhICGrVqoXg4GDEx8db4ugIectkjcJwAEDDhg2xevVqxMXFoXbt2tizZw/+\n/vtvXLx4Ebt27UKPHj3w/vvv48qVK4iOjnaU43eSXcw47tnjyF88PT3RtGlTaLVaCIIAHx8fqNVq\nqFQq3L9/H1qtFllZWcjNzVWMo0SJEtDr9ejevTtef/11LF682PSZJEkICAhAx44d4e/vj/379yMh\nIcESukv84ePjg61bt8Lf3x+5ubn49NNPcfHiRXh6eqJ9+/b49ddfoVarneXYBwfk6QVBQMuWLREe\nHo6EhAQ0bdoU9evXR6tWrWx9TXEOAKhatSo2bdoErVaLQ4cOoXfv3sjJyXE5x7x58zBhwgR8/vnn\nWLt2LTw8PJCSkoKcnByUK1cOvr6+AID/Y++8w6K4wrZ/D90WO2JUoqJil9hiIyoaJdag0Vhi7Bqj\nxpiYWBJ7bK+aYos9Khp7l1heu7Ggxq5YwIYoItIXFnZn7u+P2V0X2AbMEnw/znU9F+y0/e05Z545\nc8pzp6Sk4NWrV/r6qThHamoqRo0ahdGjR2Pw4MGYPn26Yd/XX3+N06dPo27dunBycoJGo7FbfuhT\n1apV0bp1axw+fBhardbkMY0bN8bcuXNx5MgRwzZBEEIgNyC/Jhlj8kSbmtVGcUx1n8N00AUhy36H\n4Y0Kcpak2AGwcuXKjI2NZWJioillW70JMC0/nmUOT09P/vbbbyxbtmw6CfoiRYoYlAhSUlLMtSCz\nxWFLCzEgIIAqlYparZbBwcG8fPky9+7dyxUrVnDhwoUcN24cfXx8FOXw8PDgwoULqdFoqFKpuGnT\nJq5fv54bNmzg+vXr+ffffzMlJYWiKFqSdbJLfnz//feMj4/n+fPnDTEZ2rVrx4cPH3LZsmUsUaJE\ntjl0+y3W1SJFinDRokWMioriy5cvOWDAADZv3pwNGza0VqcV5dDbmjVrmJaWxoiICFtjVCjCMX78\neIMA6+vXrxkREcFjx47xwIEDvHnzJp8/f87nz5/zxYsXbN++vd3zo2TJkukkvgRB4MCBAylJEn/5\n5RdLmpmKcQiCwF9//ZWSJHHw4MEmv8/Pz48JCQk8e/asKR8yHSaW5We1K+MV0mtl6WVY9FI5xirI\nNkt+e3p6cvHixYyJiTGoZBg7ygy2Fqblx3PMAcj9dsuWLTOoVViImpUtDmuOqFq1aoyNjWVKSgpb\ntmxpSzwPRTk+/vhjRkREGGLsGit26D8bv45lMMXzo2zZsgadP2NV7MDAQCYnJ5tTiLaZw1odKVCg\nAFetWkVJkvjw4UPjByIB+RXVgiajYhx6GzJkCDUaDVNSUtixY0eb6rSSHE2bNjUEL8pYL4z/DwgI\nyJX80FvBggXZrVs3Pn/+nKIoWlL8UZTDw8PDEMP8008/Nfl9K1asoFar5YgRI9Jt113bbMgEWx2z\nL+TweMaO2WwMU9gg+b1nzx5Dx70kSVSr1fzxxx+tqUP7wrT8eLY5ALlV5O/vzzNnzhhaBWvWrLEU\nqSq7HGYHu3x8fHjp0iVu377dVpktxTkcHBzYunVrLliwgIsXL+ayZcu4dOlSjhs3jg8ePKAkSZw4\ncaI5FkXzo3z58gwNDeXr16/TtcDq16/PhIQErlq1Kscc1urI9OnTqdVqGRUVRX9/fwqCwEKFCvHj\njz/mX3/9RUmSGBgYaHcOQI6XrVarKYoi/+d//oddunRh//79OWPGDGvR/xTlAOQxiYCAAAYEBBje\nbv38/Awq2k2aNMkVDmdnZ06dOpVPnjwxhO1NTk7mo0ePOGPGDHNhexXjqF27NmNiYvjkyROT8ULq\n1q3Lx48fc9euXZl0O3XXHg0z2o82OWbdRTKqy9oiT282U1u0aMG5c+fyr7/+YmJiIjUaDQ8fPmwt\n3GUIsig/bo2jfPny3LlzpyHItSRJnD9/vrUA9dnluGXumlOnTuWhQ4dYuHBhS99rdw69OTo6Gqxl\ny5ZUq9XWWsyKcTg5OXHWrFkURZELFy40jLK7uLjw3LlzTEpKsqQeopg8/f79+ylJErt27coKFSpw\nxowZPH/+PKOjow11xUL8X8U4ADmQ0927dylJEp8/f874+HiDrNOdO3fMvkorzWHKnJ2dee3aNYqi\nyPDwcHOzExTnqFSpEuPj4xkTE8M5c+bQz8+PH330EY8fP061Ws0RI0aYettUjMPPz49qtZqLFy82\nyTd69Gimpqby33//ZdGiRVmsWDHjLrAQAIcAlFPaMec4hqneypYty4MHD1IURe7Zs4elS5c2eZw9\nOD788EOmpKQwJCSEjx49MvSlWgoMn10OSywDBw5kdHQ0r127xm7dutHd3d1qGEF7cJiy8ePHG2aq\nWOjXVIzD29ubt2/f5osXLwzdFWXLluWOHTsoSRLXrVtnKVC8YhyBgYEURZGPHz/mkydPmJyczAcP\nHnDOnDkMDg5mUlJSruQHIKtjh4eHp+tCiI2NNQjFPn/+PFc4TFnnzp0NTBbiq9uFo379+pn0QqtX\nr86HDx/y/v37phTmFePQvzVlbKwULVqUPj4+fPToESVJ4tGjR1mkSBF6eHhwwoQJhnvXqs+14pAz\nav7ZLMeelcKtUKECly1bxuTkZM6dO9fccYpzlCpVir169aKHhwe9vb154MABiqLI2bNnW+LNFocl\nFicnJ7Zp04YzZszgmTNnePbsWVsGmBTnyGgODg6cO3euQZbdQp+qYhxr1qyhJEkcOnQoCxUqxE8+\n+YRnz541CMUaaxLak6N27drct28fX758yUOHDrFfv36sXr06v/76a4qiyL///tvSeIii5TJmzJh0\nTjkqKooDBgxg3759GR0dzYSEBHMcaUY82yDHHj4BeWqYvn+1WHbrR6FChbh7926KosgrV65YeuO1\nK4exOTk58ezZs3z16hVbtmxpF453332XKSkpjI6ONjQSateuzUGDBjEoKMjwBn7lyhW2aNHCcJ5+\nWqMSjlmv+VcRWZRjz2qGCoLAgwcPMjEx0Vy/md05VqxYQUmSrDnmbHHYyvLee+8xLS2NkydPtnas\nXTkA+TV1w4YNFEWRy5YtszQGoBhHcHAwJUni1atX+fz583QSYJs3b7bGrGh+ZByALVu2LC9evEhJ\nkiw1IBTn+O233wxOWa1WGx5OnTp1oiiKlhxzO8gLJwpnZIE8+BQF4Pfs1o+PP/6YSUlJFEWR33//\nvaVjFeGoUqWKVfUWfYt5zZo1phabKMLh6+tLSZK4ZcsWNm7cmGvWrDF09+lNpVKxcePGJhltccwW\nl2STfEnylu6jPvp/OQCdIYeYBOSnkLOl69iSSOL06dMoUKAAOnbsaGq/XTkqVqyIDz74ACRx4sQJ\nS5yKcVSsWBFOTvJUcldXV3Tp0gXTp0+HJEm4ePGixXNzo1zq1auHzp07AwDu3btndq6mkhyzZs3C\nyZMnUalSJajVamzatAmSJOHZs2dYvHixLZdQLD8y3Jzw9vZG9erVkZKSgnXr1uUax44dOwxzg5OT\nk/H69WuMHj0aixYtgiiKOHz4sLlT7+t+R5KOpSbkgfxAAN0BXIQcSS3LqXjx4pgxYwYKFiyIe/fu\nYdu2bZYOzzFH7969cfXqVUyYMAHvvfee2eP69esHd3d3PH782NRcZkXyY+TIkQCAgIAAnD9/HgMH\nDkRKSgqCgoJw584dAMA///yDBw8eWLuU+WSlxZyxK0ME8JXubxrkUc0EAMm2NP9//vln1qxZ0+RT\npGzZsgwNDaUkSeaeiopwGFvJkiXZqFEjent7c9++fUxNTeX169ettRSyxWGK5d69e9y0aROXL1/O\n4OBgJiYmMjIykp06dbIlCLliHOZs4sSJhtkzGfvyMpheFp4AdusYIvFGFl4E4G8Lh4ODA0uWLMna\ntWvTy8uLEyZMoCiKHDdunC3MinGYsr1791IURV67ds3aGICiHM7Ozrx58yZFUaRGo2F0dDTT0tIo\niiIPHTpkaWaGnkMLWU5pi+6znuMWAFVW88PR0ZGLFi2iRqNhQkICmzZtamu5ZJujefPmjIyM5NWr\nV9NNn9RbyZIluWDBAsbHx3PDhg3mlmYrkh8HDhwwtIwTEhK4ZcsW+vr6smbNmrx27RolSeLIkSPN\n1hFbWsy2dmXkWPJ73LhxTExMZGxsLAMDAzlq1CiOGjWKP/74I69evUqtVsuEhAROmjTJXOEqwuHg\n4MChQ4fy5s2blCSJiYmJhrmYYWFhphYtKMJhiqVz587csWMHN2/ezHHjxrFly5ZWY4bYg8OUubi4\nGOZpbty40drxjSAPnvSC3CpJAjBVz5JdDjc3N164cIFRUVGWZmLYnQOQp6yRZGJiorVZO3bh8PX1\n5YULF5iQkMCXL18yPj6eFy5c4CeffGLpIaHIPZPRWrVqxaioKGq1Wo4dO9ZudTXjdXr27MnIyEiG\nhYVx/vz59PHxoY+PD1euXMnExESmpaVx06ZNlqa6KsLh6+vLBw8e8MyZM+kmK7Rq1YoPHjzg3bt3\nTQ08GswWx2wtUP5LQRBiIE+yDgTQHPKrWbLuB0IQhNKQW28W07p16/Dw4UM0bNgQLVq0gLu7Oz76\n6COkpaVh69atCA4OxpkzZ7Bjxw5zl7inBEfz5s2xZMkSODvLb5MXL15E5cqVsWbNGmzZsgUxMaZX\nSCrNAQD79+/HgQMHDK/KWUyKcZhKvr6+SEpKgiRJlspEn34GsInkFkEQPoUc07YggKSccFStWhVl\ny5bFli1bcP36dVtOsQuHk5MTZs6ciRMnTiAmJgYJCQm5znHmzBl07NgRLVq0QFhYGCpVqoR//vkH\nsbGxlk6zSx1p3749SpYsiV27diE4ONiWUxTh2LFjB168eIHRo0ejQYMGGDt2LABg3759CAwMRHBw\nMLZu3WpqSbiiHGfOnEHbtm0RExODxMREw/bz58+jffv2SEtLw7Nnz6xdxnKy0mI2aP5BQclvIXtq\nzIpwFClSxDAHVD8n1kZByRxx2NoyyyscCxYs4JQpU3j48GFbWH7VXVfPshzAQchKxC8B3AVQIqsc\nX3zxBdPS0mxtLduNo2TJkrx9+zYnTpzI7t27/2ccuVVHLF3Ty8vLsBDLz8/vP+MAsqXmbheOrJot\nLWZrjlmv+WcXye8s2lvNYQcWu3JUrVqVnTp1slWd+hqA6zqW6ZCjdp3UcRwBMBcm4gLYoWzswuHg\n4MBvvvmGbdu2Zfny5d+m/FD8nqlZsya1Wi1jYmIMYSz/C468kh/ZsRw7Zh1UnpD8fts57MCSVzje\n+rLJ57Cdw9nZmQ0aNGCtWrXo4ODw/31+ZMdy7Jhh1JWRYfv/t9Lj5jh0f/0BPIc8wjvezix5hSPP\nl00+Rz5HXuJQwjHruzKyLPmtpL0FHIGQX4XSIK8k8gRwyV4seYXjLSmbfI58jjzDYatZm5XxD0zo\nAtoi+a1kyuscAA4KgvAhgB+MWLbaiyWvcFhiyStlk8+Rz5GXOGxN2VXJLg8gXBCEx5Bfl4sAKAR5\nmlBuprzCoWfJCzLo+Rz5HPkcbx9HupRdx0yjv60gr0FvZXxALkuP/9ccxiytmAsy6HmFwwJLPkc+\nRz6H7RzpksVYGRbSM8jLtQF5gDC3pMczSn7nFQ49i0kZdEEQ/AVBuPm2cNSvXx+XL1/GlClTIIoi\ntFotKlWqBAcH09UlL+RHdjj0LPkc+RxKclSpUgUqlQpTpkzBN998Y47DFMubZEOnuSk15rKQQxim\nQReTAcBc3b4sSaDXqlXLWihHvdmNo0WLFoyPj+d3333HdevW8d13380qRwkAx3T7EyGvuX8CoL4R\nh1nFDgcHB5YrVy7dMs4PPvjAohS7PTgAObrdkydPuG/fPgYEBPD48eMURZHDhw+3pKKtOAcgq0B8\n/vnnrFy5smEhQZEiRSzFEbGZIyt1pEiRIvzss8/YvXt33rlzh5IkMSoqiiNHjuTOnTs5bty4jAHi\n7cKht1KlSrFGjRrmgtLnGgcgq+9s2LCBkZGR/Oqrr/4zjvfff59DhgyxGEs9t/LjxYsXjI+PZ9u2\nbU0eY8vgny0t5j8hTycxTpMgTz0Jg+wMbwH4SBCEtgA+gBzy0KZUoEABlCtXzpZD7cYxfvx4FClS\nBIUKFUK/fv0watQoCILZtw1THNMB7Ics3pgE2ek4QS74DwDcJhlh7oIdO3ZEx44dUbNmTcO2KVOm\noFChQpawFecA5GXQXbp0Qd++fbF371706NEDDx8+hLu7O7y8vMydpihH4cKF0atXL+zfvx9r166F\nt7c3HBwcIAgCunfvjubNmyvBAdhYR95//3389ttv8PT0xLZt23D8+HGEhIRAkiR4e3ujX79+KF++\nvN05ypQpg3nz5qFv3774+++/sXXrVqxZswZFixY1d4pdOPTp3XffxZYtW/D555/D3d0dJUqUQJUq\nVXKdw9nZGWPHjsXKlSsxYcIEuLi4mDvUrhxFixbF6tWr4eHhgQsXLuDs2bO2npo52TjVpCIyq2SX\n1P1fCkAogIk664MsqGQ3bNiQ27dvt+XYEMiRuu4oyVGxYkWDpt3x48cpSRKTk5MtRczKFoduX6br\nCYLA+/fvZ1p2vGfPHmsBlRTl0NvQoUMzbZs6dSqPHz/OUaNGmTtPMQ43NzeuWLGCx44dY0REBL/5\n5pt0ebVz507269cvxxy6bTbVkYCAACYlJXHp0qW2tpzswjFs2LB09VRvx48f5+bNm+nh4ZErHK6u\nrmzfvj0PHTqUToj1+PHjHDhwoKll0nbh0FuFChUYHh5OSZI4a9YsSwtf7MZRrlw5zpo1iyQZFhZm\n7a07BMBGmFiWn5UWs6lUGkCKIAgFSUbjzSTt27ovzlJq1qyZLYfVhPyaUVYpDldXV6xduxaVK1fG\n6dOnUa9ePYSFhcHR0RFr165FqVKl7M7h5uYGNzc3REZGptv+6tUra/iK5wcA7N27N93nAgUKoGnT\npvjggw9w+fJlc6cpxlG1alW0atUKCQkJ6Nq1K5YsWZJuf8uWLc21yrLKAWss+qR/e6pXr54th9uF\no2XLlujatSsAoFWrVvJJJB4+fIimTZuiZ8+e+OOPP+zOAcgBrgIDA+Hn54dt27Zh6dKl2LBhA2rU\nqIHp06ebyie7cOhTr169UK5cOZDEkiVLIEmSuUPtwlG6dGn88ccfmDhxIs6fP49OnTrh+fPnlk6p\nCfmhsMjsETb2Mb9Ceq0sq/L0sPFpt2TJEm7atMmWY9ciC/Lj1jgcHBzYu3dvSpLEY8eOURAEFilS\nhA4ODjx48CAlSTIncpktDnMtxCJFijA2NpaVKlVKt33VqlXWWsyKcpizXr16URRFHj161BKPYhwz\nZswwK3RaunRpxsXFcfr06TnmyEpdrVOnDp8+fcqLFy/amm+KcgQEBKSTltK3lLVaLQVB4OXLlw37\n7J0fLi4uvH37NiVJ4unTp9P1c58+fZrJycns0aNHrpSL3vSt5eDgYGvLxO3CMXv2bGo0GsbHx7Nj\nx45WeXXXNhsygSRsccy+kKP8Z1SXnaz7P526LGyQHtdb8+bNGRMTwz///NOWAvBFZvnxbHE4ODjw\nq6++MqgOZ5SAmTZtGrVaLRcvXkxnZ2elOEwOdjk6OvLevXsMCAhIt33hwoVmBw/swWHK6tevb5CH\nnzp1qqXBSMU45syZY9YxDxkyhJIkWXLMNnNkpa56e3vz0aNHvH37NkuVKmVL3inCUbx4cY4dO5aS\nJJFkuu6LK1eusFatWgTkSIDHjx/nlClT7JofpUuX5vnz56nVahkUFJRp/6pVq3js2DH6+vrmMk0t\nngAAIABJREFUSrkIgsCAgACmpaUxKSmJ3t7euVIuAFimTBk6OTlx8ODBFEWRMTExHD58OJs2bcre\nvXvz/fffp6Ojo0kO3bVHw4z2o02OWXcRU+qye3T/jwWwKMPxNkmg6xV2582bZ0tlD0Fm+fFscXh6\nevL69esG7baMwelbtGjByMhIBgcHmxLczC7HLXO/bdGiRZlGtKdOncolS5bYIz/Mchhb/fr1efPm\nTWo0Gm7evJmFCxe2dLxiHPfv36ckSfzyyy8z7du6das1x5wlDlvrarly5Xjnzh2q1WquWLGC/fr1\no4+Pj2L5YY5j165dVKlUBkGHUaNG8e7du4yIiEg3JvHjjz8aHLa98sPR0ZFz5syhKIq8desWq1Wr\nlukYb29viqLIn3/+OVfKpUSJEgaNyKNHj1qt00rnR5cuXahWq5mSksJu3bpxzJgxDA8PZ2pqKq9e\nvcrKlStbuncPASiXLccM8yrZv0Fu9kuQFQDqmjjXakZ17tyZGo2G/fv3tyVTFeMYN24cJUni48eP\nTX6X3jEfOHBAMQ5LeVKnTp10g1wA+MMPP/Dy5cuWXs0U59Bb7dq1GRoaSrVazcDAQFvKRjGOzZs3\nUxRFpqSkcNSoUSxevLhh38uXL62pZtglPwBw/PjxVKlUBqmtlJQUtm7d2m4crVu3ZlRUFEVR5IsX\nLwyD0XXr1mVsbCx79+5NQG5k3Lp1i6IoMjo6OiNHRlXouXjzyq4BcAo2qlN37tyZCQkJTElJYZ8+\nfUz+7t69e1Oj0XDAgAF24zC2jz/+mLGxsYyMjGSrVq1sqaeKcTRs2JBhYWEkyZUrV3LFihXUaDRM\nTk7m06dPqdVqzfYEWPK5tjpmcyrZqyArywqQPf/d7DrmuLg4dujQwZZMVYTDx8eHycnJfP36tUlt\nQRcXF+7du5cajYbDhw9XjMNSnnh6enLZsmUE5FekUaNG8cKFCzxy5Ig12SBFOUqXLs1evXrxzp07\nFEWRS5YssaQnZ2yKcdSqVYuHDx82zBU+fPgwBw0aREEQDJJKtWvXtjtH06ZN093sbm5u/PTTTzlo\n0CAOHjyYDx484IkTJ+zCIegU4zUaDVUqVaZ62LdvX37wwQcUBIG3bt2iRqOhJEncsGFDRo6MqtAt\n8UYVejrkwPBWVaFLlCjBO3fuUKvVcsqUKSbV0qtVq8aQkBC+evWKLVu2tAtHRps/fz61Wi3v379v\naY694hxOTk78+++/SZLHjh3jzJkzqVKpuGDBAn766aesWbMmz58/b3ZMIseO2Qisou4H7YDc32w8\nzaQWgLTsOOapU6cyIiKCDRs2tHqsUhz6Psx9+/aZ/J4NGzZYfF3OLoelPClevDifPn3Kvn37Migo\niFevXuXs2bO5atUqxfPDHEexYsW4Y8eOdANMNrZCqCSHvuIvWLCASUlJhtf4AwcOUKvV2uKYc8Qh\nCALbtm1LjUbD33//3eT3CILAFy9e8O7du3bj0E9RvHTpksnvKFWqlEG8WJIkBgUFsUWLFiY5dNdO\nxwJ58CkUGfpVTZVLx44dKUkS79y5Y5KlU6dOfPHiBSVJ4hdffGE2P3LKkbEMjh49SkmSuHz58izV\n05xyfPTRRyTJly9fUhAEXrx4kXv37jXsL1euHFNTU8120SrtmO9Cnm7yDoBEo32jAWiy45i3b9/O\np0+fsm7dulaPVYKjXLlyvH37NjUaDb/99tt01+/WrRt37txJURR57NgxVqhQQVEOa45oypQp3L9/\nP8eMGUMnJycOGDCABw8eVDw/TDmixo0b8++//043uCRJEtPS0njlyhVzquUZK7xi+aG32rVrc8GC\nBbx3756ByQbHnCOOevXqGUb5MzpmNzc39u/fn/fu3ePr16/5ySef2IVDEARev36doiiabHXVr1+f\ne/bsoSiKVKvVXLlyJd9//32zjghvpJQqQyc2quPYBRvER/fu3cu0tDQOGzbMwOfm5sYGDRpw1apV\nTE1NZUJCApcsWWJuNaIiHBnrbUhICFUqlTUFd8U5Vq1aRZI8fvw4AXDp0qWsWbMm69Wrx9GjRzM2\nNpYhISEm1byhhGNG5j5mFYBBkPtk0iD3lyUASM7qTadfLHDlyhVrS4/1lmOOypUrG/pO+/TpQ0EQ\n2LJlS+7cuZMJCQnUarW8desWPT09LXUhZIvDWp4UKlTIMF0PAMeOHWu2D1xJjrp16/LatWsURZFa\nrZYqlYrHjh3jtm3bGB0dbRhxNjXYY2Spur9ayH13aQAi8UYWXgTgn52Ht7OzM+vWrcsjR45QkiRe\nu3bNkrxTjjk6dOjAuLg4JiUlGfpKHR0dWa5cOa5fv57x8fGUJIkLFiygm5ub3Tj69u3LpKQkRkVF\nceDAgYbtPXv25LNnzwy6exs3brSk2p0KuV+bAM5CjtctGXHcAqCy1TEPHTqUJUuW5Jw5cxgcHMyI\niAhqtVo+f/6c/v7+lrQzFeEwtvbt21Or1fLevXtZUVJRhKNLly4URZEPHz5knTp1uHTpUu7evZvh\n4eHUaDRMTExkly5dzHIp4ZjLAPCBHEB6PN70mVmcZmLLTefi4sKdO3dmZW5ojjmcnJw4a9YsSpLE\niIgIw4iuRqPh8+fPLa1syzGHrY5Ib8OHD2dwcLDdOTw8PLh69Wo+ffqUI0eOTPcdXl5evH//PkVR\n5KRJkyyxnIU8qq3vuwsHMA/At0rlR9u2bQ3TGy1Mi8oxR8WKFblnzx6+fv2av//+OwcNGsQdO3ZQ\nrVZTpVLx1KlTHDZsmNmpUErmx/LlyzO9xejt6dOnXLNmjd3vGQDs37+/YUWsvntJ7xSnTZtm6QGl\nKIexXbhwgVqtNlOdzS2O3bt3899//81ku3fvZrFixSxyKOGY00lL4U2/jC3TTKxm1GeffcZt27bZ\nmqmKcJQvX54hISGGCh4YGMg5c+awZcuWtj55s8WRVUc0cuRIzp492+4cDg4OrFOnDps2bZrJ2Tg7\nO9Pf35/Dhg1LNzvChP1qdO0dAPZBVoX+Tqn88PPzoyiKPHDggKWujBxzuLm5ceHChYyKijJMw3rw\n4AGXLFnCDz/8kCVLlrSFV5H86NatG8+ePWtY7qzRaPj48WN26tSJzZo1y7V7pkKFCjx37pyB4/79\n+5wxYwZLly6dq/eusdWoUYNxcXE2dYPakyM7poRjNpZjuQ35lSwAb6aZqCFry1XM7o/Jgvy4Yhx6\n2fMsSp/niCOrBTx27FgmJCSYHAHPTQ4bTS/XcxtyBC9PyIMqqZCDw2yFibgAWf2ely9fcsKECZYc\ns2IcxvUjG/VEMY7SpUtz2LBhbNCgAfv06WNqXn2u3jPZzA/FfUi9evW4ZcsWa6tj7c6RHcuxYzYC\nKwxZO+4T3edSkFvTAuRpJnaXYn/bOZRmySsc/xfKJp8jnyO3OXLsmGFG8htvlGXvA3hl7x+T1zmM\nWEIgt4zsrU6dVzjyfNnkc+Rz5CWOHDtmZOhjNtpeHm+CnY8BEIsMyrJ2yNS8zOGON0G1f4IcXjCT\nOvX/UY68Xjb5HPkceYrDFscs6L7YZBIEoQWA0wBu6C4KyMHpvwHQFEAE5PmAFyFPmreLCOpbwNFH\nx1EG8oj8YMjBt93swZJXOKyw5JWyyefI58gzHLYmi2KsNC/5XRzAQ5IjdJ8zCRgqmfI6B4CDgiD0\nAeBrxPLMXix5hcMSS14pm3yOfI68xGFrypFKtiAIjyFPzC4CoBCAL5XBeus49Cx9BUFojv9WBj2f\nI58jn+Pt40iXcqqSTchPl2UAftfv1KkgU2GzpJL9X3PoWZwgy6C/D2AFMqhC/x/l4NvKYec6ks+R\nz2GJI2cq2WYGBfUBpJ9C7s+8hGwqyzo5ObF58+YURZGxsbFmJ63bm8NWs5InGshBapz1LMiCKvTb\nyGGlbPIsR3briLu7O6Ojo7lmzZosLblVmiMv5EeNGjV46dIliqLIvXv3mlUvtzdHxYoV+ejRo/88\nP3JSLhnNaotZEIS1giC8FAThptHmgpCXMpaHPCm7AgC9cJ/NyrLFixfH5MmT0apVKwiCgEuXLiEp\nKcnuHIUKFcLOnTsRFRUFNze3dPuKFCmCsmXLmjrNLIcgCCUgq+0C8uBCIoDnJK/ARnXqrKa8wqH7\nXrtzODs7o0ePHnB1dVWKA8iGGvOcOXNQokQJnD171qy2nL05ihYtitu3b4Mk9u/fj/r16+PEiRM4\nceJErnC0bdsW+/btQ7du3VCsWDFcuXIFHTt2hL+/6QagvfOjUaNGuHTpktXj7M2hZLKlK+NPmJb9\n3gDAA/Iy030ABgqC0BaykwyHlVSkSBH89ddfmDhxomHbli1bkJKSYu4UP8jxUh1zypGcnIwbN26g\nVKlSGWXnsXz5cmzYsAGFCxfOKkcQ5Fbgdzqm8lnJD3d3d+zfvx+XLl3CkCFDMG3aNLRo0QIdO3ZE\nwYIFc40DAAoXLow5c+Zg6NChOHv2LObOnYsCBQpYOkUxjmrVqsHT0zPT9p49e2LdunXo1KkT3n33\nXSU4YI0lY3r33Xfx2Wef4fbt29i5c6elQ+3G0bBhQ3Tt2hU1a9YEAHTq1AmdO3eGu7s7Nm7cmCsc\nv/32G6pXr47AwEC0b98eXbt2xZ07d1CtWjVzp9gtP/r164dKlSpZEgq2O0eJEiXQunVrNG3aFLt2\n7cLFixcxdOhQg4hvxiQIQoggCBt1DwbTycaui4rQxTHVfbYkT98bViS/PTw8uH79emo0GsbExLBd\nu3b09fVloUKFLL0CCJCVIGKV4Bg/fjxJcvTo0em2nzt3jo8fP7YkP54tDlqYD+no6MgRI0bw0qVL\n3LdvHxcsWMCIiAiGhoZy586d5sIHKs4ByEHRT5w4Qa1Wy61btzI0NJSJiYkmNfiMTBGOjz/+mPHx\n8YyMjGSnTp0MwXEcHBy4du1aQ0jWCxcumItkZjOHbpvVumqcL2vWrOHJkyctRbezO8eMGTN44sQJ\n3r17lxMmTPhPOKZOncpy5cqlq79xcXGWpNDswtGsWTNGRERw48aNrFGjhtW8U5rD3d2dAwYMYHh4\nONPS0rhr1y7ev3+fUVFR3Lp1qyV/ZnFlLklk1zEnQO5GKGj0+RSALrCiLOvh4cFz585RFEUmJiay\nT58+luJBGEz3PY0BpCrBoXfMCxYsSLf93LlzFmP+ZpfDkkMUBIHe3t6GADlOTk5s27YtExISuHLl\nSpPRquzBUa1aNQYHBzM+Pp6///4769Spw/fee4/z58/n9u3bLYWXVIRj3rx5hkD9arWaX3/9NZ2c\nnOjo6GhwzKIoMjU11VyEOZs5dJ9tUkF2dHTksmXLGB0dzTZt2tjiAOzC0bBhQ967d49RUVGWYkHb\nnSOjDRgwgKmpqezXr1+ucQiCwMOHD1Oj0XDw4ME2+RAlOUqVKsU9e/ZQq9XywIEDHDZsGJs3b87y\n5ctz8ODBHDx4sCkhZ+N7N8cq2WsBvEJ6EUNL8vQWFW4DAgIoSRJVKhXbtWuXlQqwFnIAGFEJDr1j\nHjx4cLrt586dY2RkpKXQktnlyPJg18mTJ3n8+HFzQqiKcjg4OPC3336jJEmcNGlSuoGt+/fvMzY2\n1qDKbMIU4TB2zKIocvXq1XRxccnkmC0oh9jMYUsd0VunTp0YHx/PPXv22Fp2duH4448/SJJRUVGm\n1EpyjcPY3N3dmZKSwqtXr6ZrRdubY8iQIRRFkTNmzMjKPaUYx+zZsw1q7oKQPqhTWFgYnz17ZjaG\nue7aOVPJhvzU6ID0jtma7LdJZdmSJUvy0KFDlCSJe/futRq3NIM9BvCvEhwuLi7ctGkTJUniBx98\nkG7f1atXGRsby0aNGinNYZM6td5q1arFhIQEjhs3Llc4vLy8GBYWxuDgYMMrmLE8+6FDhyyF/lSE\nY9iwYekcs17009HRkcuXLzdst6C1lyUOS3VEb66urvznn38YFBSUlfqqOMecOXMYHx9PfYqPj+eQ\nIUNyncPYihUrxt27dzMtLY09e/a0FDZXUY733nuPYWFhTEtL46+//spZs2Zx4MCB7Natm7Voc4pw\nVKpUiSkpKdy6dWu63+zq6sr+/ftTo9Hw6tWrrF+/vjmenKlkG8G1QNZlvzMBffjhh4ZA202bNjU8\naQRBYP/+/Tlv3jyOGTPGZBByJTm8vLz48OFDJiYmZprio1arKUkSr1+/brJws8thjsWUubq68urV\nq9y7d6+51rLiHHqRWv1bjCAI7Nq1K1++fElJkjhv3rxMLQMjU4TDuMUcGhpq+O2CIHD27NmGffHx\n8fT397cbh7ENHz6cUVFRbNy4sWFbQEAAmzdvbvf8MLa7d+8yISGBPXv25GeffcbExESSNCcYbDcO\nY9uxYwdVKhUHDRpkTThAUY7Ro0dTkiRDt9bLly+ZnJxMlUrFo0ePskePHnblaNasGSVJ4vfff2/Y\nVrhwYS5dupQxMTGUJIm7du3iJ598kumNHLp716rPteKQM0pL2SzHbipjfvrpJ4P6QeXKlQmAderU\nMeiX6eXhP//8c1NPX8U4atasydevX3PEiBGGbSVLluSAAQOoT5GRkebmVGeLw9YK7+HhwYsXL/Lu\n3buWXg0V56hXrx5VKhUnTZpEHx+fdOoZWq3Wmu6fIhzGjvn169fcuHEjL1++zKCgIGq12nSt6adP\nn7JBgwZ24TAui+fPnzMoKIheXl709/fnrVu3KIoiw8LC2LJlS3POWfH64efnl+5hNGnSJJLkiRMn\nLAXvTzPi2YY3sYdF3bZTAIpltZ4WLlyYo0aNolqttqZsozhH6dKlefr0aYqiyNOnT7N58+Z0cXFh\njx49uH79ej5+/JiiKLJ79+524yhcuDBjY2MZFxfHixcv8tChQ4yIiKBKpaJKpaIkSVy4cCHbtWtn\nUhVJCcdcBkBtZEOO3VSm6qWcHj58yEKFCrFo0aK8fv06b926xSVLlnD48OGMiIjgypUr6eLikvF8\nxTjGjRtHkuzRowcbNGjAkSNH8uTJk0xOTiZJPn361FL/d7Y4bKnw7733Hk+fPs3IyEg2adLEUotM\ncQ5PT0/euHGDycnJjIuLoyiKvHPnDiVJYnh4uNmBDJ0pwjFw4MB0ztdYsVvfQtLb4cOHTbWaFcuP\nQoUKcfXq1ZQkiffv3+fZs2epUqkYHR1tUDc5deqUuUUVdqkfxtanTx+S5O3bt+np6WnuuHaQw1nq\nJa5aAlisY5kOefrY71nhcHJy4ooVK6hSqfjTTz8Zurfc3d0t1VfFOMqWLcvg4GCKokgfH59M+4cN\nG0ZJksy9USnGMWrUKF6/fp0pKSkGFfc+ffpw7969lCSJXbp0Ybt27Uw2aHLsmI3AKiKLcuymfszm\nzZspSRIfPXrEggUL8ssvv2RMTAzbt29PQBYGffr0KXft2pVplFVJjmfPnpEk//rrL0qSxIwpNTWV\nq1evNlnJssthrcI3aNCAarWa169fZ6lSpazemPbgqF69Ojds2MCNGzfS09OTc+bMoSRJnDZtmjUe\nRThKlSpFtVpt0jkb28uXLzlgwABTIr6K5YezszPXrFlDknz+/DklSeLFixdZv359JiQkMDk5mfXq\n1bNbfowePdqSwzU45iNHjljq+64I3WyqjCyQZwWEIgtae82bN+eTJ0+YlpbGsWPHGravW7eOT58+\nZc+ePe3OoXfMiYmJmfYJgsBjx45x165duZIfGZdae3p6Gt6oKleuzNq1a5ucyZRjxwy5K+M0ZCn2\nVMixSt/R/f8MsnxOOACtLT+mffv2TElJoSRJ/OOPPzhy5EjGxMRw9uzZ3LhxI1+8eMHw8HDWqVPH\nVEYowuHl5cXnz58bnHBaWhrPnDnDmTNn8tSpUyTJR48eWapk2eKwVMD+/v4MCQnhmjVr6OHhYc0J\n2o0DAAsUKEBBEFi5cmWePHmSKSkp9PPzo4eHh6V5mcGQX9E1ACZDXkE1TccSrjvGJpXsdu3acd26\nddy9ezfHjBnDCRMmcNKkSVy1apXBMYeHh5ubx6wYR4ECBbht2zZqNBo+evSIW7Zs4YgRIxgcHMxr\n164xICDA0hStHHEIgkCVSsVvv/3W5Hz64sWLc+fOnSRp7aGp5wjT1ZHKRnUkHHJXi03q1AULFuTC\nhQspSRLv3r3L7777jlOmTOHWrVspiiL3799vaXBYMY4yZcrw3LlzfPHiRbouHP3aiFevXplrLSvK\nYcratGlDjUbDoKAgU40GRR1zGQB/Q55SIkHui5kKWZY9Am9GFxNt+THFixc3NPVFUaRGozH0YUqS\nxBMnTrBx48bmXokU41i4cCFv3LjBOXPmsHXr1oa+5OXLl5MkDx06ZKkVki0OcyxNmzZlZGQkAwMD\nLRamvTn0VrRoUQqCwJEjRxoGVw4fPkwfHx+WLFmS7u7ups57peOIBhAJ2SFFQta7yzKHm5sbixQp\nkm7b8OHDDY45IiIi036lOQRB4IQJE6jVahkTE8OnT58yISGBW7dutWWBSY45du7cydTUVN64cYML\nFixg69atDft+//13arVaPnr0yNoshCjI/appkB3RAR2XnqMcgARr+eHo6MhNmzYxISHB0K2k0WhI\n0vB58+bNZmNlKMUByF0py5YtM0ynHDhwIH/55RdeunSJkiRxxYoVprpBFefIaMWKFeOZM2coSZKl\nqbaEEo5ZB2WQY8Gb5n8MgCm6/VmSHi9dujSnTJnCCxcu8PLlyzx37hx///13jh492lo/pqIcpkzv\nmJcvX644hymWUqVK8dGjR/z3338Ng6FZMMU4MpreKUmSxEOHDtnCYpDr0bG8ADAP8jLXbHMYm3H/\ns0ajYcWKFe3O4ezszGXLlvHChQvcuXOnocstt/LD39+fjx8/ZkpKCo2TKIqMjIykn5+fXepIxuvU\nq1fPMOAaGBjIZcuWGWzbtm0MDg7miBEjLE2XU/Te9fHxYWhoqGEGVUJCAiMiInj48GGzc4ftwWFs\n1atXp1arZWJioqWFWASUaTEbpKUg9888gRyvNBhyayAEcof5ipzcdDaa3TmGDx9Okpw4caLiHKZY\nxo4dy5CQEHp5eeVaftiSJyVKlOCVK1d4+PBh9u/f3xYWvSS8nmU5gIMAHkJujdxFDlWyvb29DUuy\nw8PDzXWr2J3DRlOMw9vbmz179mTnzp158uRJTpgwgR06dEg3fU/pOpLxOmXLluXgwYMt9ann+r1b\noUIF9u7dm8OGDWOzZs1Yv359Sy12u3HorVKlSjxy5AgfPnxo9VglHHMLyE39GwBUuorlD6AKgP/V\nbQ8DsDUXKnuucFiZCZFtDlMsGzdu5P79+3M1P2zJkwYNGvDZs2f8/vvvbWmVEbIk/HUdy3QAJQCc\n1HEcgTwtKUfqw4IgcPLkyZwyZYqllX9257DR7MJhQ938T+6ZfA554sKUKVMYGBho9dgcO2YdlFk1\nZt1+k2u+7ZCpbzWHKZZGjRoZVrf9lxwZrXTp0pw2bRqbN29ua7/3W102+Rz5HDnlKF++PDt16kRf\nX1+rx+bYMcO8SrY73kh+vwBwKxcyNU9z6P76Q44LnQBgvJ1Z8gpHni+bfI58jrzEoYRj1ndlXIM8\nBesq5LXjmyBPM3kA+Ql0DfaXHs/LHIGQX4XSAJwA4AlZCcGeLHmFI6+XTT5HPkee4rDFMWdXJVsF\noCjJTrrP4wB01P1Y/bmmo0QrmPIKB2R16g8B/GDEsvU/YMkrHHmmbPI58jneBo6MKbsq2eUBhAuZ\n1al/VojrbePQs3woCMIN/Ldqu/kc+Rz5HG8fR7qUXcdMo7+tIK9Bb2V8gG4EWbFk5qmVVziMWVqR\njBEEoZc9WfIKhwWWfI58jnwO2znSJVs0/0ylZ5CXawPyAGEFZJD8zuZ1zSYzkt95hUPP4qTjgDGL\nIEug34SCKa9wGLG8dRx6lnyOfI7/gMMUy5tkS0e0iUFBfWT/JwCuQA6dN1e3L7el2LPN4ebmxho1\nanDSpEnctWuXIZRhUlISu3btajIeg5U80UAe3b2hY6pvxJElBRO1Ws0OHTpkeQBBCQ5HR0cWKFCA\n7u7urFOnDuvUqUN3d3f6+PiwW7du7Natm61lo1h+5LCOZOKwVkccHBxYoUIFVqpUiV9++SWDg4M5\nZswYxsTEMDk5mTt27DAbllVJDmOrVasWhw0bxv79+zMyMpJ79uyxGPDKXhzFixfnRx99RB8fHwYE\nBJgLj2t3jlKlSvF//ud/+O2333Lq1Km5Wj+Mzd3dnV27dmXXrl15/vx5Pnr0iDExMfTz8zO5mtkW\nH2u1xSwIwlohg+w3ZJ2sGMixNKoBWArgI526rEXJbwcHB/j6+qJLly64ePEiLl26hKFDh2Lp0qUA\nABcXFxQqVMjuHADQq1cvdO3aFWPHjoWbmxuOHz+OJk2aYMGCBahduzbGjx9vE4fwRgb9OeRVRQUg\nP4VL6DlIRlhiAYD58+djz549+Oijj7Blyxb8+uuvqFGjhslj7cmxdOlSnDt3Dn369MGBAwdw4MAB\n9OnTB/v370dgYCB++eWXjCx24ShSpAiGDBmCzp07Y/HixahevbrF47PIAVioIx9++CEOHz6MHj16\nYPbs2YiOjsatW7fw9ddfY+TIkWjZsiX8/U03eJTkAABXV1c0btwYQUFBWLx4MZydnXHixAl4enrC\n0dHR3GmKc+hZNm3ahK1bt6JTp05YsGCB4d7NTQ4A6Ny5MypUqIDTp0+je/fuaNOmzX/CMWfOHKxc\nuRJVqlRBXFwcdu/ejfDwcDRr1gwtWrSwdrrJZEsf85+QY5ZuMNo2HcAGkr8JgvANgEqQ1543gvzE\nMSv53bBhQ5w6dQr79u2DWq2GWq1GWloa9uzZgy+++AJdu3bFlStXMGvWrIyn+kFeMllJCQ4ACAoK\nQs+ePdGkSRM8fvwYoigCkB8OP/zwAxISElCwYEEkJyfbwhFE8iMjjkhbOfTp22+/RXh4OIYPH45j\nx47Bx8cH/v7+CAkJMXW43Tj8/PxQsmRJVK1aFWFhYQCA8uXLY9u2bbh+/Tr++eefjKej6151AAAg\nAElEQVQoyuHi4oIKFSpg165dqFu3Lk6cOIFWrVph0KBBaNSoEe7evQtJkkydmhWOo7AgT6/VahER\nEYF///0XVapUQWxsrL6FhZo1a8LR0RFeXl7mfoJiHO7u7li5ciXeeecdODg44LvvvsPq1auxevVq\nc99tFw5nZ2d06NABQ4YMQb169bBgwQL8+uuvmD9/Pjw9PXONwzhVrFgR8+fPx61bt3Dz5k0UK1Ys\n1ziqV6+OjRs34tixY4iLi0OTJk3w6NEjLFy4EAAwc+ZM+Pn5mbx3BUEIgSxz9TXJGJOkNnZdVER6\nlewwHXRByLLfYXijgmxR8rtx48aUJInnz59nmTJlCMghFhcsWMD4+HgeP37cnBS5ANPy49niAOTI\nbvPnz2fDhg3Tbe/duzcTEhJ49epVU6EMs8VBG+ZDajQaDho0iI0bN+aECRM4fPhwSwGV7MIhCAIf\nP37MefPm0c3Nzerroc4U4yhSpAinTZtmCFDz7Nkz7tmzxyCycOTIEUsR1Wzm0O03W0cEQaCLi0um\nwDyurq4MDg5mQkICP/74Y7tzDB48mGlpaYyMjGTjxo2tSTjZjaNfv3588eIFQ0JC2KRJE0O+uLq6\n0tnZmYUKFbKkpKIYh7HNmDGD77//PitVqsSdO3ealWGzB0f16tV58+ZNSpLE2bNnp4vTIQgCL126\nRLVabS6+iAD5oZBpWb6BzQannFWVbIvS4wUKFDAoEOzatYvFihXjhg0bKEkST548aanPbC2A1wAk\nJTgA8NSpU5QkiSkpKaxbty4BOWZ0QkIC1Wq1uYhv2eKwxTGLosipU6caYiIMGDDAkmO2C4cgCNRo\nNBb7t02YYhweHh68cOGCIZzknj17+MMPPxhEfI0f6DnhsLWOZMybkSNHUpIkbt++3VJ8asU4Vq1a\nZaijQ4cOzRQD2sHBgc2bN2f37t0ZEBBgF45y5coxISGB9+7dMxuvY+bMmYyLizPX726XchkxYgTb\ntGnDr776il9//bWi9dQWjoIFC1KlUvHx48cG/6HnEkWRP//8s8mIe7prmw2ZYKtjNqWSrQbwrdHn\nBKP/rUqPu7q6cuHChVSpVExJSaFareby5cstBdqmjuMPpJcfzxFHsWLFuG7dOiYmJvLUqVMcN24c\nExISeOnSJbZp00ZpDquDXadPn+aRI0fo6OjIggULcsmSJZYCoduFo1+/flSpVKxXrx4rVarEhg0b\nWnKEelOMI6NjzmhWHLPNHLbWEb3VqFGD8+bNo0ql4p07d0zpDdqFw8PDg/PmzeP58+eZlpbGU6dO\n8YcffuDAgQP5xx9/8Pz580xNTaVareaNGzcyDlgrwtG6dWtqNBqDvp+TkxNdXV1Zp04dfvHFFzx2\n7BhTUlK4Y8cOc7FV7FIu3bt356FDh3jnzp1Mb725VT+aNm1KlUrFw4cP08vLiyNGjKBKpeK+ffvM\nDorqrj0awK5sO2bdRTKqy1qMYQobJNBLlizJ27dvU5Ik7tixw1Jwa72FALigNIe7uztv3rxJrVbL\n5ORkTpw4ke+++66l2LLZ5bhljcXLy4v3799noUKF2KNHD4aFhVlyQnbh2LRpE5OTk7l3716GhoYy\nIiKCd+7csRbMSDEONzc3Dh06lLdv3zZYaGioQVRhw4YNlrpYssRhSx3x9fXln3/+ybCwMIqiyIcP\nH7JSpUrW6qqiHA4ODixTpgw/++wzPnv2jKIoGsQl7t+/z59++ok+Pj4sWrSoXTg6duxISZIYGRnJ\nzZs389ixY/z333/55MkTgyLRkSNHLNVVxcsFRj7k2LFjlu5Xu3IIgsBTp05Rq9UyLCyMsbGxfPLk\nCd977z1LHHohi3JKO+YcxzDt3bs34+LiDEoM1o63B4ejoyO//fZbxsfHG1S6rWRotjlsyRMXFxeG\nhoZy/fr1DAkJ4eeff57rHH///TclSWJ8fDwPHjzIwMBAiqLIH3/80VLYSbvkh97at29PlUpFURQ5\nZswYS8cqznHlyhVqNBpqNBqDM0xOTuann35qSdjBLvnRoUMHvnz5khqNxpAfs2bNMiezpRjHO++8\nw7Vr1/LJkyd88uQJHzx4wH///Zf/+7//axDsXbx4saX+b7vkh6urK69evcrLly9bU5S3K8fcuXOZ\nmppqeKu7d++exdjQNvlcKw65AmQ5loxy7A0g99fo+2YyNckt/RBBEHjv3j1GR0czNDTUJsesNEeN\nGjX4888/My0tjWlpaVSr1UxMTOSiRYustd6zxWFLARctWpQXLlygRqPhzz//bG3wzS4cw4YN47Vr\n1/jFF1/Q0dGRbm5uVKvVPHPmjDlZKdorP/Q2bdo0SpLE2NhYa3NmFedo06YNBwwYwAEDBnDYsGFc\nunSpQQbNwniI4hwNGzbkw4cPKUkSf/nlF3bv3p0HDhzg69evGRgYaK4bMM2IZxvk2MMnIGsQ6vtX\ni9nCUaxYMdaqVYu1atWip6cnHRwcWLFiRYNjnjBhgqVyUYzD2Jo3b85//vmHy5Yt44kTJ6zOp7YX\nx08//USVSmV4q7tx44bF2NlKOOYyAGojsxz7YgDf6I6ZAqORTlsds0ql4rRp0/j06VNbHbOiHDNn\nzjT0Wc6cOZMRERGUJIlXrlyx1ALJNoc5Fr0a8z///MOoqCimpKRQFEX27t3bLvlhS0XLWKlSUlJ4\n69YtS6rNduEA5FkaL168oCRJvH37trXj7caht4CAAEqSxL///ttU14FdOJydnQ1dKevWrTO8tguC\nwDVr1lCSJI4YMcLUue0gL5wonJEF8uBTFIDfs5sftWrV4uvXrymKIitUqGDpWLtwdOjQgd999x3d\n3Ny4adMm7tmzxxqz4hz9+/enSqXis2fP2LZtW4aGhvL69esWOWxxzBYXmJB8SfKW7qM++n85AJ0h\nh5gE5KeQs6XrZExLly7F06dPERQUhPLly+PKlStWz1GSw93dHS1atEBSUhKmT5+OyZMn4+uvv4ZK\npcK5c+cyzlu2G4eLiwvWrl2L/v37w93dHfPnz0ejRo3w5MkT+Pr6Wlw8YI9ycXNz018bAPDOO+9g\ny5YtcHV1xatXr5CSkmLpdMU49MnBwQHLli1DmTJlcPXqVfj6+tpymuIcxik1NRUA8M8//yA+Pj5X\nOLp164ZKlSrh1q1bmDx5smEOtyAIuHHjBtRqNdq1a2fq1PsAQDJJx1IT8kB+IIDuAC5CjqSWrVS9\nenUUK1YM58+fR1RUlKVD7cJRpkwZXL9+HWq1Grt27YK/vz+KFy+eKxyFChXCkiVL8Oeff+Lhw4fo\n0aMH7t69i9jYWNy8mfNoAxYXmAiCUAHyROjiumNrAjgOuYvjhSAIEuSKZnPMDQ8PD/Tt2xcHDx5E\nUlISRFHExYsXrZ4nCEKUUhx+fn5o0aIFunTpgkOHDgEAbt26hYSEhFzlKFiwILy9vXHs2DF88803\nhsno+/fvh7e3N5ycnAyLXuzJoU8ajSYd27hx49ClSxecOnUK/fv3x6tXr8ydeg+ys6kNwBFy6+O2\nIAglIb++FxAEwZ/koazwVK5cGY0bNwYAXL58GTExpufi24OjYMGCkCQJarXasM3R0RF+fn4AYG6B\ni+IcANC0aVMAwKFDh/Ds2TMAQL169TBr1iw0adIEbm5u2L59u1kOQRC0kF/VtXiziCIFwFMAZW1h\nMJV++eUXCIKAAwcOGB5YZpJdOARBMDRe3n//fWg0GqhUqlzhqFq1Knr16oW0tDRMnjwZwcHBqFq1\nKpKTk7F169as/pTMycaujMKQY1FEQG7+W5xmYqn5X7FiRSYnJzMoKIj//vsvw8PDWb9+fVtenRTj\n6NmzJ1UqFUNDQ+nv78/Ro0fzypUrVKlUnDJlil04zLGMGTOGUVFRDA0N5eDBg+nt7c179+4xMDDQ\nmmq4YhxeXl48c+YMP/vsM1atWpUjRozg3bt3GR8fz5MnT9oiL9UI8uBJL8itkiQAU/UsWckPY/v6\n66+ZlpbG6OhoWxWqFeFwdXXl8+fPefjwYQ4cONBg69at46tXr5iSksJ+/frlWn6MGTOGkiTx1KlT\nnDZtGoOCgvj69WumpqYyNDSU33//vd3vmYzWokULSpLExMREent759q9a2wdOnTgokWL2KRJE54/\nf57du3fPNY6mTZsyOTmZaWlpXL16Nbdt28bo6Gjeu3fPat7Z0pVh/QCFJb/Lly/Pa9euMSgoiKmp\nqdy5c6etK8wU43jnnXf4448/UpIkHj16lKIo8saNG+zcubNV6fHscphjcXBwYKtWrThmzBheuHCB\nT58+5apVq2yZl6kYh35AKz4+ntu2baNKpeL27dvZrFkzS4sojM2go6ZjeQFgHoDvspofxnb8+HFK\nksR58+ZZe0gpyuHm5sb169dTpVIZGCRJ4oEDB3jixAn269fPGo+i+VGtWjUuWrTIMDXt8OHD3Lt3\nLwcPHsyqVataGmhS9N7Vm6OjIw8ePMijR4/y999/z9V719g++OADhoeHMzAw0KYgRkpyNG7cmHFx\ncYb6odVqOX36dLZt29YqR44dM4w0/6Cg5LeDgwMnTZpESZL45Zdf2pKhtAeHvkILgpAVBeJscdhS\n0f4rDv0y6CdPnnDixIls165dVhWZf9VdV8+yHMBByErELwHcBVAiq/mhX2jy2Wef/SccpuqHjfli\nl/zIYv2wyz0DvJk/PGnSJFtaqXbjyEJ52IUjm/5DEces1/xTXPK7Tp069Pf3z7TE1IK91RLodmDJ\nKxyErJN2XccyHXJ0rpM6jiMA5sJEXABr1x04cCBXrlxJLy+v/5Qjr+RHbtWRfA77cuTYMeug/s9L\nj+cGhx1Y8grHW182+Rz5HLnJkWPHDKOujAzb/7+VHjfHofvrDzm2awKA8XZmySsceb5s8jnyOfIS\nhxKOWd+VkWXJbyXtLeAIhPwqlAZ5JZEngEv2YskrHG9J2eRz5HPkGQ5bzeI8ZpL/wMRcWMEGyW8l\nU17nAHBQEIQPAfxgxLLVXix5hcMSS14pm3yOfI68xGFryq5KdnkA4YIgPIb8ulwEQCEAPyvE9bZx\n6Fnyggx6Pkc+Rz7H28eRLmXXMdPobyvIa9BbGR8g5K70+H/NYczSirkgg55XOCyw5HPkc+Rz2M6R\nLmVpya5RegZ5+S8gDxD+V5LfeYVDz2JSBl0QBH8hvYjs/xkOI5a3jkPPks+Rz/EfcJhieZOy2ZGu\nj+z/BPLyxmQAc3X7bJL81puDgwNdXFzYpk0b9uvXj15eXia1w5TkcHBwYJUqVThgwAB26dKFt2/f\n5v379zlhwgRKksSwsDA2adIkS9LjMCODbsRhVjmkdevW/PbbbxUZ2c0Jh4ODA6tVq8YhQ4awWrVq\nmfY7OzuzbNmyWSmbbHHorWrVqpw9ezZHjx7N8PBwHjlyxOLy8KxwZKeuenh48MyZM4yLi2PLli1z\njaNo0aL08fHh4MGD+eGHH+aojiiZH4AcQ1wfDrR06dKsVasWq1SpkuscGe29997LtCrRHhwlSpTg\nzZs3OX78+Bzfu+m4bHDCayGvVjIWYy0B2RGqIccBmA852FFbAB/CRh01BwcHjho1isOHD+fr16+Z\nlpbG8ePHc9asWaaOV4zjnXfe4cSJE/n06VNOnDiRJ0+e5I4dO/jBBx9w+vTpjIuL448//shmzZpl\nheN/dYWaCHmEN8KYQ3ecyXz46aefMsWzXbRokcVg2/bgcHV1Ze/evSlJErdu3ZqprObPn89169aZ\nOldRDgD09vbmrVu3uGXLFpYvX56dO3emKIqWYiBniUO336a66uTkxI8//tig5SZJEoODg1mkSJFc\n4ZgyZQonT55MURT58uXLrDgou+VH+/btOWjQIAYHBxsC6H/zzTd88uQJHz58yP79+9udw5Jdu3aN\nGo3G7vlRr149xsTE5PiBmdFs6cr4E/I8P+M0HcAGkm4AfgLgAnnteSPYKD1er149XLt2DYsWLUKX\nLl0QGhqKAQMGoGzZslCpVPD19cW4ceNQoYK+pwJ+kJdMGsfCzBZHQkIC5syZA09PT8yZMwetWrXC\np59+iuDgYMyePRuPHj2Cn5+fuWhz5jiCSL4HYDKAvwEsscbh4OCATz/9FDNmzMgU0rJ79+7o0KGD\nmdxTjsPFxcXwf2pqKgoXLgxJktCpU6d0xzVu3Bg9e/bEhAkTTLEokh+AHDHs+++/x8yZM/HTTz/h\n888/R2xsLDp27Ijr169bizCXFQ5YY9GnRo0aYfHixejUqRMePHgASZJQv3599O/fH4JgsrtQMQ5B\nEFC+fHm0bNkScXFxKFmyJEaOHAknJ5uGhxTPD0EQMGvWLOzYsQM9e/ZEVFQUzpw5g7t376JgwYJY\nsGABAgICcOzYMbtwFCxYEM2aNcPQoUNRokQJk4yNGjVCdHQ0Ro8enXGX4vnRtm1bODs7IzExMd32\ngIAAVKlSxeQ5giCECIKwURAE0z8AgK1dFxWR/kljVZ4eFp4YPXv25P3795mSksJ9+/bx008/pZOT\nE2vVqsWNGzfy5cuXTE1N5alTp9ikSRP9eQKyID9uC0dGK126NJcvX860tDRevHjRXIs1WxymWojF\nihXjuXPnSJL79u1Lty8pKYkJCQn08PAwx6sYh7HNmDGDaWlpVKlUhm3Ozs68fPmypdaaYhzvvPMO\nV65cSX9/fzo7O7Nt27bcvXs3T5w4YU61PFscuv1W60jRokV57tw5arVarl+/nvXr1+eTJ08oSRKj\no6ON66ddONzd3XnmzBnevXuX3333HZOSknj9+nW+++67HDRokLUA9YrnR+HChRkXF8f9+/dz5MiR\n1t5gFOcoU6YMjx49SkmSTKmCEwB/+eUXqtVqjhw50u75sXLlSsbExLBmzZrptq9Zs8aSwr0A+aGQ\naVl+VrsyXiG9VpZVeXpzP6RZs2YURZHR0dHs2rVrun1fffUV1Wo1VSoVv/zyy4yBQdYiC/Lj1jgy\nmru7O0+dOkVJkhgeHs569eqZOzZbHKYcUf369RkTE0NJkjhnzpx0+xITEymKIn/66Se7cxjb2LFj\nKUkSt2/fbtiml3bavHmzufMU5RAEgb6+voyIiKAoioyKimLr1q1tKUdF5emBN4GUTp06Zdjm4OBg\n0Hg7dOiQXTmaNGnC2NhYnjlzhm5ubjx06BBDQ0O5Z88eSpLEP/74I1fzo02bNtRoNPzoo49suq+U\n5vDy8uKdO3cYFxdnciyqcuXKvHfvHl+9esVWrVrZPT8uXbrEq1evsnz58unq78uXL83eL7prmw2Z\nYKtj9oUcHs/YMdsiT58JqECBAvzzzz+p0Wj45Zdfpgtg1LdvXyYlJfHGjRvs2LGjqYE3X2RBftwS\nh7E5Ojpy4MCBvHfvnqH/sE+fPpaCK2WXI9NgV+PGjQ0isBkr0bZt2yiKIidPnmx3Dr25ubnx4cOH\nFEWRvXr1IgCWLVuWISEhTE5OthTSUFEOAGzQoAFnz57NQYMGcdGiRbx8+fL/a+/c46Io9/j/GZWL\niCSgadExUSlNTMjsZMZRs+OtX9k5XsoLldfoHMvSXv3MspPlq9s5pqZpkopYKuU9jyHiLa+pkEp5\nSdRMAUVCYWEX2N2Zz++PZ3YF3MsAs0bnN9/X6/ti2dmdfc8zz3znmefy/bBPnz7esnjpJk8fEBDg\nzIN8/PhxxsTEuDw/K1asYFhYmM84nnjiCSqKwt27dzvPUc+ePZ1q2fPmzbsp5QGIgb6tW7eyrKyM\nffv29Xhd6c3RsGFD9uvXjz/88APLysr473//2+VvPfnkkywqKmJycjKbNWvm0/K48847aTabuXv3\n7ip6g6GhobRYLHz22WfdTiAA8CLcaD9qCszqTqqry2qRp78BKCoqihcuXOCOHTuqAMfExNBkMvHi\nxYvuBtwIkZavRvLj7jgqe0JCAgsKCpw5dxVFYU5ODgcOHKg3x0/V9zVgwADKssxTp07dIP1++fJl\nyrLMNWvWuNMg1I3D4YMHD6aiKMzOznYmP3/ttdeoKAozMzPZvn17dyy6clT3gIAAzp07l1euXGG3\nbt08fVY3efq+ffsyNzeXFouFw4YNc+rsOXzIkCEsKSmhyWTik08+6TOOxx57jHa7nQcPHmRwcDCb\nNGnCgwcP0m63U5Zlj0rqenIA4NChQ2m323ngwAHefvvtms6dXhyDBw9mcXExLRYLk5KSXAomS5LE\nzMxMKorCN99809VNXNfyGDNmDBVF4b59+zhz5ky+8sorXLRoEVNTU6koCl955RV3ws4nAWwBEFGr\nwAwxp283RN+LArHUFxCd6FaIO04xgCQX370B6O6772Zubi4LCwudqr6BgYFMTEykoih84403PLWI\ndONweM+ePXnt2jWePHmS77zzjtPtdjszMjJ05XDFEhYWxszMTFosFg4ePJiRkZGMjIzkkCFDnI/K\nGRkZru78unKgUvBTFIXLli1jQEAA77zzTmZlZVFRFJrNZpaUlNwwW0N13TjceWBgIM+cOeOthagL\nR+vWrZmamkqbzca0tDSXYgGtWrXioUOHaLfbOW3aNJ+VR9OmTZmSkkK73c7s7GyePXuWiqJQlmXK\nsnxDd2A1P6py/AzgNYjcw4UQM5gsEANbmlShGzRowAULFpAkDxw4wPnz53Pu3LlMSkriZ599xo4d\nO3pSl68ThyRJ3L59OxVF4Zo1axgWFub0tm3bMiYmhmPGjOHixYtpt9tpNpvdzZjRrTyaNWvGjRs3\nVmnQORLmK4pCq9XKYcOGuSwPTzFXa2BuCTFSma8ekA1C5Xe5enBZEEmmT2s5mJCQEGclW7JkCcPD\nwzly5EiaTCYePnyYkZGRniqZbhwOb9y4MQcOHFjld3v27Emr1codO3boyuEpMMuyzJycHJ45c4Zn\nzpyhyWRyXnj79u1zp8asGwcgJL9OnjxJRVG4c+dOzpo1i59//jmLi4upKAptNhu3bt3Kjh07umLR\njcOTT5gwgRs3bvQ2Ta1OHI65yjabjatXr3Y5ACxJEr/55htarVaeP3+effr08Wl5dOjQgYmJiczL\ny6PdbueFCxecLWYvgfk3lSMHQtfu/0Do2uVB3DyOQKMqdJMmTbh+/Xo6TJZlXr16lWfOnGF5eTlz\ncnJ47733+oRDkiSWlpZSURSeOnWK27dvd/q5c+dYWFjI1NRU52c2bNjgroGnW3mEhoY6+/mLior4\n7bffcv78+UxLS6OiKCwoKOCECRN8E5grgbWBmIDtkGM5CyBc3dYJgFVrJevSpQsvXrzobA2WlZWx\nqKiIt956q8eLUm8OV967d29arVaWlpZywIABunK4YgkMDOT69eurtIAqv/bUx6wnB3B9UKd6C8AR\nlIcMGeLpaUY3jso+cODAKt0EM2bMYEpKiicpsjpzxMTEMDU1lb/99purgMuQkBCn+o7FYnE3KOmT\n8ggLC2Pv3r0ZGxvL8vJyVlRUeFzogkqzqaqzQAw+nYFGKSU/Pz+OGjWKH330EadNm8Z7773Xqdwx\nc+ZMyrLMRx55xGccf/7zn5menu6sk2fPnuWePXu4atUqRkdH88EHH6TNZuPly5fZqVMnn5cHAN5/\n//1cvnw5b7/9dkqSxAYNGnDhwoVUFMXT2JDugfkUxETsEAAllba9CMBWk0oWFhbmbImVl5dz/Pjx\nXoOmLziio6P56KOPcvz48fz000/5yy+/8Pjx4xw7dqzbwb/acrhjadWqFZ955hkuWrSIixYt4vPP\nP88HHniAFotFa2DWhWP06NG02Wy0Wq08ffo009LSaLVaKcsyJ02a5O386MYBCHWbrKwsfvzxx+zQ\noYOznEpKSm5YiKM3x6RJk2iz2Xj69GneeeedzvfbtGnD+Ph47t271zkg6EFWSdfyqO7t27fn+fPn\nWVFR4W22ShuIG0QblaUt1AEulWMdainGCvX6ef/992mz2fj9999XKS+9Ofz9/dmqVStGREQwIiLi\nhieZp59+2tmibtOmze9SHm3btmV2djbtdru7aZTOa7dOgRmij/kKxCMZISRZxkBMK3H0mZkAWLQe\nTPPmzfnJJ5/QbrezuLiYsizztdde03LgunCEh4fzscce46pVq3jhwgWn2nB+fj4nTpzI1q1be5O7\nqhVHTU4wcH26nIc7r64ct9xyC+Pj4xkbG+vs63acIzcDfpW9Qv1rB/C1ynBZ5TOpXP21cAQEBHDp\n0qV86623nH2WjRo14gcffECr1eppXrcuHMOHD2dZWRkvXbrEYcOGsX///pw9ezYPHjzI0tJSlpWV\ncf78+ezRo4eneqJbebjyFi1acPfu3ZRlmdOmTWPr1q09cSjq630Q+bqVShw/ATB74pAkiePGjeO7\n777rDIadO3fm0qVLef78eVqtVqakpLB9+/Y3DJDqyeHJQ0JCnE+eSUlJnp6ofMrRq1cv2mw2ZmRk\n1Dh1QE0Dc0sAMRAJpP8vhBR7F4jRzOnqZzQryzZv3pxJSUnObox9+/Y5B/00HHitOSRJYnR0NPv0\n6cMNGzY4uwnKy8t57Ngxjh8/nsHBwZoKv7YcNQ3MBQUFlGWZU6ZM+V044uLiqCgKL1265LWbSa3k\nr0BIw5+GGET5EMDkmnKEh4dz+/btTEhIYGRkJDt16sSVK1fy4sWLHDp0qM85goODmZiY6OxWqjyo\nc/jwYa3CsLqVhytv164dz5w5Q1mWWVFR4WkGUZ2v3bCwMK5cuZLbtm3j559/zl9//ZVlZWXMzc1l\nWloaBw0a5Ckg68bhycPDw51q1aNHj/7dOByD594EarUEZm/rOq9A5J84QfJDSZK6Qcw/zQbQVf3M\nKIiBKK/WvXt3xMfHAxDLonv27In9+/dj48aNWr4+ubYczZs3R2ZmJvz8/JCeno5z587h66+/xokT\nJ5CWlobCwkLHCfApR00sMTERDz74IL744ovfhcPf3x+7du1Cz5498fLLL2PatGmePn6I5GwAUPPa\n+gO4FyKvbY04SkpKsHfvXjzxxBOYMmUKQkNDMXfuXCxevBi7du3y9vU6c5SWljc9v+kAABYSSURB\nVOLLL7/E3XffjZiYGKxevRq33XYb9u/fjzlz5sBsNms5DN3Kw5VVVFQgICAAAPDjjz/iyBG3Od3r\nXEdiY2MxePBg+Pv7w2QyYdasWcjPz8ehQ4dw9OhRrdeNT+uqyWTC9u3b0bBhQ2zatOl348jOzkZh\nYaGn86HdvLSYK8uxHId4JPsbhMqvBeKROQ9AGy13mUceeYT5+flMSUlhr1692KlTp5rIfteJo7LE\neA0lz3XhqGmLWQOnTzkCAgI4ZcoU5uTkuJsVUtkdcj3HIWYktIYYVKmAmIr0FYCwmnLUVBZeT446\n1heflIfDGzVqxOTkZMqy7K3Pvc7XbkBAAJ955hlGRESwYcOGN/WaqenvaDhPPufQUle0tJi9fkAF\nC4bQjntS/b85xHpvt2u+a3kCPR7MH5lDb5b6wvG/cG4MDoPjZnPUOTDDjeQ3rivLngZQ4OuDqe8c\nlVhOQrSMfK1OXV846v25MTgMjvrEUefADHEXcSX5fQeuJzufBOAaqinL+qBQ6zPHrbieVPtNAOvh\nQp36f5Sjvp8bg8PgqFccWgKzpP6wS5Mk6WGIpb9Z6k4BYBqAlwF0h0gq/SuAQxCT5n0igvoH4Bih\ncrSEGJEfC5EyMNAXLPWFwwtLfTk3BofBUW84tJrHWRl0L/kdCuAcyRfU/28QMNTT6jsHgFRJkkYA\niKvEkuMrlvrC4Ymlvpwbg8PgqE8cWq1OKtmSJJ2HmJjdFEATAAn6YP3hOBwsIyVJ6oHfVwbd4DA4\nDI4/HkcVq6tKNiHuLgsAzHVsVFWQqbN7Usn+vTkcLI0gZNBjASxCNVXo/1EO/lE5fFxHDA6DwxOH\nT1WyL0D0Zx6Gjgq3rrw+c1RisUEkqfFzsKAGqtAAOHXqVL7++ussLCzkjh073C7t9DWHw+Pi4ijL\nMl9++WVGRUXV9NzoxlHHOnIDx+9UVw2O/3GOkJAQrl69moqiuFVB0hRjNQRhT+rUCkTz/zKAieo2\nTQq34eHhHDduHGNjYylJmibw+4TD4QEBAWzWrBkHDRrEZ599llFRUe4WVnhSp7apHOUANlbmoMbR\n3Xbt2hEAJ0+ezE2bNnHs2LHs2rXrTecAhL7asWPHaLFY2LlzZ0+f1Z0jMjKSTz31FENCQmpy8Wnm\nqEkd6dy5Mx9//HF26dKFzz33nCcxB904JEnIa40ePZqLFi3ic889x7179/LgwYMcPHiwFv1Dn5UH\nAHbs2JEDBgzgoUOH2KtXL2+J833GERUVxe7duzM3N5clJSV8/fXXPeUw8RkHIDLwzZkzhzabjf/5\nz39q3KiqaWCOAxBb7YDmQYxm3qr+TQSQCSFPPwIaRFA7duxIs9nMrKysG9Q73Ph5AJshllTqwuFI\nWPT8888zPT2dL730EktLS2m32zl16lTOmjXL1U2jVhw1CYiASEweGhrKhx56qIre3M3iCA8P5/jx\n41lSUsKBAwd6u3nqzjF27FhaLBYuWbJEc5nVhEPd7rGO3H///Rw5ciQvXLhAk8nE6dOn02638/Ll\ny3zuued8ytGgQQN++OGHfP/99/n000+zZcuWjIyMZPv27fn3v/+diYmJN708HH7XXXfx4MGDnDx5\nMqdNm8aCggLu37/f0wpRn3C0aNGCu3bt4sSJE7l48WIuXryYO3furCJsUG21ok84HP7QQw+xpKSE\na9ascSmuUMlPAvgSLlZ/ag7MKmAb3KiS7cgv2xwij+nrqmtWp162bJm3/KmV3Z0qdI05/P39OW/e\nPJaXlzM1NdWZg3nlypU8fPgwL1y4wJ07d7pTua0Vh6dA1KBBA/bo0YPJycl84YUXqmzr0KED165d\n6yqDmO4cDg8KCuK6deu4ZcsWt8m+q7nuHI8++igrKiooy7Kmi6KmHOp7buuII4Pb119/zczMTK5b\nt47Tp093ygYdOnTIldaf7hyuvE2bNvzhhx88CQb4jEOSJM6ZM4dFRUXs0aMHu3Xr5kz09Pjjj9/U\n8pg8eTLNZnMV8Yb+/fuzQ4cO7NixI++++24OGDCgcqPCZ+clOjqa33zzDbdv364lqVPdVbLdBGYT\nhOR3UKX/HfL0mtWpFy1aRJPJ5OmEOl39nQcAVNSVw9/fn4mJiXTYsmXLOGjQILZr144hISFMS0sj\nSa5YseKGlmJtOTwFotatW3P37t1MSUm5ocugQYMG/OCDD27IwOcLDodPmjSJpaWlXLt2rTtZq+qu\nO0fTpk25efNmyrLsSRmj1hy8/jToso44MpYNGzaM/v7+znrQqVMnpy6iB8Ud3ThceYsWLfjdd9+5\nlS7yJceoUaNYVFTEyZMnExDCF7Is89q1a8zJyXHXUvRJecyYMYPFxcVOhequXbty/fr1PH/+PLds\n2cK4uLjq15NPOCIiInjgwAHm5eXxL3/5i9fzp+67zirZSwEUoKqIoSd5ek3q1IAIzHa73VuqPocv\nhUgAI9eVQ5IkDho0iGVlZSTJ0tJS57bBgwc7A7abx9Xacrgc7AoLC2NOTo5HxYOuXbty3bp11fus\ndOVweLt27WixWJiXl+dS4deN684BgK+++iqtVivXr1+vlUUzh7c6EhwczJSUFO7atcv5XlBQEJcv\nX05FUbhgwQJP3Tu6cbjywMBApqSkMCEh4aaVh6NuWK1WfvPNN1Va6zNmzOBnn31GRVGcQfJmlMfU\nqVMpyzLj4+M5YcIElpaW0mKxcPXq1e7OjU84PvroI3fajy5d3XfdVLIh7hoDcaO6rNscptCgTg2I\nwHz16lWtUujnIfp/dONo27Yt161bR7vdzmXLlnHUqFE0m820Wq1MTk52Jy5ZWw6XqtDvvfceLRYL\n+/Xr55Zz1KhRfPbZZ6snrNeVA5Uu+OLiYidPcHCwlkT5unI4fMKECbRYLMzNzfWmjl0rDm91xN/f\nnyEhIfTz82O3bt24Zs0a2u127t+/n/fcc89N46juwcHB3LBhg5bArBtH48aNmZycTJvN5rKuDh8+\nnGazmW+//fZNK4/Y2Fjm5OTQbDbz+PHjnD9/PmNjYz11JejO8cADD7C4uJipqamazp3qdVPJrgT3\ncLUDOghgg/r6FQCfuPiORzg/Pz9+9913vHz5spZRbvqK4/HHH6fJZGJFRQVLSkpIiq4NdwMZteVw\nxRIaGsr09HSuWrXK7Qiun58f165dy+Tk5CoBUk8Oh/fs2ZM2m40pKSkMCgpiQkICDx06xL179zIm\nJsZTOerK4fBBgwbRZDKxpKSEQ4YM0VLhdedo3LgxZ8+ezdzcXNrtdm7YsEHLYLVPysPhYWFhTE9P\n13Ld6MbRuXNnFhcXc9asWS5nPTiuo82bN9+08njppZdYXFzM8vJyJiQkeFMe8gnH1q1bmZubywce\neEDTuYN67XqNuV4CcnVpqSIAoyE60WWIaWrlAO6taaEGBgbyyJEjPHHihDe5IIf7hGPEiBE0m810\n2IkTJ7y1EGvF4Ypl5MiRlGX5hgG/yt6vXz/+8ssvnDlzZvUWvG4cUAPQihUrKMsyX331VSYnJzvV\nj81mM3fs2MEWLVq449SNo7K3b9+eR44ccQ62aagjunKMGDGCJpPJObh19epVxsfHaxnc8Ul5OLx5\n8+ZMT0/XMpXQWonna1zPPSyr730HoJkWjoULF7KiosKdSrpTkstNYNaNAxB97MnJyTSbzTxy5AjL\ny8s5a9YsLWWnK0eXLl1YXl7OTZs28Y477mC/fv341FNPedIcJKBPYG4JIBpi8O84rsuxfA4xvUSC\naJKfqmkli4qK4rlz5/jDDz941Meq5LpzPPXUU8zIyKDdbncG5nnz5vmEwxXL9OnTmZWV5fH4//a3\nv7kb5NGNAxADkD/99BPz8vL43nvvsby8nEuWLGFMTAyff/55yrLMkSNHuuPUjaO6z5w5k4qiMD8/\nX0sd0ZVjzJgxvHTpErdt28YDBw6wrKyM165d0yKF5rPygHrtpKWlaflsX4h0lg6Jq564PkVsBoAM\nAHO9cTRu3JhFRUX89ttvXf5O48aNuXnzZiqKwn/84x8+4wDE00JKSgrLysr45Zdf8k9/+hO/+uor\n/vTTT1rk4XTjAMQguaIoTExM5Jdffslr167Rbrfz1KlTfPjhh91y1DkwVwJrgxrKsXurND169GB+\nfj737dunaWBHb46QkJAqLWWHualYdeZwxfL999/zvffe8/h7q1atcjktS08OALzvvvtos9k4c+ZM\n7tmzh8ePHycgZoVMnTqVVquVsbGxngKRLhzVPSEhgYqi8Nq1a1q0B3XnqLyU9uGHH2ZBQQFLS0u9\n1VmflQcA9u7dm3v37vXaMkOl2VTVWSBmBZyBBo27AQMGOFd/Vt/WuHFjZmVlUVEUVlRUuJtCqAuH\noz5YrdYqLeSJEydSURRu3br1ppSHw9944w0qisIff/yRNpuNhw8fdgZrT9d1nQMzRFfGbggp9gqI\nXKUh6uscCPmciwDsNa1kcXFxvHLlChcuXKipMurJ0bRpU65cuZIkmZ+fz5kzZ3Lp0qWaAnNtOVyx\nzJ49m0uXLmXLli2dCsQRERF85plnuH79ep4+fZrdu3f3OQcAxsfHU5Zl9uvXj++++y6vXr3K1atX\nMykpiXa7nW+//banLp6DEI/oNgDTAZQAeFtluah+ptaq0IWFhZRlWcucap9yOAZHrVart5V3PuOI\njo5mUlIS8/PzuWXLFn733XfO1aIeOM6qdaRtpTpyEaKrxasq9PLly2kymTho0KAq73fv3p1bt251\ndjUNGDDApxyNGjXipUuXePTo0Sp1MTIykkePHmVmZqbW+lEnDoePHDmyimBvWVkZL1++TFmWOX78\neLccegTmlhDihJdwfdnzvyBk2XNxfXSxpKaVbOTIkayoqHA5V9iN68bx4osv0mw2U1EUDhkyhCEh\nIczOzqaiKFpUkGvF4Yqlbdu2zM7O5okTJ5iens7Ro0dz06ZNvHLlCpOTkxkVFeWpbHTjAK5Lr69Y\nsYIRERFcsGCBs8JlZmZ663cvUDl+g1gWb1P/5teUw5UfP36ciqJoCcw+5ejWrRtzcnJYXFzsrZ/Z\nJxxTpkzhuXPnWFxczHHjxjE0NJT/+te/uHnzZnd6fFcg+lWtEIHovyqXgyMCgMkTR3h4OI8ePcqc\nnBzed999BER3wvvvv8/c3FyWl5dz+fLlvP322z3V1TpzAOLpbeXKlSwoKOCcOXN4//33ExDTGFet\nWsXz5897W3GnC4fDb7vtNp49e/aG4Pzhhx965KhzYFahnHIsuN78vwrgLXV7rSS/n3zySZaUlPDY\nsWNaVjBRT45ly5aRJHNzc/nOO+/w559/pizL7gYudOFwxSJJEocNG8Zt27YxPz+feXl5vHbtGjdt\n2sTw8PCbxgGIAaVly5YxIyOjiu/cuVPLIhOnXI/KcgnAhwCm1JTDlaekpGhtMevOIUkS27Rpwxde\neIEmk4n5+fmMi4u76RxxcXHcs2cP16xZwy1btjAwMJBQg+S+ffs4fPhwn1wzAQEBnDdvHm02G9PS\n0jht2jQWFRXRbrfzt99+46RJk27qtevv78833niDFRUVzMvL46effsqYmBgmJiZSlmW2b9/+pnA4\nPCgoiGvWrGFGRgZXrVrFv/71r17Lo86BGZWkpSD6Z36FyFd6EKI1cBKiw3xRTS+68PBwnjp1ijk5\nOW6zllVz3TgcgZkkd+7cSUVRuHLlSlfLnnXj8FQmQUFBjI6OZrdu3di/f38t0358wlEHn63u18Hy\nGYBUAOcgWiOnUAdV6KFDh7KiokJLYNaFQ5Ik3nHHHRw9ejT/+c9/8tSpUywvL+ecOXM0rVLVuzxa\ntWrFtWvXMj4+nseOHeNdd91VZXv37t353//+19kdVtc6Uv33e/XqxWPHjlFRFO7YsYOXLl3iBx98\nwK5du2pd+KNrDPHz82Pfvn357bff0mw2c9u2bSwrK+NXX33lTdHdJ7Gspq5HYH4YoqmfBcCsVqz+\nANpDZGXKguiv+ao2B/PFF18wIyODoaGhWg5IN47evXvTYrGQJMeMGaNllL3OHD44wfWFgxCS8MdU\nlhkQWbt2qRxbIaYl1Vp9OCgoiB9//DGjo6NvCodjRZmiKHzrrbeYl5fHF198sV6Uh7vuAjfv63bN\nOAZAPTF4cJ/EkFow+SyW1cTrHJhVKLdqzOp2l2u+9T6YPzqHD1jqC8cf/twYHAbHzeTQEpg9KphI\nkiQBWAKRKm92pfdvrfSxwRBzNn1tBkf95KhPLAaHwfFH4PBqtVXJHgHgXgD+EH01Y0nmVvuu+x3X\nzvhH5vABS33hqDWLwWFw/P/IQVLy9hmPgdkwwwwzzLCbb7UVYzXMMMMMM8xHZgRmwwwzzLB6Zo18\nsVNVlvvfABpCTE25D2K1zSkAd0D08TSGWArZEmLFWijEdBYFYtK3GWL5ZJD62Svq7l8nucXgMDjq\nylGN5Q4At0As0TU4DI7qHA0BtINozNohku4rAAoh5kHfBzHro4H6XrD6tzmEMkoWRKqEURArQz2z\naJm6URNHVXn6RhATt69AFUGESLy/CkCeWqgfAPgewEyI5O9dICbkX1FfpwLYbXAYHHpyuGDpBXFz\nOGdwGBxu6qoVwFiIBFUOkerfALwJke0xFcBeiPnQf4fIXPcaRCa7j1TOyVp+2xddGX8GcJxkLkk7\nxBQVf8dGknsAPASgiGQ+gP8AiIJYu56hFsJf1YOIgLjT3GNwGBw6c1Rn2QXRygo2OAwOFxx2iGRU\nsZU4rkGsHlxI8if1tzpAtIzLIZZ8L1Hf/0Hl9DojA/BNV8YdEJmaHJYD8RgQKUlSFoREeBhE8x4k\nf5MkqQmASQBug0jIc6vKtgdANwBhkiSdhJCGeYnkVYPD4KgjhysWu7ovg8PgcMcxHECQJEkTIZIg\nNSJZqG63qGyDVI4WEIG7G4RgwjIA/5QkaZw3Fl+0mF3Nv0uDyHXaRwVsWG27DeLRYyjEY0ATAJNI\nlgD4FKI/5x512ycGh8GhA4crlo8BFBscBocbjukQWeh+UTl6VNu+TP3OUIj+8EAAqyux2CD6qb2y\n+CIw50DkcXbYnyAOBCQLILI6VUAtXEmSblNfrwCwGeIxRYHoqwFE0/8KRafPIoi7j8FhcNSVwxVL\nUwA2g8PgcMNxC0Tftqxy3AvALklSc0mS/AAkAbhKcgNEF0YjABtJbpAkqQWAfKrmjcUXgfkwgGhJ\nkiJU2KcBHAAA9ZGjP0R/SzN1yfc3EHePOerBEGIFzih1fwkQuYeBmi2ZNDgMjpqwhAB4HECJwWFw\nuOF4GiIZlaRyZEP0O49SfzsQwCqVaw1Ed0upuq9RAHZW2rdHFp+s/JMkaQDEFBNH4I+CuKvJEGkP\nG0KMqMoQd5UiiGkt/gDKIAo2AmK6SYD6txE8LDM2OAyOmnJUY7lT/Q3J4DA4XHAEQPQ5N1LdBjEo\n2QTiZuAP0Qdth6jX/gB+hkiM5AfgBEQg7wgvKRMAY0m2YYYZZli9M2Pln2GGGWZYPTMjMBtmmGGG\n1TMzArNhhhlmWD0zIzAbZphhhtUzMwKzYYYZZlg9MyMwG2aYYYbVMzMCs2GGGWZYPTMjMBtmmGGG\n1TP7f52W/XF3cxoRAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWYAAAEACAYAAACAi9xRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4FFX7/u8JCSGhB0ILvSgiHQUEpCOEokGUN4gSpShF\nIkUIKM2vgMArgnQVQZCi2JAaUHonIBFCDYFAEgmppO9md+b+/TG76ybZMtnMhvD+9lzXcyXZndl8\n5jlnnj1zynMLJOEqruIqruIqJae4PW4AV3EVV3EVV8lbXIHZVVzFVVylhBVXYHYVV3EVVylhxRWY\nXcVVXMVVSlhxBWZXcRVXcZUSVlyB2VVcxVVcpYQVhwOzIAj9BEG4IgjCNUEQQtSEehI5ShKLi8PF\n4eJ48jjyFJKFNgCeAO4C8APgDiAMQBtHPqsoVlI4ShKLi8PF4eJ48jjym6M95g4ArpKMI6kH8COA\nAQ5+VlFKSeEoSSwuDheHi+PJ48hTHA3MtQHEmP0da3ituEtJ4ShJLC4OF4eL48njyFPcHTyPACAI\nQjSAdADlAZQFMFYdrCeOw8gyXBCEzgBEA8ufLg4Xh4vDxVHY4mhgjgVQB/JFdQcwCkBp8wMEQVA1\nCQdJoQRzGFncAXQnmSIIwjRnspQUDhssLg4Xh4tDOUeBgxwZMC8DIBrAfQDVIQ+Yt813DNW0ksxh\nxqID8CwAD2ezlBQOO3Xj4nBxuDgUcBTgUhCENwB4COCK2Ws+AP4CIEHu/scDeL+wF9OrVy9evnyZ\nwcHBDA8P59SpU+nm5mbteNU5ypcvTz8/P7788st8+eWX+dRTTzEoKIiBgYGsXbs2vb29C8Pxh6GC\nRQAaAL9b8KWaFewUjgoVKvDBgwd8/vnnTa916tSJwcHBfO6556ydVxL84XSOypUr88qVK8zKyuIH\nH3xAQ0+qWDmefvppDhgwgHfu3OG1a9e4cuVKenp6FjtH/fr1+f7773PBggWPpV6qVavGXbt2UavV\ncvbs2Vy7du1jbx9KTUlgVjL5txFAv3yvfQJgM4AaAKYC2AXgHUEQeiv4PFSrVg2dOnXC+vXr0bx5\nc3h6euLSpUsYN24cfHx8ioUjKCgIp06dQmBgILZu3YqtW7diyJAh+Pbbb7Fp0yYEBgZi1KhRheHY\nC3nJzVQDU22l/jCWKlWqoEuXLqhbty7ee+89rFy5Er1790blypWLjaNMmTKoWrUqqlevbnpt0KBB\ncHd3R3Z2trXTnOIPb29vDBw4EKNHj8b58+cRFhaG0aNHIyQkBJ6ensXGYSzPPPMMGjVqhDJlyuDj\njz9Gs2bNrB3qFI7nn38e27ZtQ6NGjTB79mxTO7VxzzjNH127doWPjw9GjBih5HBVOZo3b46hQ4ei\nT58++P7777F7925EREQUO4d5ad26NYYOHYo9e/Zg+vTp8PDwKOxH5C2KutVAfeT9pokCUMXwe1UA\ntwHMBDDT3reMIAi8d+8eDx8+TEmSmJaWxu3bt3Pw4MFcuXJlnp4a8n3LqMmxevVqhoeHMyQkhBs3\nbuSsWbPYtWtXvvbaawwODuZvv/3GyMhI1qtXTxUOayy+vr4cOHAgV69ezczMTGZmZnLPnj28fPky\nT506xeXLl/OZZ55RzR/2egDNmzdnbm4u33jjDQKgp6cn79y5w127drF169bWzlOVQxAEVqlShYsW\nLWJqaioPHDjAf/75h3Fxcfzhhx+o1Wr53XffsXr16k7lMJqnpydXrVrFw4cPMz09nUeOHKFer+fk\nyZOLxR9GW7BgAVeuXMmyZcsSAOvUqcOHDx8yKCioWDkAsG3btjx8+DCTkpKU9BJV46hUqRJ37drF\nQ4cOcebMmXR3d2eZMmXYtGlT+vn52Xp6cIo/ypYty7fffptxcXE8fPgw9Xo9tVotx44da/UcRTFX\nQVDeACARgMbsNS2AOADhAC4ByAJwDMDL9i6mVatW1Gq1lCSJV69e5YABA7h06VImJSVxwYIFrF27\ntrULUpWjR48ebNOmjcX3OnfuzISEBEZERLBy5cqqcFhi8fT05Lp165ienk6NRsMpU6ZwyJAh9Pf3\nZ9WqVe01dtU4jObm5saLFy9SkiQOGDCAAPjSSy9Rp9MxPDzcVt2oyjFo0CBeuHCBGo2GGo2G7733\nHjt06MB27dqxefPm3LJlCw8cOMC2bds6lcNob775JpOTk5mamsoPPviATZo0YXR0NGNiYlipUiWn\n+8NoNWrUMAWedu3a8dKlS7x06RKbN29eLPWS3yRJUhqYVeN49dVXmZaWxjNnzph88dprrzEhIYHh\n4eFcvXo1a9eubW2YSVV/PP/889y/fz9zcnJ44sQJrl69mu+//z6//fZbBgcHWx2WVSswvwigf74L\n0gCYD+Bvw0WJAP7P3sW4ubnxiy++oCRJvHDhAmvVqmV678aNG9RoNLbGMVXjsGWCIPD27dskaW38\nzCEOSyylSpViy5Yt2a1bN65fv75QnGpyGK1Ro0bMzc2lRqMxPbkEBgZSkiTu3r2bFSpUsMaiGken\nTp1MX9x6vZ4rVqywWk/O5DDaDz/8wMzMTIqiyHHjxtHT05OCIHDTpk0URZEtW7YsFg5zGzRoEFNS\nUpiammr1CdPZHN26daMkSUxOTlbCrBpHeno6k5OTWa5cuTyv9+rViydPnqROp6Moihw8eLBTOXx9\nfXns2DFKksSFCxfSy8vL9N7OnTt59OhRq50rVQKzAaxLvgtKATDH8LsvgNtKLqZFixbcuXMnJUni\n8OHD83yjdOjQgdnZ2dyxYwfd3d0tXoxaHJasTJkyHDp0KKOiohgbG8uQkBCrTnWEwxqLh4cH//77\nb44ePZoA6O7uTi8vL9aoUYPt27dnu3btLE5Cqs0BgAEBAZQkidevX2e9evXo5eXFLVu2UJIkzp49\n25b/VOGoVq0aY2JiKEkSRVHksmXLWL58eXbu3JlLlixhZGQk16xZwwYNGjiVw2gvvvgiw8PDmZqa\nypUrV+Z5b8GCBRRFkZ07d3YaR7169RgYGMguXbowMDCQY8eO5XfffceUlBSuXbuWderUsdeuVfWH\nua1bt46SJHHfvn1K7i9VOFq2bEmNRsNt27ZZ/V/G3vOWLVssPc2o5o8mTZrw/v37PHToEGvUqEEP\nDw/27NmTv/zyC/V6Pbdt22YacspvzgzM5wAkAbgO4AKAr+xdTOnSpRkaGsrk5GSmpKSwfPnyed53\nc3NjbGwstVot69atqzQQFZrDkvn6+vKnn35iWloaMzIy2L59e4tfDkXhsMZSq1Ytpqamsm3btgwI\nCODu3bt56dIlXr9+3TSu+vfff/PHH39k06ZNncZRpkwZfvXVV5Qkidu3b6eXlxcbNmzIW7duURRF\n9u/fn7179+Z7773H77//nt27d7fV4B3iaNSoEbOzs02Bedq0aVy3bh3j4+OZm5tr6kUbh1ksmCoc\npUuXZt++fXnkyBGKosgNGzYU6KFt27aN6enp7N27t1M4hg8fzqtXr3LBggU8fPgwNRoNs7OzqdPp\nqNFoGBYWxrlz5xY2IDrcPvLbnj17KEkSf/31V7vHqsHh5eXF0NBQxsfHs1u3blb/l6enJ3fu3MmE\nhAR27drVaf4wBuaYmBju3r2bR48eZUJCAkVRpCRJHDZsmFXGIgdmyJs3EiAvJyGARwDeAdAOQDKA\nHADZAH61dzHTpk2jJEmUJIkjR44sACsIgqm3ZKVHpAqH0dzd3dmgQQOGhIQwLS2NxvLNN98UuAnV\n4LDE4ubmxhkzZlAURT58+JA3b97kihUr+Oabb9LHx8dkXbp04dq1axkeHu4UDkAevzx79iwlSeJn\nn33GOnXqcNCgQUxLSzPVmyiKzM7O5u3bt9m4cWPz81XjePfddxkXF8ecnBzm5uZSq9WaGruxN29j\nTFUVjiZNmjA4OJg6nY6RkZF5HlMFQeCLL77InJwcHj582Gkcn3zyCfft28ft27dzxowZHDZsmGlM\ntWzZshw3bhwjIyN58+ZNDhw40NqkV64Zzw4AjQEcAZABeXz1AYBKhQ3M5cuX54kTJyiKIkeNGqUk\nMBeZw8fHhxEREYyJibE6N2S0Bg0aMDMzk7NmzXKaP8qXL88VK1YwOjqaDx48YHh4OLds2cKsrCym\npaWxRo0aVvnUCMzVATSHPJt5FcAtAK0ArAQwyXDMHACp9i5m1KhRppurUaNGBWDNA7OVi1KFw2gt\nW7ZkZGQkSTI2NpY//vgjo6KiqNVqGRISYrXH7CiHJZZKlSrx8uXLTEpKor+/P+vUqWN1bWzr1q05\nY8YMp3AAYPv27Zmenk5Jkvj333/zypUrTElJoSiKFEWR9+7d41dffcVu3bqxYsWK+c9XjcPd3Z09\ne/bksGHD+P777/ODDz5gTk4ORVFkSkoKAwMDbd2UqnBUqFCBSUlJFEWR//nPf/K8V6VKFd67d485\nOTkcPny40zgEQbC1pp+CILBOnTqcM2cOExIS+Prrr1s67iUAVwCUy88CoBbkL/cvCxuY+/fvz0eP\nHjEjI4OvvPKKzWPV4vDw8OCKFSsUBWZAHucdMmSIU/1RunRpPvPMM2zfvj0rV67MJUuWUBRFrly5\n0tYa96IHZjOw+oYL+hnyAHo0/l1mMgNApr2LWbBggc3APG7cOFPPyFKPWS0Oo1WtWpWnT59mUFCQ\nqbfh6+tLkrx06RL9/PysOtURDksskydPZmZmZp5JUEtWqVIlxsbGmpawqc0BgP/5z39M9ZPf/vrr\nL5sNTU2O/GZ8ohBFkQsXLrR3vCocb7/9NkVR5NmzZwv8j0WLFlEURZ4/f541a9Ysdn9YspCQEMbH\nx1sa764Pw/IwA8swGJaIAZgIYA8cmJd59913KYoib9++bfFetuaPonK89dZb1Gg0fP/9923+vxo1\najAzM5M7duwoFn8A8lBgQkICdTqd3fu5yIEZBYcyRADjDT9zIc9qpgPItncxw4cPZ05ODiVJ4pgx\nY/L0Bpo0acJHjx5RkiQmJCRYm/1XhcPcypcvzzJlyhCQV0gMGzaMJLlnzx5LvcIiceRnee2115ib\nm8vVq1fbrMS+ffvy6tWr/L//+7/8kwmqcBht2bJlzM7OZmRkJLds2cKgoCAmJiZSkqQCvUYLpoW8\n+5IAfjMwxBv40g1c/Qrb4KtUqcIzZ85QkiReuXKF/fr1KxaOtWvXUhTFAnVTuXJl/vjjjxRFkStW\nrLC2M9Rp/rBkFStW5NSpU5mUlMQ+ffpY49BDXgr2g+FvI0cEgKzCcnz++eeUJImXL19WsqxTNQ5B\nEBgREcGkpCS++OKLFv+XIAj88MMPmZOTwzFjxhSLP9zc3Ew+2bp1q11/qBGYjUMZ5SBvfY6D3P3X\nAJhidly6vYspVaoUP/vsM2ZnZzMzM5OzZ89mnz59+MorrzA0NJSSJDEnJ8e0OsGCqcIBgOPHj+eZ\nM2d4+vRpU8OaN28eExMTmZGRwVdffdVWD9EhjvwsAwcO5L59+/jSSy9ZrcBZs2bx9u3b7NSpE0uV\nKuUUDqP5+vqydevWbNCgAb28vFi3bl2mp6czPT3dVs/QaM9DnjwJhPyImAlgrpGlMBzm9p///IfZ\n2dkURZFz5sxREgBU4QgJCaEoijx9+jSrVKnCXr16ccOGDdy7dy9TUlL44MEDm2OIanB4e3uzf//+\nNq+3WrVq/Oabb/jo0SMGBwdbGn5T7Z4x54qNjTVN/Flol069d3v27MmkpCTGx8fzgw8+KHDNLVq0\n4O3bt7l9+3ZLXxqq+wOQJ61v3rzJ5ORk+vv72/VHkQOzAcoDwAEAk/Hvo5lDy9SqVKnC3bt355nM\nkSSJOp2OycnJnDt3Lj08PKxdkGocW7ZsYU5ODl966SVOnDiRMTExzM7O5v79+5U0Moc48rMsX76c\noaGhBZbUCILA+vXrc9u2bYyKiuK4ceOs+UQVDmvWrl076vV6RkZG2np6MNoBAJMNn/0z5EmUxZC3\nuTrE4ebmxmXLllEURaanp1tbl+oUjqZNm5rWUufk5JjWxoqiyEePHvG7775zOkfNmjW5e/duVq9e\nne7u7hQEgVWrVmXTpk3ZsWNHbt++nampqQwPD88zxKVGG7F1bT169DCtjrGwwadYOF5++WVGR0dT\nr9czLCyMX375JQMCAhgcHMzY2FhGRUVZWy2juj8AeQNSVlYWr1y5omQJY9EDMwAB8v7xZZDHZ+5B\nzlfq8DK1p59+mosWLeKKFSsYFxfHCxcucOjQoezVq5e97ZSqcYSGhlKv1zMtLY179uzhpk2bOGTI\nENOwhh1ziCM/S9WqVVm/fv08ny0IAgMCArhhwwYuX76czz77rNM5rFm1atX466+/8v79+7Z2/Blt\nmeFzjSzrAOwHcAdy4pgbAHwKw1GrVi0mJCRQkiT++OOP1jZyOIXD19eX06ZNY1xcHA8dOsT4+Hhe\nvHiRH374oaUJJadwuLu7Mzg4mKGhoVy/fj3HjBnD0NBQXrt2jatXr+bKlSsZGBhYoA2p0UZsXVvr\n1q2p0+m4YcMGJX5wCoenpyfr1KnDZcuW5UnvkJ2dzRkzZtgKjqr7A5A3IUmSZHMbtrmpEZi7QB6D\nuQx5TOYO5EQgjSFnZboMefD8R0dufkEQ7E0qmZtqHAMHDmRaWhrHjRtna5xQVQ4lPvH09ORff/3F\nhg0bPlaO/HWk4LhwyLunsiAnhvEBcNTAcRDAIgBbCstx7do1SpLECRMmKPlyUJ3DeO2FbKeqcpj/\nbwc4nHLvFpLBaRwO1JFTOC5cuEBJkujr66vIH0UOzAYoU/ffyvu1ANwsys2v0J5oDqUN3kJujmLn\nKCl188wzz3Du3Lls166d0qeZJ7qNuDieTI4xY8YoTX9KQIXADLOhjHyvV4P8bXMF8vhZRDE4tURz\nGH72A/AP5BneECezlBSOEl83Lg4XR0niUCMwG4cyjNmXLgHwB7AV8tKTSMjfQOHIJ/ntBKeWZI7v\nIT8K5ULeSVQXFmTQ/0c5SnrduDhcHCWKQ0lgtqn5R/IkLChpC4KQBaAiyYGGvz+ELPl9yexc+7pW\nRSwlhQPAfkEQugKYbsZilEEvTpaSwlFi6sbF4eJ4EjjyF0fFWGsDiLGgTj1fJa4njcPI0lUQhMt4\nvGq7Lg4Xh4vjyePIUxwNzDT72R3yHvTu5gcUk7JsSeEwZ+lOWW030JksJYXDBouLw8Xh4lDOkaco\n0fyzVGIhb9cG5AnCOgBijG8KgpBfW6vIRRCESwYz/+wic9SsWRM//PADcnJyMGfOHEiShOnTp0MQ\nLPvOCoeRxd3AAXMWQRD6CYJwRcFlKi4lhcOM5YnjMLK4OJ5cjoCAAMyePRuSJCEmJgbe3t6PhaMw\nxca9+29RMhBtYVKwDOTELPcgb2/MBrDI8J4ngLsohgHzonA0bNiQmzdv5kcffWTSHgwJCWFubi5z\nc3Mt5R2wOXCPf2XQr0CegLsHoK0Zh581lrfeesuU1NvT05O1a9e2mkTJmRwAWK5cOQ4aNIhvvvkm\n27Zty9GjR/P1118vkD9bYd0o5vD19eW9e/eYm5vLs2fPslu3bhw7dmz+vM+OtpECHI+prarK0bt3\nb27fvt1m7vD/ZX+UKVOGixcv5pQpU7hx40ampKQwLCzM6nri4vLHlClTeO3aNWuyY4om/5QE4Q2w\nLPv9F+R95pkA/gvgIoDeALpCztKUB8bLy4uLFy/moUOHePz4cY4ePZrnz59nWFiY6fdly5bZWqSt\nCofRFi5cSJ1Ox4EDB3LYsGFs27YtfX192bdvX2o0Gk6bNo3VqlUrDMcfhkrNgDzDG2fOQSuzux07\ndmRubi579OhBd3d3fv/995w6dSojIiLsyQapygHIihnvvPMO09PTmZuby1mzZlGj0TAzM5NDhw61\nlbCmyBzu7u7s06cPR4wYwe3bt/Pjjz9mbm4uExMTOXjwYEWpHgvDYXjfahuZNGkSV69ebXXTgre3\nt60NDapxGK1WrVp86qmn8rxWsWJFnjlzxqpShjM4zOuradOm/Oabb3j+/Hl+8cUXtrbuO4XDzc2N\nffv25VNPPUUvLy9euHCBCQkJtmKI0/xhXk///PMPT5w4YXXzmpLArGSMeSPknKWbzV77BMBmkssF\nQZgEoAHkvefPGy4yxvwDSpUqhZEjR+LDDz+EKIogCY1Gg1atWkEQBAwdOhStWrVC27ZtUblyZXz0\n0Uf4559/8nP0hLxlsoGjHObF09MT69atw549e/K8fvDgQUiSBH9/fxw8eBAJCQlKOfaS7GPGEa+E\nIyMjAzqdDk8//TR++eUXPHr0CCdOnEDdunXRu3dvhIWFWTtVVQ4A6NKlC1q1aoWRI0ciNTUVZ8+e\nxfz587F37168/fbbuH79OpKSkiydWmQOvV6PP/74AwCwefNmuLm5ISsrC4MGDcKIESMwaNAgfPzx\nx/j8888hiqK1SygMx58wTB5b+qDSpUtj7Nix8PPzw5UrVxAWFob4+Hi0bt0abdq0MbXnlStXOpXD\nWLp164auXbti/PjxxqCCF154Aenp6VaH3ZzBUbZsWfTo0QNLly7FrVu30Lx5c+h0OvTo0QMNGzZE\nYGAgNBqN0zkAQJIkHDhwwPR3dnY2ypYti1q1aiExMdHSKU7hMBZBEDBkyBDUqFEDy5YtQ3Z2trXj\nrkPuQAaTTLF0jN3ATPKEIAj1873cH0A3QRC8AWyBvN88FsBSyKsi8hRPT08EBgbi6tWr2Lx5synY\nbdmyxXTM1q1bERISgrfeegv37t3D3Llz839MA8j73Ds5ymFedu7cifv371t9v0OHDoiPj7f0lqoc\n/fr1g5eXF1atWoXo6GiMGTMGR44cwezZs22dpjoHAJw+fRrnzp3D7du387yempqKwYMHw9PT09qp\nkWpyAPJNt2LFCkRHR2PevHlwc3PDRx99hA0bNli76QrLAcg9GIulUqVK2L17Nx4+fIhRo0ZhxowZ\nyM7Ohl6vR7ly5aDX63Ht2jWncxjLgAED8ODBA1NQBoBmzZrh/PnzyMrKcjqHIAho164dPv74Y3Tq\n1Ak//fQT9u7di9u3b0Oj0aB9+/YYOnSo0zmsldKlS8PDwwN6vd7WOLNTOWrUqIHhw4dDkiScOXPG\n1qHNAMwDsALAmxaPUDiUYUn2+wH+lcoxqctCVm8u0P23t5d92bJlzMnJYXZ2tiWtLho4kgFIReGw\nZ6NHjzYlzrFyjEMc1oYQVq1aZcpi1qRJEwLy8IZer+fMmTNtsarKYc3at2/PtLQ0RkVF2crhoTqH\nUQhVp9NRr9fzwoULfPrpp+3xKuaw10a6detmSrvp5ubGevXq0dPTk+XKlWNmZibDwsJsJURXjQOQ\npaQyMzMLJMKfMmUKFy5caOu+Uo2jUaNGjIiIoEajYe/evQv8zzfffNOWirqq/rBk48aN4w8//MD4\n+Pg82pjFydG9e3fm5uby0qVLNo8zfLbVlAlKx5hfhGXZb4s5TPHvhJyii2nQoAG//vprajQaRkVF\n2cpB+yKAtQBEZ3AIgsCOHTtSq9VSo9HY0jJzlKPApFvZsmV59uxZ6vV6zpgxg4IgsHfv3ty2bRu1\nWq21LyjVOfJbmTJl2L9/f37++ee8f/8+U1NTOXHiRFtyW6py1KtXj5cvXzalhb148SI7dOjA0qVL\n26tHxRyOtBE3NzfOnDmTkiTxyy+/VMUfSjj69+/P8PDwAlqUU6ZM4cyZM1muXDnWrl07jzahmhyC\nIHDv3r2MjIxkp06dCvA1bNiQo0ePtqWV6dR6qVmzJs+dO8ecnBzu37/f6qSbMzl8fHx47do1ZmZm\nWtQ0NTfDZ0+EFe1HRYHZ8CGFkv2GvNXRJlylSpU4a9YsXrt2zRSU/f39bSXevg7grNocRmvSpIkp\nm9n+/ftZpUoVtTki8n9W5cqVeeHCBWq1Wo4aNYoTJkxgYmIiRVGkTqfj0KFDbTGrxmFur776Ko8e\nPcpHjx5RFEUeP36crVq1spUnm2pzCILABg0a8Mcff+S9e/f48OFD3rt3j6dOnWJgYKCtjICF4ihs\nG/Hz8+PFixcpiiI7duyomj/scXz22WcFBCQqVKjAS5cuMSoqimFhYYyKirKkNKMKh5eXF1NTU/n1\n118XeD0oKIg3b97k0aNHbU0OO7Ve2rVrR1EUTUIbNrQSncaxdOlSiqLIrVu3KhEPuA4gFICfQ4EZ\n8pq+45DT4UmQt/oC8iC6UcIoDcBGC+cWAKpRowZbtWrFxYsXMy0tjXq93qSt1qhRI3s3v2oc5ubh\n4cHu3bszOjqaWq2Wv/76q72emUMcllhKlSrFJUuWMCoqihcvXjT1EHNzc3nt2jUmJyfbamiqcRit\nffv21Ol0zMjI4IMHD5iZmckHDx5w8eLF9PHxseUTVTnym5+fH+fPn29aTnfw4EG2b9/eUsY5p3KM\nGDGCubm53LZtm+m1evXqWboRVeOoVasW9+/fzwYNGrB06dKsX78+g4KCTE9a4eHh9Pf3Z1BQEPv2\n7Zv//HADx00A0yGPoSZDXsGUDXliS5Eq9OHDh5mamsoFCxZwzJgxXLRoEePi4hgfH28a+rPQY1ed\nw9wEg3jAG2+8QZ1Ox9DQUHt16BSOtm3bMiYmhqmpqTYViYxmK+YqDczVAeyDvMzEqI01B/IKjZuQ\n1/0lAbil5GJ27txJjUZj6hEalUxyc3P5999/c9asWbaW3KjGYW7jxo1jTEwMc3Jy+N///lfJ47JD\nHNZYfHx82LJlS969e9cUmH/55Rc+88wzTExM5KlTp6z5RFUOI8uoUaMYEBDADh068NVXX+XKlSuZ\nk5PDL774wpaQgaoc1uzZZ5/l5MmTef36dSYlJXHFihX568tpHNWrV2dUVBSvXr2aJzf0r7/+ammN\nt2ocffr04Zo1a9ixY0du2rSJERER/OGHHzhy5EjevXvX3jxEkoEjFvJqg4EA7kPOPBgFOR+EIlXo\nVq1acevWrdRqtbx69SoXLlzIIUOGcPny5ZQkidOnT7fVU1SNw2i9evXi0KFDeejQIep0Ov766682\nVcWdxQGA27dvp16v544dO2wN55isyIHZDKw+8qr+RuFf1d9nAeQquZilS5fy6NGjnDdvHhs2bMip\nU6dy/vyiuSj5AAAgAElEQVT5DAsLM0n3vPPOO1YvRi0OQB6X+vPPP03B8Msvv7TXYy8Shy2WJk2a\nmIRqz549a7rxd+/ezbCwMIvrVJ3BYc2OHDnCpKQkNmvWzNoxxcJhNEEQOGrUKM6ZMye/xprTOGbO\nnElRFBkSEpLndSs3omoc8+bNI0lKksQ1a9aYxk/d3d0ZGxtrT3KrPvKqQptYIE8+3UYhpZTMJ/Fr\n1arFsLAw6vV6e+IOqnD4+flx3Lhx/OSTT5iamkpJkqjRaLhixQqlyftV90ejRo2o0WgoSZKt4c8C\n966agfkG5DWoFQBkmL03EYCuKDddq1at+OjRI2q1WqvSPWpxlCpVikFBQbxx44YpKCcnJ3PNmjX8\n7rvv8pjxC0QNDls+8ff3Z0ZGBo8ePWp6FBIEgfv27eP58+ctTmY4g8OavfXWW/Zmu4uFA5CVzTt1\n6sQlS5YwKyuLCxcudDrH008/zZs3bzIiIqLAJg9n+qNKlSq8d+8eFy5cyGrVquUJPuXKlaMkSfYm\niOtD/oKob2BpCMMEl4HjVzggPmo0oxr1kiVLlPjDYY6yZcvyhx9+YGpqKvV6PXNzc033bmRkJAMD\nAzlmzBh+/vnnfPHFF22tDlHVH9WqVWNKSgolSeJvv/2muA0XOTBDHmNOgPxIRsiSLCMhLysxjpml\nA8h2tHLbtm3Lo0ePmlSJbUgIFZmjYsWKXLx4MbOysvKIweY3Y9FoNJaELh3isOUTd3d3tmzZMs9O\nwxdeeIEJCQn87bffrKl3qM5hySpVqsTIyEj+8ccfttRVtIafegA7DAzx+FcWXgTQz1EOT09P9u/f\nn6NGjeKRI0cYHx9PvV7PI0eO5P/ScgrHkiVLqNPp+OmnnyrtmanC4eHhwaefftri2K2vry9FUbTX\nS9NCfnQngFOQ83VLZhwRALIcqZfBgwczMzOTJ06csKfVWWQONzc3njlzJs89Gh0dzZycHIqiSI1G\nY1JTv3nzJjt06FAs/vj0008piiKjoqLYokULxfeUGoG5OoDWkBNIh0CWYm8FeTZztuEYh5RlK1eu\nzGbNmvHGjRvU6/WMjo7m8OHDbZ1TZI5mzZoxNDSUoigyMTGRt27dYnh4OA8ePMjQ0FCTBQcHc/ny\n5Zw3b54lmXqHOJT4xM3NjdWrV2ezZs34999/MyUlxdajqqocrVq14rVr1zh9+nSWLl2aZcqUYZMm\nTfjTTz9Rq9Vy0qRJtoLSKcjKw+UMLDGQVaGnKOXw8PBg7dq1OWzYMG7fvp1//PGHqXd0/fp1iqLI\nrKwsRkdH8/jx4xw8eLCl1RlF5shv9erV46NHj6jX69mqVSulN5/qHPlt0KBBjIqKsnecU+7dOnXq\nMCIignq9nuPHj1fCW2SOli1bcu3atdy0aRObNm3K0qVLs3bt2pw8eTJHjx7Nw4cPc82aNXzllVds\ntVPV/FGxYkXu27ePkiRx5syZhdJBVBKY7e38S4Ccf+IaycWCIDwPef1pJIB2hmPehDwRpaiUK1cO\nnTp1Qvfu3fHee++hUqVKWLlyJb755hvcvHnT1qlTisqRmpqKL774Aj/99BOioqIQGRmJjIwMZGRk\nGCtASSkyh7XSuXNnLF68GHFxcfD19UVQUBB2795dLBzVq1dHkyZN0K9fPzRu3Ni0u61nz56YPn06\n1qxZY8tH50kuAwBDXtvSAFpC3taqiKN169bYsWMHatasibt37+LYsWOoXLkyYmNj8dtvv6FevXq4\ndu0aLl26hOjoaGvbsovMkb+MHj0aFSpUwN69e3Hjxg2lp6nOYfGfnD9v7xCntNUBAwagUaNG+P33\n3/H3338rOaXIHJcvX8a4cePyvBYbG4tly5YBANavX18sHMZSunRplCtXDjt27MD69esLEz+UFTs9\nZnNpqauQH8kGQ1b5zYb8yPwPgPpKvmUqVKjA3377jXq9nnPmzKEoivz9999tLdQ3N9U4imgOcShh\nadGiBbds2cKQkBD26tWrWDlq1KjBs2fPcs6cOabHxddff5316tVT4hOjXM9VyCsS6kKeVNFCXor0\nIwAfexzGiSVj76MwvRA1OYz27LPPcs6cOUxJSeGzzz772DismQL/OOWeuXXrFiVJYlBQkFPvmcL6\no7g5HGifBFQYyjADKwdZOy7A8HdVyPlLBciJQBRJsXt7e/ODDz7gV199xbZt27J27dpKFmObLkYt\njqKYoxxqs5QUjv+FurH2eV5eXuzevTsnTZqkaBnU/7o/APkLfN26dfz6668tDfP9f+cPRzmKHJjx\nPy49XlwcTmApKRxPfN24OFwcxclR5MAM+VukREh+l3QOw89+kB+H0gGEOJmlpHCU+Lpxcbg4ShKH\nGoHZfIy5UJLfatoTwPE95F1duQCOQB5TDHMWS0nheELqxsXh4igxHErN5qoMkidhQRdQUCD5rWYp\n6RwA9guC0BVybgQjy4/OYikpHLZYSkrduDhcHCWJQ2lxVCW7NoAYQRCiIT8ul4ecAH2+SlxPGoeR\npSTIoLs4XBwujiePI09xVCWbZj+7A5gJeTsjAJMKMlU2S8qyJYXDnKU7yTYAZuXjuPI/ysEnlcPJ\nbcTF4eKwxWFTJdvRHnMs5O3agDxBaC5N7wk5IbWi8tFHH8Hd3R0jRoxA48aNrR5ncJrqHDVq1MDu\n3bvRsmVLLFiwAPPmzYNWq0Xjxo0RFxenlMPIUkAG3Yyji+EYVUpJ4bDBUqI5gMK3VReHi8OJHAUO\nsjdobkmNuSZkOZZcGHIyAFhkeE+RsqwgCAwICGBKSoqlBN+WTHWOnj17MiQkhJGRkfz+++/ZpUsX\nLl68mHq9nlOnTrWWg9iaOvUhw/sZkPfc3wPQFgrUqY22du3awizadxqHA/bEcRSmrRrNz8+Pp06d\neuwcJcUfJYXD29vblMhozJgxrFu3brFzVK9enQ0bNmRQUBCDgoJYs2ZNq8cqmfxTMpSxEfJyEvPy\nEeSlJ1GQg2EEgD6CIPSGQmXZBg0aYN26dYiNjTWpI9spRlXoUmpxTJgwAWfPnkX//v0xZswYnDx5\nEvv37zdWGjIzM5VyfAJgN4BhkHd2+UH+FvZRwmEsbm5u6N69u5JDncIREBCAl19+GadOnUJYWBjG\njBmDnTt3YsOGDfD390e/flafvFTj6NGjBzZt2oTRo0cjLCwMYWFhGD16NM6fP4/z58/bfKoqJAfs\nseQvVatWRevWrVGqVCl7hzqFo1atWlizZg1Gjx5t2or8ODgcKE7j6N69O95++21s3LgRX331Fb76\n6iv06NGj2DieeeYZrF+/HocPH8brr7+Ob7/9Ft9++y02b96McuXKWTxHEITrgiBsEQTBx+IBUDDG\nTPIEgNR8L/cH8BHJZwA0N1zIz5Blv2nvM0uXLo3hw4eDJPr374+UFIsK3vlLA8hLWmqqxTFkyBAc\nO3YMkZGR0Gg0EAQBnTp1QqlSpRAdHY3c3NzCcHxP8gcALSCrIqxSymFeAgIClNz4qnP4+vpi6tSp\nmDx5Mtq0aYNGjRph8ODB6N27N9544w1Mnz4d+/fvx9KlS+Hn55f/dNU4unXrhmPHjgEAbty4AXd3\nd3To0AENGjTAc889h/bt29s6vTAcsMeSv/Ts2RNeXl7w9/e3d6jqHOXLl8evv/6KMWPGoF+/fnj3\n3XcxceJElC5d2ukcnTp1wtmzZ/HWW2+hTp06GDhwID777DNs2rQJ2dnZIInvvvsO7u5WR0ZV90eF\nChXw8ccfY+fOnRgyZAj++ecfXLokL6Sw8eWtGke9evXwzTffYM2aNRg8eDDi4uIQFxcHf39/hIaG\nonfv3rbaajPInckVVi9QSbcaZgmmDX+nA/AG4G329zEAL0OBsuw777zD9PR0e+oLBbr/ANoD0KrF\nYW6lSpXisGHD+OjRI0ZFRbFRo0aqcih5dP/qq69IUomKiuocbdq0oVarJUmuX7+evXr1YkBAAAMC\nAjhs2DB+8MEH/Pbbb5mamsrTp0/nP181jvnz5/O7774z1Ym7uzvLlCnD1atXU6fT8dVXX7XlF8Uc\nhr8L1UbWrVtHSZKUyAepylGtWjXu37+fjx49MqmZHDlyhFqt1l66SVU4PvzwQ4qiSK1Wy8TEROp0\nOup0OsbGxvLOnTsmnUwb6kOq+qNz5878888/TTp/P/30E5s3b86uXbtSkiRu3rzZ6RybN29maGgo\n33vvPfbo0SPPPTt+/HiS5GeffWbr3i2ySvYGAInIK2JoS57eprLsoEGDqNfr+dtvvxUq/4CBIxN5\nVW4d5shvXbp0YXp6OiVJ4pQpU5zBYVed2hiY161b50x/WOTw9fXliRMnSJLTp0+3+n/LlCnDF154\nIf/rqnEsWLCA9+/fz/Na9erVefr0aZ48edKeTxRzONJG1q5dy9zcXFsqzKpzlCpVinPnzqUoity7\ndy8rVqzIChUqcPfu3dTr9Wzfvn2xcIwYMYK7du3inTt3+Mknn7Bhw4YUBIHvv/8+JUni9u3breUN\nV5WjXbt2jI6ONqmXmAtrdO3alf/88w/btGnjdA7jCgtL7xkD88SJEy2+b/jsoqlkQ/7W6I+C6rJW\nc5jChrLs3LlzKUkS33vvPQJyDuKuXbvy7NmzTEpK4tGjRzly5EhLyY2iAVxUi8O84QcEBDA2Npbp\n6ekMDg62KOWkAodNdWqg0IFZdQ7j/7cVmK2YahyvvfYaExIS8iSAN/bm//vf/6rKobSNGG3dunXU\n6XS2xBxU56hXrx6vXr3KnJwc9unTh4IgsFGjRrx9+7aSwOxUf7i7u3PlypWUJImLFi2ylSVSFY6n\nnnrKpGSfmJjIsWPH5umpenp6sm7duuzfvz87duxoKXA61R9GO3nyJDMyMmw9zRRNJdsMrku+CzoH\nYKfh98kAVlg4pwBQ+fLl+csvv1AURVMaxWbNmjE+Pp6iKJpUCK5cuVJALUNNDvOG9dFHHzEtLY0Z\nGRn85JNP7DrdUQ57LEDhArPaHJUrV+Yff/xBkqYvzUKYahze3t4cNmxYHlUMozz9K6+8Umwcluz0\n6dOMiYkpVn80a9aMiYmJDAsLM3VWWrRowYcPHyoJzE71R7Vq1Xjy5ElKksSXX37ZqRzu7u7csWMH\nRVFkbGwsX3nlFYuZKYcPH86kpCTev3+fzz33XLH6AwB79OhBvV7Po0ePWlWXURRz7QTk/NJSjwC8\nA2A55G6/BDmPaUslF9O0aVPGx8fz0aNHrFGjBt3d3Tl69Gjq9XoePHiQrVu3ZkxMDPfu3Wup16oa\nh5ubG/38/Hj69GmKosi7d++yY8eOSp3vEIeSCv78888VB2a1OYxDGZIkMSAggI0bN2br1q3ZoEED\nJSxO8YexriZOnEhJkmxJWzmdw9fXlxqNhhs2bChWfxgD8/Hjx02v7d69m6IoKgnMuWY8O/Bv7mHR\n8NoxAJUcDUS9evViRkYGw8PDLcpfqclRuXJlRkREUJIkrly50uL/adOmDTMyMihJEsPCwiwNlTrV\nH1WrVuWBAwdIkmPHjrV6nBqBuTrk1Q71ISeXNsqxfANgEuRF2aEAbii5mFatWjEpKYl//fUXAfCl\nl15iVlYWjx8/Tl9fX3711VdMTEy0lpxdNY5hw4bxwoULlCSJR48e5fPPP6/I8UXhUFLBTZs2JUke\nOXKk2Dnq1KnDy5cvkySvXbvGmJgY6vV6RkVFcdSoUfZYnOKP4OBgfvHFF6YJpi+++IIBAQEsX758\nsXIA4NSpU6nVavnuu+8qqRvVOBo2bMhbt24xLi6OTZs25eTJk6nVapmRkUFRFO0F5pcgZ00zSlx1\nA7DSwPIJ5OVjXzoaiDZs2EC9Xs/+/fvbO7bIHN7e3ty4cSMlSeI333xToLfctGlTU+89LS2NnTt3\nLnZ/fPDBB8zOzua5c+dsdiKKHJjNwOqjkHLsloBatGjB+/fvMysri+3bt+fYsWMpiiLHjh3L6dOn\nMz09nR9++KHVi1GDY/78+SaFjoyMDCW9MFU4lFRwmTJlaCzFzWF8mjGW2NhYhoWFmSZEq1atai8Q\nqe4P4yoIc9Pr9XznnXeKlcPb25thYWGMi4tj27ZtlbQTVTlmz55t6iEb75ctW7Yo6THXh2E1VX4W\nyKsCbsMBzT8AbNCgAbOysnj27FnF/igqx4IFC0ztYOPGjWzevDmbN2/OV155JY/q/dKlS4vdH++/\n/z5JMjEx0eqkoNGKHJghD2UchyzFroW8nrmC4fdYyBmYYgDolVyMIAicOnUqc3NzefnyZdM3XHZ2\nNnU6HSdOnEg3NzdrF1RkjjfeeIM5OTl5bvSMjAympaUxMTGRJ06cYGhoKKdNm8YpU6aYbMCAAUXm\nKExgjo+PV9LYVeVo0aIF09LSGB8fz3HjxtHLy4vu7u5ctWoVSXLChAm2WM5BfkTXAZgNeRfVPANL\njOGYQqtT16pVix9//LFJkPXQoUM8fPiwrZ2iTuHo1KkTHzx4wNOnT9vqrTuNo1y5cpw/fz6//fZb\nDh06tDCrMowcUYY20tCsjcRAHmpxSCX7iy++oF6v5+LFiwvjjyJxeHp68rvvvitwD5M0/X758mU+\n9dRTxeoPf39/xsfH8/79+4qevtUIzNUhixM+gDw+JgKYC1mWPQ7/zi5mKL2YSpUq8b333qNWq83j\n3LVr19pbDVFkjqCgICYnJzMpKYlhYWHcvHkzN2/ezDNnzjA1NZV6vb5AD02SJKamphaZQ0kFe3h4\n8OrVqyTt95jV5qhQoQKDg4PZtGnTPK+HhISQtLtSI9HAkQQgHnJAioe8BdZhfwDgc889R0mSuGbN\nGvr4+LBKlSq2Zv+dwhESEkJRFK2ObRYXh3EFQoMGDXjz5k0lgTkB8rhqLuRAtMfAZeTwA5DuyBdm\nREQEU1JS2LdvXyX+UI2jUqVKHDBgAM+dO8ebN2/y5s2bPHTokOlenTVrlq3Oner+6NSpE+/du0dJ\nkhgbG6sovUSRA7MByiTHgn+7/ykA5hjed0gC3cvLiyNGjOCePXt48eJFvvnmm/YuyCkcRvP09GSb\nNm04dOhQjh8/nitXrmRwcDD9/f3ZoUOHInMoYXF3d+fJkydJUsnSMKdxGK1s2bL89ddfqdfr+dpr\nr9k61iTXY2B5AGAxgKlF5Xj++ecpSRJXr16thFl1DkEQeObMGYqiyJ49eyrymzP9Acg96F9++UVJ\nYHbKPdO7d28mJSUxPDyc1apVU8Ls1Ht3yJAhpsC8bNkyenh4OJ3Dw8ODw4cPJ0nTU39ubi5JMiMj\nw+aSyiIHZphJS0Een7kHOV/pOci9geuQB8y/ctSphbAnmkMJiyAIXLBgAQ8fPsy5c+c+Ng6jGW/A\n33//3VZjJwxyPWYs6wDsB3AHcm/kBhxUhW7SpAkPHjyoNDCrzuHl5UWdTse4uDilau5O9Yexncyd\nO1dJYHbKPbNkyRJKkmR1A0VxcRht3rx5pg0nw4YNs9VjVo2jU6dOTEpK4pEjR7h69WoOGTKE/fv3\n55EjR3ju3Dk2adLEKq8agdkox3IZQJahYfUD0BjAH4bXowD8WAwB8YnmcAKLUznmz5/PuXPnKprM\ngCzH87eB5RPIOUuOGjgOQl6W5LD68IQJE5QGZqdw2Nrl9Tj8AYCNGzemKIqMjo62lgXRaffMn3/+\nSUmS2LhxY6e2VaW+6NatG7VaLV988cVi4zBuesq/VlpJWylyYDZAlQhl2SedwwksTuPo2bMn16xZ\nQ39/f3bp0uWx102VKlXyT8D+T7aRwvyPMmXK8PPPP+ekSZNs9eSdwnHhwgWmp6fbyo3x/229KLEi\nB2a4VLIVcxh+ulSyS2DduDjU5Xj66afZsmXLx85RUvxRWFMjMDusLOsEp5ZkDkXq1P+jHCW9blwc\nLo4SxaEkMDtNJZukkP88tUtJ4YBCdepiYCkpHCWmblwcLo4ngSN/cVSMNX9m/1jDa8VdSgpHSWJx\ncbg4XBxPHkee4qgYKwFAEIRoyOOY5QGUBTBWHawnjsPIMlwQhM54vDLoLg4Xh4vjyePIUxztMRvV\nqQmgO4A1AL40vlmMkt8lhcPI4o5/ZdC/wr9qu/0EQbjyP8phTRa+xHM4uY24OFwctjgssfxblAxE\nW5gUNGb2vw9523YY/lWW9QRwFwoHwr29vSkI9teIOptDqdnxiQ5ykhoPI4sZh10FkyeRw07dlFgO\nR9pIuXLleP78eb7xxhuPlaOk+MPFoR5HAS4FQXgDLMt+/4V/8zTEA3jf8J5dyW93d3e2atWKly5d\nYmJiIidPnsxvv/3W3hIc1TkcNGscfxgqWIScKOV3cw4WYna3QoUK7NKli60dTMXCUQh74jgcaSM+\nPj6MiYlhUlKStdS0TuV47rnnGBcXx4kTJ3Lr1q2UJIk3b960JXXlNH8sWbKEU6dOtSQzVmwc1apV\nY3BwMIODg7lnz57H3j4EQWDFihXtSo8pCcxKhjI2Ql7nZ14+gbwmsAbk/f+7ALwjCEJv2JH8rlOn\nDnbu3Al/f3/UrVsXP/30Ex4+fIh33nkHgYGBtjh6wrL8uEMcxuLu7o6AgABs3LgRb7/9Ns6fP4/x\n48fbUqq2xrEXci9wqoGpdmE4zIu/vz/Wrl2LsmXL2jrM6RyFKE8iBwrL4unpCT8/P/j4+GD06NHF\nznH79m2cOXMGlStXRmBgIEji6NGjSEtLK1YOANiyZQu8vb3RrVs3JYc7hWPRokWYP38+jh07huXL\nlz82DgDw9vZG+/btcezYMRw7dgw9e/aEIFhezCEIwnVBELYIguBj9QMVdasLqmSb55etCjmP6UyD\nDQOwFha+KSpXrsytW7cyOzubb7/9tikXctmyZSlJEtevX29rWEOArASR6iiHp6cnq1atykaNGnHm\nzJkcN24cP//8c+p0OqampvKXX35hWloatVqttUTbDnMo7SF6e3vz559/5pUrV+yJ1TqVo5CmGkf1\n6tXZvHlzdu7cmStWrOCKFSu4a9cuU3rHCRMm2FIRV8xheM1qWzU3Ly8vTps2je3bt+eff/7J0NBQ\nnjp1ylbPyCkcAFijRg0ePnzYlJ/ZTppJp3G8/PLLPHz4MBctWqRq+1DC4ebmxiFDhjA5OTlPcq1S\npUqxcePGbNu2Lbt3726pflTl8PDwYMOGDblq1SrevXuXhw8fNiVTunnzJv38/Gzdu5/Awrb8wg5l\nWFLJjsO/i7WzkE+e3hJQrVq1GBoayrfeeiuPAoExg9i8efNsBeYNAJIBSI5y9OvXjxcvXuStW7eo\n1WopiiJDQ0M5ffp09u3bl+3bt+fAgQMpSRK//vprVTmUBsSKFSsyLi6Ov/32m60AVGSOUqVKsVat\nWnm09Ypgqvlj/vz5TE9Pz5NzV6PR8OrVq5QkiSdOnKCvr2+ROQzvW22r5jZkyBAmJSWxU6dOrFOn\nDitXrsxbt27Zeox3Cke9evV48OBBk18UKJg4hQOQA7NRhFXN9qGEo127dtRoNFy0aJGp/VavXp2f\nfvopb968yTt37nD58uWWZNFU46hZsyZXr15tEpJ48OAB//rrL/71119MSkqiXq/nN998Y5Hf8NlW\nUyYoDcyWVLI1AOZDTtQSDsvy9Bah8gdeHx8f/vnnn8zKyrInUfMi5G8v0VGOfv36MTU1Nc8NHxQU\nlOf/PP3005QkiTt27FCbQ/Fk16pVq7h06VJ7Y8xF4pg0aRJFUeT9+/d59epVHjt2jBMmTCjwpODj\n48N3332XS5cu5eXLl9mnTx9LLKr5Y+TIkTx06BB9fHzo5eVFLy8vlilThtWqVWN0dDR37NhhS19O\nMYeStgpDez158iR3796d5/XNmzdz48aNxcYBgGPGjGFWVpYpKCvoMTuFAwAnTpxIURQ5bdo0JW1a\nVY4RI0ZQFEXTnFSdOnV47tw56vV6Ll++3FaHRhWOWrVqMSkpiZIkUafTcdiwYSxdurRp1UXFihWZ\nmJjInTt3sk+fPlyxYkWe8w2fPRHArw4HZsOH5FeXtZnDFAolvwVB4LRp05iVlcUpU6bYO/46gLNF\n5WjVqhX37dvH5ORkarVaJicnc9SoUSanHj9+nDk5Oezdu7faHBFKfNKkSRNqNBpOnjzZWf6IAORe\nR1BQED/88MM8j2B6vZ5ardZkubm5eUQDrOSJdpo/jDZgwADTF6aNwFwoDntt1c3NjcuXL2dMTEwe\nVQxBEBgZGckrV64UCwcAvvrqq0xLS6MoiszJyaFWq1USmFXnMNqaNWuo0+kKdGyKg6NOnTq8cuUK\nQ0ND+cEHHzAyMpInTpzgoEGDnM7h4+PDjRs3Mjc3lz///DOfffZZi//L39+fhw4d4pYtWzhjxgxL\n924oAD+1A3ORc6mWK1eOISEhTEtL47p16+w+UqvJUblyZT777LPs0aMHt2zZwvT0dE6ePJmvvvoq\nc3JyePz4casJwB3lUOITAHzttdcUCVwWlcM43t6hQweuW7eOv//+O3///Xemp6dTo9GYLDU1lY8e\nPWJmZiYlSSrw7W8wp/kDkGff//jjD0qSxKlTp9p6klCVY9CgQczJyeGKFSvy5KMWBIFHjx61JQGm\nuj927NhBURQpiiK3bNnC7OxsJYHZafVSyMCsOkfXrl0ZFxdHnU7HO3fusFmzZsXCMWrUKGq1Wl69\netXmypzSpUtz9OjRlCSJ58+fL3Dv2o25dgJyHchyLPnl2NtBHq/JgSz/XaBLbstBtWrV4u7du5mS\nksIDBw4odarqHICs1J2cnMzc3FxmZGQwNzeXI0aMsDXW7RCH0gY/atQoZmRk2BvGcDqHuXl7e5se\n3ebMmWPpGKdyPPvss7x37x4TExNtjS+rylGxYkXu2rWLjx49YsOGDQu8P2XKFD548MDpHIAsWCBJ\nEtPT0zl06FDOmjVL6RhzrhnPDsi5h49A1iDUQs6mVsmRevn++++p0+n41ltvKalD1Tnc3d25fv16\nJiUl8cGDB1yyZIk9weAicwiCwGvXrjE3N5eTJk2y+n8EQWDfvn15584darXaAk+/agTm6gCao6Ac\n+zeMTMoAACAASURBVEoAkwzHzIHZTKctp3p5efHNN99kWFgYHz58yJEjR9rT+TM31Tjy2+zZs02P\n6lu3brXXe3eIQwmLm5sbt27dyqNHjzrNH44EZn9/f0qSxH/++cdaUnancZQvX56bN2+mJEn87LPP\n7B2vGkeHDh2YnJzMefPmWayn/fv3c9++fU7nAMDPP/+coijy1q1bbNCgAWfNmkVRFBkREcGaNWva\n8sdLkNNZlsvPAnnyKQHAl47Uy+nTp5mSksKXXnpJSRtSnaNt27aMiIjg4MGD2bt3b54/f55//vmn\nvRzRReaYM2cOf/nlF6s5sKtXr85Vq1YxJSWFoihy9+7dbNSoUZ5jihyYzcDqI68cezT+XWYyA0Cm\nEqfOmTOHoigyOzub/fr1s9ortRSs1eTIb4sWLTIFZnsK1Y5yKGHx9PRkQkICDxw4YJfZmRz57fjx\n44pk4Z3BMWzYMNOsd506dewdrxrHnDlzePfu3QKSWlWrVuWmTZv44MGDAsK1zuCoWrUqjxw5YjEw\nb9u2TZE/DJ/9M+TlX1EAqkCefNoDB7X2Tp8+zcjISNavX19JG1KVQxAEnjp1ihs3bjTVz8iRIylJ\nEseNG+c0DkEQTB2U/E+0bm5uDAwMZHx8fJ45mStXrhTozBQ5MKPgUIYIYLzhZy7kWc10ANm2nNqw\nYUPu2bOHer2eaWlp/Oijjzh8+HBOmTKFa9eu5bRp0zh8+HB+8sknnD59Ou/cucMVK1bk77kWmcOS\nDR06lOnp6UxOTmZMTEye2V4r5hCHEpbatWszIyODHTt2VNLYncZhbs899xx1Oh0zMzOtrcgg5MdA\nyfD7bwYGozp0uoGrX2E56tatyytXrjA5OVnJxI5qHJ6enrx9+zZ/+ukn02tlypThsGHD+Pfff3Pf\nvn22grKq/mjWrBmTkpIoiiJPnTrFFi1amMb869atq9QfeshLwX4w/G3kiACQ5Ui93Lx5szCBWVWO\nV155hZIk5RlG6dy5sxIdwiJxCILA5ORkSpLEffv2cdiwYQwJCeGmTZt469Yt6vV6Pnz4kGvWrDHN\nyZw+fbrAfgQ1ArNxKKMc5K3PcZC7/xoAU8yOsyn53atXL9MFiaJomvE33vA6nY5arZbp6el89OgR\nNRoNc3NzuXXrVvMLKjJHfitfvjwvX75MSZI4cOBAfvrpp5QkiUOGDLFVuQ5xKGnwgYGBPH/+vNK1\nxU7jMFrp0qX5xRdfUJIkhoaG2tpQ8TzkyZNAyI+ImQDmGlkc5ZgxYwZ1Oh1PnjxpayWG6hyVK1em\nRqPhn3/+yRdffJGTJ0/mkSNHmJiYyOXLl5s2RjmbA5A3lJw9e9a0tPHcuXOm8WZntRF7n9utWzcm\nJCQwNjaWbdq0KXYO43K5Fi1aEJDnA3788Uclk6FF5pg0aRJzcnIoiqJp6aIkSczNzeW2bdvYokUL\ntmzZkpIkUavVWpyvUhKY7SXKfygIQgrkLv73ADpDXn+abbhACILgC7n3ZrUcPnwY77//PgICAnDt\n2jVcvHgRAKDX63Hy5El06tQJHh4eOHToEDQaDWrXrg0vLy/cvXvX/GNuFpUjf2nevDmaN2+On3/+\nGeHh4ejRowcAoFKlSrZOU50DkLeGL1q0CJcuXYJOp1NyilM4zEvt2rXx8ssvAwDCwsKQnp5u7dD5\nALaS/EEQhNcgp070BpDpKMdrr72GWbNm4caNG3jrrbeQk5Oj5DRVOFJTU7FgwQKEhITg2LFjSEtL\nw19//YW3334be/fuLTYOAIiPj0dISAgOHDgAPz8/+Pn5QavV4rPPPlNyulPaSMOGDVGpUiVcvnwZ\nsbGxxc6h0+kgCAJatGiBjh07Yvbs2XB3d8f48eMRFhbmVI7Vq1cjISEBH330EQAgISEBu3btwsGD\nB3Ht2jUAwNy5c3Ht2jXExcVh8+bNSi8rb7HTYzZp/sFJ0uOFMNU5Fi5cyMOHD3Pbtm0MDw/ngQMH\nePDgQatL5YrCYY/F3d2diYmJFiebipPD3Fq1asU7d+4wKiqKtWrVsnXsMsPnGlnWAdgPWYn4IYAb\nAHyUcri5uXHv3r28ceOG0mEd1TkqVqzIwYMHc+DAgezbt6/SHrtT/FGuXDkuX77ctFxu3bp1rF27\n9mO5ZwBw5syZzMnJYb9+/R7LvVu3bl0uW7aMWVlZfPDgAT/++GMlCtmqcbi5ubFSpUqsVKlSgTkI\nQB72qlSpktU2o6THbC8wGzX/nCY9XghTnaNXr16cM2eOaWPF4MGDlaQgdYhDaYOfMGGCU/1R2Lox\nbryxc1w45N1TWZBzAPgAOGrgOAhgESzkBbD2eSNHjuScOXMYHBxc2DaiKkcRzCkcCuvCqfeMOcvj\n5ihJ/iiMFTkwG6BKhOS3sziee+45zpo1iz169FBayQ5xOMEnJYVD9boZNWoUO3bsaLE38jjayOP2\nh4vjf4ujyIEZZkMZ+V7//1Z63BqH4Wc/AP9AnuENcTJLSeFQvW6qVq1a2J7QE9FGXBwuDkCdwGwc\nynjskt8lnON7yI9CuZB3EtWFrITgTJaSwlHS68bF4eIoURxKArO9VRknYUEXUCghkt8lhQPAfkEQ\nugKYbsby42NgKSkcJaZuXBwujieBI39xVCW7NoAYoaA69XyVuJ40DiNLV0EQLuPxqu26OFwcLo4n\njyNPcTQw0+xnd8h70LubH2AYI1StWPnWKikc5izdSaYIghDoTJaSwmGDxcXh4nBxKOfIU5Ro/lkq\nsZC3awPyBGEd5JP8dvBzrRYrkt+qcrRq1QqiKOL1118vLIeRxd3AAXMWQZZAv2Lv/3t6eiIxMRHt\n2rWzy+pMjsKWJ5XDyOLicHE8Bg5LLP8WJQPRFiYFjZn970He3pgNYJHhPUWS3+XLl+fQoUM5ZswY\ntmnThr169bKasQlWBszV4DDaU089xfHjx/PKlSs2t0Tb8YkO8uzuZQNTWzMOuwom69at465duxSt\nSHAmhyUrW7Ys33jjDdaqVatAkqni5CisT6xxONJGXByyBQcH8+7du5wzZw5jY2O5bds2Nm/e/P9b\nfxite/funDt3rkMcBbgUBOENsCz7/RfkfeaZAP4L4CKA3lAg+e3h4cGgoCDm5ORQp9Px448/ZlJS\nkmnvuxVTncPcTp8+zenTp7Nx48b2jrXG8YehUjMgz/DGmXPQzuxu8+bNmZmZaUs5pVg4GjZsyAkT\nJhT4knzhhReYkpLCrl27WpLuUZ3DQVPMYXhfURtp1KgRly1bxtdff5179uzhkCFD8mhWOpNj7ty5\n3LdvH/38/Fi/fn1u3ryZw4cP5/Tp0x+LPwYMGMD09HRGREQwICDApMX45Zdf2upQOKVeypYty+HD\nh3PIkCEMCwvjt99++1jah9EGDhzI69ev2z1OSWBWMpSxEfI6P/PyCYDNJMsAmAWgNOQ0es/DhuS3\nh4cHAgMDkZ2dje7du+PVV19F+fLlsWrVKpQrVw6NGze2KvkNoCcsy48XmsO8uLm5YeHChWjXrh1i\nYmJw+/Zte6dY49hLsh6A/8feeYdHUbXv/570AqEFUggdqUJAvlQRQYlApMhLf0WUKkWlKUgJIiIC\nAQSVjqBUgVCkC6FJpASkhBIIISSAIRASSN9sduf+/TG76ybZMklmY3x/Odf1XMnulP3MOWeeOXPK\ncwcBOATgB7kcdnZ26NKlC+Lj4xEaKnvcQXEOAOjduzc++ugjVK1a1fCdvb09Bg8ejIyMDPz+++9Q\nq9V5D1OMw8/PD2fOnMGqVaswY8YMrFmzBvPmzcPRo0eRnJyMTZs2oVatWuYOLwgHrLG4ubmhRYsW\nCAsLQ79+/RAQEICmTZti586d+Oijj8wdpijHwoULsWDBAsydOxdXr17Fo0ePEBoaigYNGlj6fcU5\nAKBmzZqYNGkSFi9ejObNm2Pv3r345JNPAADt27dHxYoVi4WjTJkyaN26NW7duoV58+ahcePGCAkJ\nQUBAAKZMmQI7O7NuTVGOvKlp06ZwcXGxup8gCJGCIGwWBMFshsntuqiJ3E+aezpoN0iy3/fwtwqy\nWcnvrl278sGDB7x37x5btmxJQRDo4uLCefPmUavV8ubNm+zXr5+5J40A0/LjBeYwttdee43x8fE8\nd+6ctaDjReKw1EIsX748Hz58yF69esl6MtuKA5BiL8fHx7N+/fqG77y8vKhWq7l3715zxynG4ebm\nxu7du3P27Nk8efIkt23bxi+++IIbNmygKIo8cOCApWDosjl0283WETc3N86aNYvZ2dn88ccf+cor\nr7BcuXL09/fn7du3OXLkSEtloxiH3k6ePMm5c+fy1KlTHDhwIL/99ls5dURRDg8PDx47doweHh6G\n7/QiCr/++muu723F4e3tzc2bNzMyMpIff/wxGzZsaNjWuHFjhoaGctCgQcVWLsa2adMm3r9/X+69\n+yVMLMsvaFdGInJrZellWPRSOcYqyGYlv+/du8cHDx7keuWpWbMmjx07Ro1Gw8TERMbHx9PNzc3U\nxayHafnxAnPoTRAEHjt2jCqVyppkUZE5LDnEd955h6Iosn379nIZbMJRr1495uTk8N69e7nklCZO\nnEi1Ws0333zTHIuiHMblo/9/ypQpFEWRQ4cOtXSMbA5rdaRp06ZMT0/nnj178gVF9/Pz45IlSyzp\nMirGobclS5YQkEJuqlQqnj17Vk4dUZwjb3fFvHnzKIoiv/76a5tz+Pr68uHDh9yyZYvZbpMtW7ZY\nUrpRPD+M7e7du7Ics+7cZkMmyHXMr0FSYTB2zGZjmMKM5HeXLl2YlJTEDz74INf3dnZ29PT0ZL9+\n/fjGG2/w6dOnHDx4sKkLeg2m5ccLxGFskydPZmZmJqdOnZrreyv9h4XlMDvY9c477/DFixeWZNdt\nzmFnZ8fFixdTFEWuXLnSEKfC1dWVKSkpfP78uVlFYKXzI685OTlx5cqVzMzMzCfTU1gOa3Vkw4YN\njI6ONqma4u3tzczMTK5cudLmHKZs4cKFvHr1qpx9bcpRtWpVhoeHMzMzk506dbIph6OjIz/55BOG\nhoaafbNt1aoV09LSLDlmm+WHo6MjExMTuXv3bqv76s79McxoP8pyzLqT5FWXlSNPnwsmLCyM586d\ns/S6Q19fX96+fZsHDhww9USMRAHlx01x6K1169ZUqVT87bffWKlSJZYtW5ZDhgzhzp07efLkSUtK\nCIXluGGO5Z133mFMTIzhc6VKlbhmzRquWbOGXl5excJRoUIFHj16lFqtlv7+/obvAwICKIoid+7c\nmU+JwcgUzY+85u3tzQsXLvDIkSPWRGqLLE+vt99++42bNm0yeQOGhIQwLS2Nbdu2tTmHKfvpp5+Y\nnp7O3r17W9vXphwzZsxgdnY2N23aZPNyadCgAWNiYtisWTOzvxMdHU2VSmWpK8Nm+VGhQgW5cl/6\ne/cIgKpKO+YCxzANCQnhqVOnrLYKN2zYwLi4uHwzNJTiACTpoFWrVlGr1XLgwIHs1asX7969y5SU\nFEZGRjI+Pp5Pnz41KZtTWA5zLAA4dOhQg85f7dq1+eTJEz548IB//PEHg4ODTU4jVJqjbdu2TEtL\n49WrVw1l5OzszM2bN1MURa5fv57169ent7e3qWtQND/s7Ozo4+PDypUr09PTk3369OGzZ8/YsGFD\nuri40NHRkfb29qacgWIcu3bt4rNnz1ivXj2WLVuWlSpVYpMmTbhu3TqKosjDhw+bE6ZVPD+MrU6d\nOrxx4waXLFnCzZs3W5xiakuO5s2bMykpiefPn5ej6F5kjnfeecds942LiwvHjx/PI0eOcOfOnXzl\nlVeKPT+8vLwoimI+RWxTJsvnWnHIeTX/ZMuxG4M4ODjw3LlzXL9+vVVoc45ZCQ691ahRgzdv3mRO\nTg4PHz7MzMxM7t69m7169aKXlxcXLFhAlUplTtixUByWCjg4OJgPHz6km5sbDxw4wMzMTL7++ut0\ndXXlzZs3WalSJZtzbN26laIocvTo0Zw2bRpnzpzJ5cuXG8QlU1JS+PjxYwYHB5tiUTQ/unfvzkuX\nLjEsLIynT59mfHw8VSoVw8LC+Msvv3Djxo1cuXIlR4wYYTOOwMBApqSkMD4+nvv27eOJEyeYmJhI\nrVZLURStDdQqmh96c3Jy4po1azh9+nTWqFGDGRkZ1qSd1EY8OyDFHj4JaWqYvn+1fEE5atasyXPn\nzvH58+fs2bOn1XtaCQ5zjrl8+fJctGgRjx8/Tg8PD/7xxx+Wutxskh/6+pKdnc3333/f6r5KOGa9\n5l9NFFCO3RjEwcGBq1evtuqYnZ2def78ef7yyy+mVESKzKG3l19+mS9evCBJZmdnc+rUqXR0dGS/\nfv1469YtiqLIU6dOmeMsFIelAtYP/nXq1Im3b9/m6dOnCUgDK6GhoXRxcbE5x/379w2ajMYqv3qn\nPGfOHEtS9YrmR6tWrTh+/HiOHz+ehw4dYlZWFgcOHGgIjG5hvqyiHH379uW2bdt44cIF7t+/n9Om\nTeO9e/cYFxdnbRxCUQ691apVi5cuXTIsgNq2bRtHjRpl6Zi3IC2cKJOXBdLg01MAywrKsXLlSmq1\nWi5cuNCqE1KKw9fXl7t27WJISIih3z8wMJDx8fE8fPgwPTw8KAgCz549m2tGUXHkBwCOGTOGWVlZ\nHDBggNV95Thmq5p/AJ4IglATf0f/rwqgB6RWACA9hRwtnUej0cDe3h41atRApUqVkJSUZHI/V1dX\nuLu7o3Llyvk03kjeKCqHPmVmZiIxMREeHh4QRRETJkzAp59+Cnd3d9y+fRuff/45Vq1aZfJYJTn0\n6eDBg9iwYQP27NkDURRRoUIFjB07Fj179sShQ4dMzRtWnGPnzp3o1q0b4uPj8eTJE2g0GnzwwQeI\njIxEy5YtkZmZae0UiuVHeHg4wsPD4eLigoYNG+LOnTu4cOGC/iYpNo6QkBCEhIQYPrdq1QozZszA\nvHnzoNVqi41Dn/7v//4Ply9fRnZ2tnQitRqurq6WDokCAJLpuiA9jSAN5LcC8F8A4ZAiqY2Xy/De\ne+9hxIgRePbsGU6fPg0fHx88fvzY2mFF5lCpVDh37hwaNWqEXbt2QavV4tGjRxg9ejT27dsHABAE\nAdWqVYMoijbjMJfatWsHJycndOjQAdu3by/o4fmTlRZz3q4MLYCxur9qSKOaqQAyrT1lgoKCmJGR\nwYEDB5p9kowdO5YZGRnmpmUpwgFI/UF//PFHrlZhVFQUAwICWLVqVWutoUJxWHvy1qpVi48fP6Yo\niiRJlUrFnTt3Whr8U5TDycmJ1atXZ/ny5eni4sKdO3dSo9FYk4PXm14WngD26BgS8LcsvBZA14K2\nRF599VXGx8dz4cKFcgPn24RDb0uWLGFqaqq5riWbc3z00Ue5Bhx//fVXvv3223I4NJDklH7RfdZz\n3ACQIYfD3t6ew4YNY1pamkEBOjExkRcuXLA2I0NRDicnJ9apU4e1a9dm2bJlc20TBIHXrl2zpIeo\nGEde27p1K1UqVb5ZZ6ZMTotZbldGkaXHHR0deerUKcbExLB169b08vIyDOB4eHiwVatWjIuL49Gj\nR81JCikqgd6zZ08eOnSI+/bt48SJEy3NOFCEQ04BV65cmUFBQTx69ChnzpxpbaDUZhxt27bl48eP\nGRMTw3r16snJk5aQBk8GQmqVpAP4Qs9SWI6BAwcyMTHRmhCszTkAaXEFSd66desf45gwYQKbNm1K\nQJqp8uLFC0szQxS7Z+zs7Dhv3jymp6dTq9UyISGB586d4/3796nVahkbG2ttEFLRe9ecdevWjQkJ\nCZa6MmzGcenSJSYnJzMgIMDqvnIcs9WuDEEQkqGA9HhOTg5GjhyJSZMm4ciRI9i6dStcXV1BEk+e\nPMGECRNw7NgxDB06FDk5OaZOoagE+r59+wyvQAVMNpGEB4DExER89dVX/zjHSy+9hEqVKiE4OBhR\nUVFyDpkLYAvJXwRB6Asppq0bgPSicLz66qu4ceMG4uPj5R5iEw4A+Pzzz3Hy5EkkJyf/Yxy+vr5w\ncHCAnZ0dhg4dimPHjiE8PNzSIYrUke7du2Py5MlwdHTE4MGDERsbi0uXLsHPzw/ffvstXF1dLS2D\nVozDWrp58ybc3Nzg6Gi2p8hmHGlpadi1axciIiIKc3j+ZKXFbND8g4IS6L6+vnz77be5d+9e3r59\nmx988AEnTZpkTSLeJlLshbBCcdiAxWYcXbp04fPnz1mrVi25LN/qzqtnWQXgMCQl4icAbgOoWFCO\nO3fumJp5Uewczs7ODA8PZ1BQkKxRd1txDB06lDdv3mSHDh148+ZNOQuSFLtnzA26WhmMVZzDkgmC\nwMTEREsrVG3GIbOrjYAyXRl6zb9/XPL7385hA5aSwkFIOmnXdCxfQoradUrHcRTAfJiIC2DpnN7e\n3rx+/bql19Ji4QCkhsT8+fPZuXNnS/2XNudwcnLihx9+yC5dulgMs1nUOmKD+lFsHIMHD7YUXqFE\n5EeRHbMOqkRIfv/bOWzAUlI4bFI2bm5urF+/vrW+y/+pOlLK8f8HR5EdM4y6MvJ8//+t9Lg5Dt3f\nrgDiIY3wTrUxS0nhKPFlU8pRylGSOJRwzPqujAJLfitp/wKOTZBehdSQVhJVB3DRViwlheNfUjal\nHKUcJYZDrlmblREGE7qAciS/lUwlnQPAYUEQOgCYYsSy3VYsJYXDEktJKZtSjlKOksQhNxVWJdsP\nwENBEGIhvS6XBeAOaZpQcaaSwqFnKQky6KUcpRylHP8+jlypsI6ZRn87QlqD3tF4h2KWHv+nOYxZ\nOrIYZNBLCocFllKOUo5SDvkcuZIczT9T6RGk5dqANED4T0l+lxQOPYtJGXRBELoKgnD9f5HDiOVf\nx6FnKeUo5SgqR9u2bTF16lSoVCrcvXsXnp6e1jhMsfydZHSam1Jj9oEUwlANXUwGAPN126xKfr/8\n8sv09/fnu+++y06dOtHT05Nly5Zl2bJl6eTkRA8PD/r7++cNqq8oh4uLC6dNm8ZBgwbxzp07TElJ\n4Weffcbo6Gi+++67liaMm1OnPq7bngZpzX0cgFeMOGQrdsg0RTkqVqzIvn37sn79+hw2bBhHjBjB\n5s2bc8SIERwwYAB9fX0txRApCflRIA65dbUkcpQpU4bly5fnmTNneO3atXwxI4qLo1atWrx//z4T\nEhL42muvFVt+VKpUic2bN+fbb7/N4cOH09/fn506dZITF9om+bF9+3bu2LGD/fv3Z1hYGLOzs/n7\n77+zfPnyJveXNVgpwzG/BqB5ngv6HsBqSKtlEiBFZfoTRvL05i6iSZMmjIuLY1BQEFUqFZ89e8bx\n48fz6tWrvHbtGj/88ENeu3aNDx484Ouvv258rKIcrVq1IklOmTKFERERPHfuHHv16sX09HQmJCRY\nClRjjmMCpNgIjwE8h04GXc+h26/AN3mjRo14/PhxhoWFMSwsjC1btrQJR9OmTfns2TNOmTKFaWlp\nTE9PZ1BQEEVRZFZWFj/66CPWrVvXHGex5YcVk82h214gefqSwFGlShWOHTuW69ev5/Xr1/nw4UN6\nenr+I/nxwQcfUK1WMzQ0lFu3brWkTqQYx9ixY3nlyhXOmjWLJ0+e5LJlyzhs2DBGRkYyLCyMXbt2\ntdSoskl+zJ49m+XKlaODgwMrV67McePGURRFsw8rOY7Zah8zyTO68JLGKRBAK5JJgiB4QpJs+RFS\n8JY4WJD8jouLQ7Vq1VCxYkUEBgYCAHx8fHD58mUAknz98ePHcfbs2bzrztdAWspqLD9eaI7w8HAc\nOHAACxcuxMKFCw3fd+nSBWFhYZbCk1rjCC0Ih5ubG/z8/KBWq+Hu7o569eqhbNmyCAgIQLdu3XDl\nyhWIoohff/0VKpXKONykohwxMTH4+uuvsWbNGkN++Pr6IjQ0FKNGjUKvXr1w+/ZtREdHmzp8VlE5\nXF1d8eqrr6JWrVoAgPj4ePj6+qJdu3ZITExEhQoVEB4ejvj4eCxfvhwhISFYsmRJ3jgaBeEIhQl5\n+nLlymHx4sV4//33ER0djR9++AEJCQlISUlBYmIiypQpA1dXV7z88ss4cOCAEvlhksNUcnFxwZIl\nS+Dp6YknT56gdevWhlCxZpJNOFxdXfHVV1+hUaNGWLhwIdzd3TFu3Dg8fPgQ06ZNM8VTZI6KFSui\nf//++Oqrr3Dp0iX8/PPPmDt3ruG37t27h6+//hrffPMNbt68iYcPTV6GTfJj//79SElJASDFu1m3\nbh1++OEHNGjQAGfOnMm3vyAIkZAakJ+QNB18RVazWlpbbvykSYUUlMXN6HMueXpYeMKQ5Pr16w0B\nv43NwcGBzs7Opl5LBOSXHy8SR6NGjfJ917t3b2o0GkvKEIXiMNVCdHd355IlSxgfH8+UlBSmpKQw\nKyuLGo2GGRkZvHz5Mjdu3Mhx48axQ4cOrFGjhnE8EcU49GYqwp4gCDx//jyzs7PZsWNHc3lSZI7P\nP//ccO2mTKvV5vt/wYIFhebQfc5XR+zt7dmiRQsGBwdz27ZtjIqK4osXL6jVapmTk8Ps7GxDqNjN\nmzcXOT/McZiyTp068dmzZ/z555/p7u7OOnXq8N69e3zppZeKlWPKlClMSUnh+vXrGRwcbBBYUKvV\n5liKzLFx40ZqNBrOnDkzXz21t7enp6cn161bx5ycHG7btq1Y8yOvTZw4kRqNhn369LHkQ76EiWX5\nBenKWA8gEbm1sqzK05uDrlixIkVR5A8//FDQ5bbrUQD5cWscpszT05MkeeXKFVatWlVRDlMOsXz5\n8rxw4QJFUeSePXs4c+ZMzpw5k0OGDJETHEYxDkvWvXt3iqLI33//3VIMgiJzLFq0yKxTLoBjVlye\nXhAEuri4sEqVKvTy8qKXlxenTJlCrVZrKaCR4hwAuHjxYpJkq1atCEiCwmfOnFGkXORy1K5dm1qt\nlrdv36ajoyN//vlnvnjxgpMnT6ZKpTLXoCkyxy+//EJRFLl27VpDo83Ozo4NGjRgaGioIU60niLP\n7gAAIABJREFURqNhYmJisZZLXrt3757FctGd22zIBLmO+TVITf686rJBuv9zqcvCguS3g4MD58yZ\nQ61Wyy5duhToYnUceeXHC8Vhyuzt7blw4UKS5IQJE2zBkW+wy93dnRcuXGBSUpKlVo/NOcyZj48P\njx8/ztTUVPbt29fS4EqROfz9/XngwAGq1Wr++uuvnD9/fi67cuUKtVottVotU1NT2aJFiyJxFKaO\nAJIackJCgrWA7IpzCILAo0ePMiwszNCgGTNmDNesWWPyzdMWHLVr12ZCQgLv3btnUKuuWbMmvby8\n2LlzZyYlJZlrJRaZw9PTk0uXLqVKpeLly5c5cuRILlq0iGlpaczJyWFERATnz5/PTp06MTAwsNjK\nxdjs7e05cuRIkuTo0aPN7qc798cwo/0oyzHrTmJKXXav7v+JAL7Ls79Jye9KlSoxNDSUKpWKtWvX\nLqgjikR++fFCcZiyBg0a8MmTJ3z48KGlUe6icNzIe65OnTrxxYsXzMzM5NmzZ/n9999blGe3FYcp\nc3d355EjR6hSqdi/f/+CytMXmKN58+Z88OABMzMzTcrPr1q1ytBiXr58uSIcBa0jgiBwzJgxFEWR\nc+bMsTRLRXEOQRD4/PnzXGohR44csaYwoxiHh4cHN23aRFEUOWDAgHzXHhgYyBcvXnD27Nk246hW\nrRqnTJliCNBvrEmp14S0UoY2rR/t2rVjXFwcr127Zi2EcSSAIwCqFsoxw7xK9lJIzX4RkgJAUxPH\n5gPSSzqp1WpevXrVYD///DN79OjBypUrW8pcxTjymq+vL6OiopiUlCRHLaNQHKZYFixYwOzsbD56\n9IgxMTFMTk5mWloar1+/zoYNG1qraIpxGNurr77KMWPG8M8//6Qoirx48SJr165tzTEXmcPZ2Zlr\n1qzhkydP2LVr11znt7Oz47p166jRaKhWqy31/yueH8ZWoUIFHj16lMnJyfTx8bFpfuS19957j+np\n6Qb1+AoVKsiRMsqrCj0ff7+y50DqT5WlCj148GCq1Wqz/erDhw+nRqPhF198YVMOQJoNIooiVSoV\n09LSqNVqmZKSwlOnTrFjx46W4lQrymFsderUYUJCAu/evWvVh1jyuXIdszmV7LWQppkIkDz/bTkX\nU79+fT569IiiKPL58+e8ePEiQ0NDeenSJapUKoaEhFjqL1OMw9h8fHwYGhrKpKQkvvvuu3Ju0EJx\nmGLx8fHhf//7XzZr1ox16tThm2++ySVLllClUvHPP/+0pi2nGIfeBEHg5cuXqdVq+ejRI965c4cq\nlYr3799nnz59LDlnRTj8/f3zOWUArFGjBm/dukWNRsOLFy9aqviK5kdeCwgIYGZmJpcsWWJtX8U5\nxo0bl6uf/8MPP6RGo7EWlzmvKvTr+HuK2JeQAsNbVYX29PTkzZs3+ezZM5OK7XZ2dly/fj21Wi17\n9OhhMw5A6g5dunQpRVHkzJkz2atXL/7www+8c+cORVHkgwcPOH/+fJvmR17r27cvY2JieO3aNXNd\nbLmsyI7ZCKym7oJCIPU33wNQSbetMQC1nItp2LAh4+Li+M0339DPzy+XHL2dnR3VajU///xzsxej\nFIexTZ8+nST59ddfy7o5C8tREAcwYMAAkmRwcHCxczg7O7NixYp0cHCgnZ0d27Zty/T0dEZERBhk\n402YTfND/2ah0Wi4Z88eS/qMNuWIjo7m06dP5eyrOMf48eO5a9cuurm50cHBgevWreOjR49kcejO\nnYsF0uBTNPL0q5riaNu2LbVaLefNm5fvNwRB4O+//05RFBkWFmZTDgCsW7cuY2NjqdVqczVcGjVq\nxNOnT1Or1TIrK4sNGza0KYfeunbtyszMTEZERMhWMVHaMd+GNAfVA0Ca0baPAeQUtrIb2549e3jl\nyhWzF6Mkh4uLCz/99FOqVCr++OOPshkLyyE3T6pUqcJly5ZRq9VyyJAh/xiHse3du5fp6ekGIVAT\nZjOOAQMGUKVSGWZi9OvXz9INYDOOPn36MDs721wfqs05/vzzT4Nj9vf35/Pnz/nNN9/I4biOv6WU\nakMnNqrj2A0Z4qNz5sxhTk5OvlkoHTp04LFjxyiKIo8fP25pAFsRDkBStjl//nw+xwxID4lbt25R\nFEUOHjzYphwuLi6cPHkySTIhIYGjRo1inz59OHLkSI4cOZLvv/++2cHhIjtm5O9jzgAwDFKfjBpS\nf1kqgMyi3PxVqlTh6tWrmZGRYdYxK8nh6OjIBQsWUKPRcO/evSxXrpxs1sJyyMkTBwcH7t+/nzk5\nObx69ao15W7FOLy9vRkYGJhPndzJyYmjR49mTEwMY2JiWKdOHXMs2bq/Gkh9d2pIKzH1svBaAF0L\nU0eGDRuWa4qcldk8NuGoUKECz507x+joaLmD1opzBAUFcffu3XR3d+fu3bup0Wj4xhtvyOEQdf//\nASlet2jEcQNAhhzHnJmZyf79+xvu148++ojx8fHMzMzkZ599Ri8vL0sPTEU4AMn5fvrppxRFkWPH\njs01CCkIguFBYcYxK8bRsWNHJicnkyTVajXT0tKYmZlJfdJoNJw+fbrJ/FDCMXsBaAYpgPRU/N1n\nZnGaibmLcXBwMEz1cXd3p5eXF3v27MnLly9TFEXeuXPHkhy7Ihy+vr48e/Ys86akpCRGR0eTJP/4\n4w9LgzuF4jDF8vPPP/PGjRucNGkS161bx8ePHzM7O5s3b95kmzZtrL0aKcJhb2/Pb7/9ltnZ2Zw+\nfbphzm6PHj0YFRXFtLQ0xsXFcdq0afkct5H9AWlUW9939xDAAgCTCpIfpqyAjtkmHO+88w7T0tK4\nc+dOq7y24njzzTcZHx/P48ePMycnx2S3glJ1JO952rZty6ysLL548YIJCQnMzMykRqPhpUuXcs0S\nsTWHMc/Zs2eZkJDA6dOns2bNmnRzc2NAQABVKhVfvHhBd3d3m3L8+eefVKlUvH79Ojds2MDhw4ez\nb9++7Nu3L/v168fg4GBWqVLFJL8cx2xtSfZTAMEAbpFcIAhCS0jzT+8CaKHbZzCAQ1bOAwB4//33\n0bRpU6SlpUGj0eCtt95Cs2bNcOjQIVy8eBHfffcdIiMjzR0+SQmOYcOGoUGDBjh48CBSUlJw69Yt\ntG3bFg0bNsSFCxcgCALS09OhVqttygEA27dvh0qlwsyZM3Hp0iWUL18e8+fPxw8//IDExERrhyvC\nQRKXLl1CWloaJk2aBDs7O3Tp0gX+/v5YsWIFLl++jBs3biAyMlJfSU2lcJLfAoAurq0TgKaQlrXK\nzg9z6fTp0+jUqRNIIjnZ9ApWW3K0adMGrq6umD17ttxDFOc4fvw4Jk+ejIULF2L79u3YtGmTnMMU\nqSMXL17EjBkz8NFHHyEqKgrOzs4ICQnB9u3b8ezZs2Lj0Kdz584hICAAkydPxvjx41G/fn24u7vj\nrbfegoODAzZs2ICMjAybcgQFBaFcuXLYu3cvsrKy8m3fuXOn3Msxnay0mI3lWG5CeiXrjb+nmagg\nacvVlPOU6dKlC588eUJRFDlr1ixqtVoGBQVZaokZm2IceVfVGX+WseKuUByWWgDGvy0jH2zC4e3t\nzT179nDWrFmMjY1lmzZtCsKil+u5CSmCV3VIgyrZANIBbAdQsbAt5qCgIMOSaAvdKTbjuH//Pp8+\nfVqQ8rFZfhRHHbH22wVkUJwjL1OLFi147do1iqLI5cuXW5o9ZDOOgpicFrPVHXRgZSBpx72j++wJ\naeqP2TXftriYfzOH0iwlhcPWZfPGG2/ws88+o1arZXx8PL28vIqd4/79+zxy5EiJyI+SUi6lHEXj\nKLJjhhnJb/ytLBsFINHWF1PSOYxYIiG1jGytTl1SOGxaNg4ODvT09GSLFi3YoEEDa601m3A0adLE\n0vLrf11dLeX4ZzmK7JghPUVMSX774e9g5+MhxTFtbuNMLckcVfB3UO2ZAPbAhDr1/yhHSS+bUo5S\njhLFIccxC7ofNpkEQWgP4HcAEbqTAsB0SCtl2kIKKh0HKUC9mqRNRFD/BRz/1XF4QRqRHw4pZKCL\nLVhKCocVlpJSNqUcpRwlhkNusjgrg+YlvysAiCE5Rvc5n4ChkqmkcwA4LAjCfwG8ZsTyyFYsJYXD\nEktJKZtSjlKOksQhNxVJJVsQhFhIE7PLAnAHMFoZrH8dh57lXUEQXsU/K4NeylHKUcrx7+PIlYqq\nkk1IT5cVAJbpN+pUkKmwWVLJ/qc59CwOkGTQm0PSIsylCv0/ysF/K4eN60gpRymHJY6iqWSbGRTU\nB5B+AKk/8yJsrDxckjmMWHIgBalx1LPARqrQJYXDStmUWI5/qK4WmcPNzY19+/ZlRkYGly5d+v99\nfvyvcOQ1qy1mQRDWC4LwRBCE60Zfu0FayugHaVJ2NQDtdNtaQ5rArWiyNUebNm0wYcIE1KhRo8Ac\ngiBUBLBf9zECkhR6PMnLeg6Sf5k6n5+fH9q1a4fmzZujS5cuaNq0Kdzd3a3yKs1hnAICAtC7d280\nb94cI0aMwIgRI+Dv74/AwEB4eXmZYrEJR0FTATkAGXXE1dUVQ4cOxcaNGzF58mRkZ2cjIyMDU6dO\nhSAIxcYBANWrV8ehQ4fQsGFDREVFmRMctQlHvXr18Mcff6BmzZr5trm5uSEqKgodOnSwOUfe5ODg\nAD8/P7z22msYOHAgAgIC4OzsXOwcSic5XRkbIM3zM05fQpp64g1gMoB9AIYKgtAZFpRl58yZg3Xr\n1mHdunX44IMPcPHiRVy8eBEjR45EeHg4Ll68iP79+5vjeANSvFRjldtCcZhKn376KVxdXeUsMTXH\ncRBSK3CyjsnPGoe3tzfWr1+PkJAQdOnSBWvXrsXevXvx3//+16QDtBWHcXr55ZcNS3579OiBNWvW\nYM2aNejZsye2bt2K5cuXw8Eh39CE4hz6VKdOHfTu3RvdunWTs3tBOGCN5f/+7/8wdOhQfPfdd6hW\nrRqOHTuGNm3a4NGjRxg8eDDKli1bLBz6NHHiRLz66qt4/Pgx+vbti8WLF1s7RDGO1NRUODg4ICAg\nIN82Ly8v1KpVC6mpqTbnME7NmzfHtm3bMGDAAISEhGDDhg345Zdf8O6772LKlCmwt7fPe4hNOAqa\nBEGIFARhs+7BYDJZdcwkz0Ca22ecAgFsIvkUwGZITiIEkuw3zZ2rXLlyeOWVV1C9enV4eXlhzZo1\nWLx4Mf766y88fPgQDRo0QOXKlc0dXgvSunafonKYPHmtWmjfvr25NfY24WjYsCF8fX2xYsUKzJ8/\nH7Vq1cLly5cxaNAgvP/++8XGYZxiYmKQkZGBtWvXYunSpShfvjzKly+PxYsXIzAwEDt27IBWq817\nmM3KZfTo0fj444/x3//+V87uBeGANZaEhATUqlULXbp0wRtvvIGIiAhcuXIFOTk5cHR0hKura7Fw\n6NPIkSORmZmJixcv4t69e3IOUYzj+fPnuHv3Lnr37g1PT89c2+zt7WFvb48333zT5hyA1Epu06YN\nTpw4gY4dO+KVV15BamoqEhMTUa5cOQwePBhNmjQx9eAsNIerqyu6du2K9957D4sWLYJarcbu3btR\np04d+Pj4wM4utystU6YMPDw8zF1CI0hL9L8ze5Ey+5RrQhdgWvfZkjy9WWVZQRAMAdj135UtW5YL\nFy5kbGwsR48ebS4qFHW/0wpAdlE5TFliYiJTU1Nl9Q8VhoMmJqo7OjrSw8MjV+jCCRMmUKvVcsqU\nKcXGYWzVqlXj3bt32ahRo4L0mynOobeBAwdaC8JeKA7d5wKrIDdp0oQZGRmG2MjFxdGsWTOKosif\nfvrJJuVijaNcuXI8ePAgtVot33rrrVzbWrVqRVEUOXXqVJtzODg4cNiwYUxNTeX27dvZuXNn1qtX\nj7Vr12bTpk35+PFjiqLIvXv3miqfQnN8/fXXBjFgvd6gRqOhSqXiuXPnGBwczLlz5xps+/btDA0N\n5Ztvvmnu3i2ySvZ6AInILWJoSZ6+QMqy7733Hu/fv89atWpZ23c9pAAwWqU5+vTpYwg7KmP/wnLI\nGuz6+OOPZTlmW3HMmjWLOTk5lnT1TJnN8uOtt94iSe7du1dRjsLUVScnJ65atYqiKLJv377FynHt\n2jUmJCSwQYMGNikXaxwVK1ZkaGgoRVFkr169cm0bN24cRVHkZ599ZnOOQYMGURRFxsfH59s2YcIE\npqWlUaPR8L333lOUY/To0Xz+/Dl//fVXRkZGUhTFXI46r9PW/3/hwoV8HLpzF00lG9JTIxC5HbM1\n2W+ryrIVK1bk3LlzeebMGbnK0LEA/lSaAwC/+OILarVaLl682JYcVtWpHRwcePr0aT5//tyayKbN\nOPRR//r06cMyZcrQ09NTTp7YJD8ASY5MrVZzzZo1inPIrSN2dnasV68eV61axSdPnnDRokV0dnYu\nNo769etTFEX++uuv1sQTbMbh7e3NCxcuMCsrK5/O4HfffcecnBy+8cYbdHNzM5U3inGMHDmS6enp\nzMnJ4bRp01itWjU6OTlx0qRJ1Gg0jI2Nzae0YguOIUOGcNWqVTx79qwhYqYpx7xy5UpTHEVTyTaC\na4+Cy35brDQTJ07k1atXWbNmTVmVzFYczs7OPH/+PFUqlbmnrCIclljs7OwYEBDAU6dOMTs7m6dP\nn2a9evWKnQOQHLMoirx16xavXbvGiIgIDhs2zFq+KM6ht86dO1MURbmOWXGOhg0bcuvWrYyOjqZG\no+GSJUvkhKlVlKNr164URZHffvttrm6v4syPxo0bMykpiffu3cvVFWlvb8/bt29To9Fw1apVvHDh\nAvv162czjjJlyvCnn36iKIrMyMjgwYMHGRQUxOTkZKakpDAwMNAgxlEc9cPLy4stWrRg9+7dDRYS\nEmJwzL/99pvJe9eqz7XikPNKS8mWY7dWabZv385du3axevXqluKnGptNOFq1asX4+HgmJCSwXbt2\nNuOwxOLm5sZdu3bx7t27vHTpEp88ecK4uDhL4qc24QDAmTNnGiq9Pg6xWq3mmDFjLFV4xTn01q9f\nP2q1WkvKxzblCAsL47NnzxgZGcmYmBhmZmZy0aJFJtWibcXxww8/5BJDtbe3p6+vL1955RVWr17d\nkrNWG/HswN+xh7W6704DKC+HY8qUKRRFkefPnycgjReVK1eObdu2pSiKFEWRqamp3LVrlymle8U4\nALBevXq8efNmru6DqKgoS+rpNuEwZ6mpqQauMWPG5NuuhGP2AvAyCiHHbg2+UaNG3L17N2/cuMGv\nvvpKju6eTTh69uzJ1NRUHj582OzAoxIc1ljc3d1ZvXp1AmDv3r2pVqt56NAhU5XcphwtWrTgzz//\nzEGDBrFevXrs1q0bs7KyeP/+fUtB6hXn0NuKFSuo1Wq5YMECOWWjOMdLL73ETp06sUqVKqxbty4n\nT55MrVZr7S1CUY7Vq1dTq9Vy+vTprFevHidNmsSLFy9SFEX++eef+boWjOwtSOEs9RJXrwP4Xsfy\nJaTpY8vkcBw4cIBarZZdunRh1apVOXbsWB4+fJiPHj2iKIp89uwZhw8fbu6BpRiH3ipWrMhr165R\nq9VSrVZz5MiRcuqH4hymzLgro2fPnvm2F9kxG4HVRAHl2OVexLRp0/j48WMeOHDA4n624tCrY2zZ\nskUWb2E5ClrAmZmZFEXRbP97cXEA4KRJkyiKIlu0aGFuH5txrF69mhqNhkOHDpXDWiz5cfv2ba5a\ntarYOL7//nuKosjdu3fz8uXLzMnJ4fXr1w19u6dPn7bIoTt3LhZIswKiIUPjrlatWtRoNFSr1YyP\nj881KyE7O5uiKHL//v308PCwKYexOTo6Mjw8nFqtltnZ2fzwww9l1w8lOfLa8OHDSZKiKDItLc3s\nvVskxwypK+N3SFLs2ZDmM3vo/n8EST7nIQBNUS7mww8/ZFZWFmvUqGFpP8U5BEHguXPnKIqi3Cdu\noTkKkif16tWjSqVibGyspRazohyCINDHxyffFCM3NzceO3aMSUlJlqbQXYD0ip4DIAjSCqrZOpaH\nun0KpZK9detWPnr0yNJDoVg49Obk5MTY2FguX7682Dh69OjBnJwcpqam8tdff+Ubb7xBJycnAuDC\nhQsZERFhjeOero7UNqojDyF1tVhVhe7evbvBGefk5PDixYsMDg5mkyZNuGjRIoqiyGXLlsnJjyJx\nGNv06dNzdWVkZ2ezUqVKcuuHYhzGVqFCBR4+fNjQYl60aJHJ/ZRwzF6QxAkfQ+of0wL4ApIs+1/4\ne3QxrbAXU7lyZR49epTLli2zNqiiOIe7uzuTk5OZmJhoUbJICY6C5Mn8+fOp1Wr57bffFhtH06ZN\nefXqVZ48edLgnJ2cnDhnzhxqNBquWLHCUr9qoo7jGYAESA4pAZLeXZHy4/z587xx44alB5RNOF56\n6SU2btw4V50sU6YMFyxYQI1Gw7fffrtYOPTlMGjQIGo0GkZGRnLcuHGGQfOdO3dSrVab43gKqV9V\nDckRHdBx6TmqAki1xlGuXDkOHz6c06ZNY+vWrenj42Po1164cKEcx6wIh7ElJydTFEXGxsZSo9FQ\nFEV6e3tbqx+Kcxhb/fr1DV07WVlZZqdUFtkx66AMciz4u/mfDGCWbnuBpMcFQTBUtiZNmvDYsWM8\nevSonAtXlAOQWuqiKHLfvn2yMr4oHKZY7Ozs6OPjQz8/P8MUI29vbx48eJDJycksX758sXAA4Ouv\nv06NRkOtVkt/f3/WrFmTy5cvZ2pqKnfs2MGyZctaYjHI9ehYHgNYAGmZa4E48trx48d56NAhuWWj\nCEeZMmX4/PlzXr16lVWqVGGtWrXYpk0bXr58mQ8ePOCECROsDVjbJD969erFqKgoqlQqiqJIkkxL\nS+N3331XbPeMsTk7O3Pz5s1yHLOiHFWrVjW0Sp8/f061Wk21Ws0qVaoUuw8xtiFDhjArK4uiKPKP\nP/4w+6AosmOGkbQUpP6ZOEjxSi9Aag1EQuowXy3nYrp27cpWrVpREAT26NGDDx484IYNG+TqqSnG\nobfly5fzt99+48CBA+Xe+IXmMMXi7OzM+fPn888//+TUqVO5dOlSnjlzhocOHeLChQstzYJQlENf\n2cPCwnjixAmeOXOGd+7c4Z49ezhp0iRrHIROrseIZRWAwwBiILVGbqOQqtBDhgxhcHCw3Jk7inAs\nWbKEGo2GoaGhnDFjBu/evcvY2FhOnDhRbpeKzfKjcePGfPPNNzlq1CiOGjWKvXr1svQmo/g9Y2zO\nzs4MCQlhTk6OtXtIcY7169cbujGOHj3KdevWyZnGaLP8KF++PNeuXWvo8pk7d67ZOquEY24Pqakf\nASBDV7G6AqgL4Jju+3sAtsu5mPv37zM4OJgRERGcMmVKvhVEVkwxDr3pW+8FtEJxmGMRBIEzZsww\nLOzYunWrtWlyNuEApOXY7733HtVqNcPDw621ko3tKoBrOpYvAVQEcErHcRTStKRCq2SPHTtWTmtI\nMQ7j2LnGnwtQR2yWHwU0xe8Zc3lV3BweHh7MzMzknTt32KJFC2vTF22eH3369DHcw6IoWlwgVmTH\nrIMyq8as225yzbcpoDFjxnD16tWcP3++pTgD5kwxjiJaoThswFJSOGxeNjVq1LA04v8/U0dKOf69\nHB988AFHjRrFP//8kwcOHLDo34rsmGFeJbsK/pb8fgzgRjFkaonm0P3tCikudCqAqTZmKSkcJb5s\nSjlKOWzNUalSJZYtW5ZVq1a1NjakiGPWd2VchTQF6wqkteNbIE0zuQvpCXQVtpceL8kcmyC9CqkB\nnARQHZISgi1ZSgpHSS+bUo5SjhLFIccxF1YlOwNAOZLddZ8/BfC27mL1x5qWd1AwlRQOSOrUHQBM\nMWLZ/g+wlBSOElM2pRylHP8GjrypsCrZfgAeCvnVqecqxPVv49CzdBAEIQL/rNpuKUcpRynHv48j\nVyqsY6bR346Q1qB3NN5BN1KrWDLz1CopHMYsHUkmC4Iw0JYsJYXDAkspRylHKYd8jlxJjuafqfQI\n0nJtQBogrIY8kt8FOZmHhwcSEhKQkZGBqlWrmtzHjOS3ohxykgXpcb0Muj7TDSyCJIF+HQqmksJh\nxPKv49CzFPR3PvvsM2RnZ5sV7rUVR+fOnREXFwdHR0dZnMWVH6UcheIwxfJ3ktMRbWJQUB/ZPw7A\nZUih8+brtsmW/HZwcODYsWM5evRofvXVV1y7di27desmu8O8KByOjo7s3Lkz//Of/zAqKoppaWmG\nWMQHDx6kq6trgTru8bcM+nVIA3BxAF4x4rCq2CEIAvv27cvBgwfz8ePHjIqKMjun2ZYcgBRn9rPP\nPrO29Nha2RSJo2XLloal2L6+vmzXrh39/f05bNgwNm7cuEgcBa2r+vqqlxj68ccfzS5osBXH+PHj\nzQVeL1aOChUqsFmzZnzppZc4dOhQjhw5koMGDTIbxN/W5fJP54cSHPm4ZDjh9ZBWKxlr/lWE5AhV\nkORagiGpA3QG0AEyddTmzJnDu3fvsnbt2gQkmanWrVub219RjqFDhzIpKYkzZszgyZMnuWTJEr71\n1lu8fPkys7KyLMXOMMdxTFeoaZBGeP8y5qCM0d2FCxcyKSmJXbp0YZ8+ffjXX3+Z1AyzNQcgPSSm\nTp3K6dOny6lsinN4eXkxLi6ON27c4PDhw3nr1i0mJCQYogGeOHHClLqKbA7ddtl1FZCCS7148YIR\nERHWFrzYhOPUqVOmgtAXO8eWLVv48OFDTpw4kdevX+e5c+cYHx/PYcOGmYsNrQhHYGAgz58/z7ff\nfps1atTg5s2bGRYWxgEDBvDjjz9mu3bt2KNHD0uqO4rnh5ubG48cOcLatWvT1dWV/fv358CBAzlw\n4EA2btyYAwcOZIcOHXJNoZPjmOX0MW+AFLN0o9F3XwLYSHKpIAgTICk269Vl4yBD8rtDhw7o378/\nvvzyS8TExAAAXFxcLKlUvwFpyWStonI4ODigYcOG2Lt3L4KDgzFv3jx9QaFjx45o1qwrT56PAAAg\nAElEQVQZXn31VezevbsgHAdJBhhxJBQkP958801MnDgR33zzDX777Te0bt0aHh4e8PX1LWh+FIlD\nn0iiWbNmcHJykrO74hxPnjzBoUOHMGLECLz77ruoUqUKnjx5gtdffx2CICA2NhYqlaooHKEogDx9\n3bp1sXjxYsTGxqJVq1ZQq9WWdlecw87ODtWrV8e1a9fk4NqMw9HREV27dkX58uWxadMmfPvttwCA\n7t2748MPP8Rvv/2Gv/76yyYc0dHRqF+/PjZv3oywsDB06tQJgKQe3rFjR4iiCDs7O8yePRtz55oc\n/1c8P/z9/REQEIBVq1Zh9+7dmDt3rkExOywsDKIo4uTJk3BxcUFoaChEUYQgCJGQGpCfkEw2dV6r\njpnkGUEQaub5OhDA64IguEGS/b4Aqa9mMaRZERZT9erV8fXXX2PmzJkICQkxfB8eHo779++bO6wW\npHXu7YrKodFosHDhQlSoUCHfDda8eXOo1WokJCTYnEOfnJ2dMW7cODx48ADLli0DAKjVaoSGhqJn\nz57YsWMHsrOzbc6RN/n5+eHFixdydr1rC47g4GC0adMGHTt2RGhoKO7evYvhw4dDFEXExMQgPT29\nKByA1IKxmqpXr46ff/4Z9evXx7vvvmvNKduEo1OnTnjy5AlSU1PlINuEw87ODkFBQQCAb7/9Nlf+\n29nZ4fXXX4enp6cpx6wIR0xMDAYOHAh3d6kKbdiwAQDQpEkThIeHo1y5chg6dChGjBhhzjErmh8u\nLi7YsmULXrx4geDgYNy/fx937tzJNQag0WgQHx+Pu3fvQhRF/deNIIWB/Q7AYJMnl9mVURCVbItS\n7B4eHkxOTuZPP/1kTdAyr60HkARAVILDlNWpU4c5OTnW1DoKxWHp1b1SpUpMT0/n6NGjc31ft25d\nRkREmIszqzhHXgsNDWVkZKScfW3G4ePjw7Nnzxrki168eGGpe0U2R0HqSFBQEDUaDbdt2yYnUI5N\nOPbv388DBw7IXZpuE45OnTpRFEWuWLEiX5fF/PnzmZ2dbY7PJuWS1wRB4K+//srMzExzwaYU5XB3\nd2dGRgaPHj3KChUqyObUndtsyAS5fcymVLJVACYZfU41+t+s9LiDgwNXr17Nc+fOsW7dugXKdB3H\nSuSWHy8UhylzcXHh3LlzDcKf5gb/isBhdrDLw8ODUVFRXLZsmSEYi5+fH69evcpt27aZe4ApzpHX\nTp06xcOHD8vZ1yYcnp6enDNnDpOSkiiKIp8/f84GDRpYijQnm0NuHalfvz4fP37MrKws+vv7y62r\ninPs37+fa9askRPpzyYcjo6OXLlypUH3r2PHjrSzs6ODgwMHDRrEZ8+ecdKkScWWH6ZMEAQmJSUx\nISHB3LJoRTk8PDyYnZ3NVatWFahcdOf+GMDuQjtm3UnyqstajGEKM5LfPj4+PH/+PDt16pRvm5+f\nH1u0aGFJNTsSwHklOExZw4YNGRsby7S0NGs3YGE5bliqUPPmzTPo/J07d46RkZHMyMiwpJatOEde\ne/z4MS9cuCBnX5twrFixgllZWczJyaFKpeLTp0+tRbwrEIecOnL27FlmZ2dzwoQJnDx5Mrdt28ZT\np07x+++/tzTIpDjH/v37OXfu3Hz30+7du/nTTz+Zc0SKcQiCwBo1anDu3LlMTU1lQkICFy1axJUr\nVzItLY0//vijpda84vlhyiZNmkStVsvY2Nhi4ejfvz9FUeS8efMKGn1QL2RRVWnHXKgYpoMHD+b9\n+/cJSC3UBg0acNmyZbx9+zajo6P56NEjJiYm8ptvvsn3yqgkR16rUKECd+3axbS0NKuxmQvLYYnF\nwcGBP/zwA7Ozs3nt2jWGh4fz8uXLjI2NZUREhMkZIrbgMDZ3d3emp6fz2LFjciqaohzlypXjihUr\nmJOTw/DwcAYGBnLJkiUURZFDhgwpNo7hw4cb1J+fP3/OzMxMRkdH86+//uKLFy8YGxtrLoqY4uWy\nf/9+rl271nBf+Pj48MGDB0xKSmJ2drbJxo6t6ke1atV448YNiqJItVrNr7/+2iB1VRzlYsqcnJy4\ndetW5uTkcOzYsTbnsLOzM9TJpUuX0sfHh/Xq1TPMMLNksnyuFYdcDZIcS1459haQ+mv0fTP5muSm\ngIKCgrh79262b9+ey5YtY3x8PE+dOsWxY8eyefPmbN68uSGAvolWq2Icxubq6sp169YxOzubK1as\nkFMJCsVhieXjjz9mamoqR40aZWh1uLi4sF69ejx69Cg/+eSTYuEwtkaNGlEURW7dulVOnijGYW9v\nz5kzZ1Kj0TAiIoJNmzYlAMMc8+Dg4GLhcHJy4ooVKwx920eOHOGAAQNYs2ZNtmjRggcOHKAoimzf\nvr1NOfQ2depU/vHHH/Ty8qK9vT2DgoJ49epVjhkzhrdu3TKnlqE24tkBKfbwSUhTw/T9q+ULWj/e\neecdxsbGMjU1lU+fPuXy5cutjRfZhENvzs7OnDhxIrOzs3nlyhVL2qGKcdjb23PVqlUURZG3b9/m\nuXPn+NdffzEmJoZLliyhj4+PWV4lHLMXgJeRX479ewATdPvMAvBczsXs2bOHKSkp1Gq1vHDhAqtV\nq5bvFaBSpUr85ZdfTGm8KcZhbIsXL6ZarWZ0dLQlGfgic5hjqVq1KrOzs7l06VKTv/fTTz9xzJgx\nNufIa3rZLZmOWTGO6tWrG1pjxsrHMh2zYhw1atTgzZs3KYoib9y4YZhPXrZsWa5du5aiKPLmzZs2\n59CbIAh88uQJP/nkE9avX59xcXGsXbs2v/vuOx45csTccW9BWjhRJi8LpMGnpwCWFYSjdu3aTE1N\n5fXr1+nr68uuXbtSq9VywIABlspFcQ5ja9KkCZ88eWJQDjEzl1pRDgcHB27YsMGgFh4bG8vDhw/z\n+vXrFEWRkydPNtu9UWTHbARWE7nl2GPxtxz75wDS5VzM0KFDDXIws2fPztddUbduXV66dImrV6/O\np0igJAcgPfFGjx7N58+f8/Hjx2zZsqWsSlBYDnMsc+bMYXp6Otu0aZNvm6enJ+Pi4kz2eSvNkdeC\ng4OZnp7O//znP3LyRTGOLVu2UKvVcvv27Yb64eDgwMWLF+dz1rbk0DtmrVbLjh07smXLlpw/fz6j\no6OZlZXFDRs2sHr16jbnMLbZs2czOTmZd+/eZVpaGs+ePcurV6+yVatWFjl05w4BMAiSSkclSINP\nB1AAjbvq1aszOjqaV65cYYMGDQzfr1+/3trMBEU5jM3Pz4+XLl2iKIo8evQoa9WqZbV+KMEhCAID\nAwO5ceNGNmnSJNfg340bN3jixAmzqt1FdszI35WhBTBW91cNaVQzFUCmnIvx9fXlvn37DBJKxoMn\nr7/+OkNDQ5mYmGhuIEMxDkEQ+OGHHzI9Pd3Qh7hr1y5OmzaN1apVszbCWigOcyzffPMNk5KS8q0k\nc3Jy4o4dO3jgwAG6u7vbnCOvnTt3jo8ePeIrr7xidV9Ir4Gi7v89Oga9OnSqjqurHI6MjAwmJSXl\ncnp16tRhREQEU1NTLTlDRTk8PT158uRJiqLIqKgoxsfHU6PR8MiRI2zTpo01BR7FOIzN1dWVTZo0\n4fXr13ngwAG+9957rFmzpqVZKnoODSQ5pV90n/UcNwBkyOGwt7fnggULKIoiBw0aZGgN+vv7MzIy\nkqdOnbI0GKoYh7HVrl2bJ06coCiKPHv2rJwpa4pyCIKQrwvHxcWFly5dspgfSjhmfVdGGUhLn/+C\n1Py3OM3E0sWUKVOG33zzDf/66y+mpaXx9u3bTElJ4YMHD3j48GE2atTIXKYqxvH+++8zJSWFoigy\nLS2NqampVKvVhv7Effv2WSrkQnGYYxk0aBBVKhWnT5/OunXrsm7dumzYsCEXL15strVsCw5j8/b2\nZmRkJO/fv8+GDRtaq+yEtFLqEoCBkF4R0wF8oWcpCEd2djbv3LnDWrVqGdSpw8PDmZ6ezt9++63Y\nOACwXbt2DA8P56VLl3jw4EEOGDBArracohxFMMXuGUdHR65du5bZ2dns2rUre/TowQ0bNvDZs2e8\nceOGYam4t7e3qcFqRX2I3j755BOq1WrGx8ezR48exZof5vLok08+oUql4siRI83uJ8cxWwuU/0QQ\nhGRITfxNAF6FNP80U3eBEAShMqTWm6yUnp6OadOmYf369WjUqBG8vLwQHR2Np0+f4uHDh0hJSTF3\n6B2lOLp164bU1FQsWbIEoaGhqFixIqpUqYJy5cphxowZcHV1NV6lYzMOAAgJCUHz5s3RokULjB49\nGgCwY8cOaDQa9OvXz9ISXEU5TKXLly+jYsWKcnadC2ALyV8EQegLKaatG4D0gnI8fvwYNWrUwFdf\nfYXWrVvDx8cHBw8exMaNG7F58+Zi4wCAs2fPolWrVgU5xCYcRUiK1ZGcnBysXbsWycnJ2LhxI1Qq\nFXbt2oVZs2YhJCQET59Kp6lZsyb8/PxyrehVkkMQBLRs2RL16tXDp59+iuTkZPTr1w8XLlyQc7jN\n7pnKlSujc+fO+Oyzz7BixQr88ssvhTnN38lKi9mg+QcbSaAXwBTjECwo+1raVhQOOXki47eLhUPP\nUoCy+VZ3Xj3LKgCHISkRPwFwG0BFORx+fn68ePGiYbDv1KlTZqOW2ZKjiFZSOGxy71qqp+3atTM1\n5VQxjm7dujEhIYGzZs1iSkoKX3vttX88PwICAhgVFcXp06dz8uTJVjnktJgF3Q+bTIIgtAfwO6S+\nlzqQKtVYANGQVtF4QYp9cInkgDzHmj9x4RL/zRw2YCkpHABwDdJDvC6ARQCWAdgNKXpXAqRXRz+S\nueIClHLYnONffc+Y4hgzZgyaN2+Offv2wdfXF1u2bLEU+MxmHE5OTnj77behUqnwzjvvQBAELFq0\nCFFRUdYh5EhVWfPc+P9Aerw4OGzAUlI4/vVlU8pRylGcHHJazNacsqErI8/3/1PS40pw6P52BRAP\naYR3qo1ZSgpHiS+bUo5SjpLEoYRjbo9CSn4raf8Cjk2Q1A/UkFYSVQdw0VYsJYXjX1I2pRylHCWG\nQ65Zm5URBhO6gIIMyW8lU0nnAHBYEIQOAKYYsWy3FUtJ4bDEUlLKppSjlKMkcchNhVXJ9gPwUBCE\nWEivy2UhdZybjE5tw1RSOPQsJUEGvZSjlKOU49/HkSsV1jHT6G9HSGvQOxrvoPTILi1Lj//THMYs\nHVkMMuglhcMCSylHKUcph3yOXMnU67Cc9AjScm1AGiAskOT36dOnMWvWLIOMkpxkRvK7SByFSWY4\n9CwmZdAFQegqCML1/0UOI5Z/HYeepZSjlENJjtq1ayMzMxMTJ05E48aNzXGYYvk7FbIjXR/ZPw7S\nnMxMAPN12yxKfuuj/gcFBVmLSGV1JLMoHMZWvnx5Ll26lGPGjGFcXBynTp1a4AAkMCODbsQhWzmk\nsPmhFIejoyPr1q3LatWq8f333+fIkSPZrFkzdunSpaBlo3h+eHt7s3v37iaDsheEo6B1BJAUkfv1\n68fevXtbXJptCw5XV1c+ffqUYWFhHD16NO/cuWNJUd5mHG5ubnzvvfd44sQJzpgxg6IoMjk5mX36\n9DEbs0MJDkdHR/r4+PCLL75gVFQUZ82aRZVKZYi//NZbbxXqnlGyfgiCwJ49ezIzM5MhISFmQ6HK\n8rEynPB6mJb9vgxpnXk6gGBIqq8GeXpz8O3ataNWq+WMGTMKItVDpTn05uDgwO3btzM7O5sdO3bk\nrl27mJOTw48//pi+vr4F4TApg67n0O1nlsPZ2ZlHjhzJFbWrkPlRJA4A3Lx5M2NiYvjpp59So9GQ\nJGfNmsUXL16YC0GqOIebmxs3b97Mjh075qr47777LlNSUvjRRx8ViUO3XXYdGTx4MEePHs2UlBSm\np6dbiuhmEw5BENi5c2f6+PiwcuXKDA8PZ3h4uLU6oihH69atOWrUKKanpzMrK4vjxo3jkSNHqFKp\n+OjRo3yBuJTkePvtt/nJJ58wMzOToaGhbN++PXv27MmRI0dy2rRpXL58uZx7xib1Q281atRgUlIS\nr127Zi4+NgF5jllOV8YGSPP8jNOXADaSdAEwE4ATpDB6LWFF8lur1QKQlG0zMzNl/LwhvQFpyaS9\nEhyAtO6+V69e6N27N44dO4aqVasiMDAQz549Q69evTB+/Hg4OOTrhjfHcZBkDQBBAA4B+EEuh4OD\nAwYOHIiAgACMGzfO8L2Pjw/q168PQTDZJaUoh729PapVq4ZmzZqhT58+uHPnDm7duoUpU6agX79+\nePHiBcqUKYOyZcuaOlzR/KhXrx5++uknDBo0CHv27DF8P3v2bAwdOhTu7u7w8PAoKgfksADAqFGj\nsGrVKjRs2BDt27fH2bNnrdVdxTlIIjQ0FI8fP0Z6ejoSEhJQvnx5a+iKcVSrVg0zZ85EYGAgTpw4\ngbp162L58uXo2rUrvvnmG/j6+qJfv34246hevToSExPRtGlTBAQEICwsDPv27cOWLVvg7e2NDh06\nWMsLRfMjb6pRowZWr16NlJQU+Pv7IyEhwey+giBECoKwWRAE84FoZDWrjeKY6j7f00G7AfDUfT4N\noCekGKcrYeJJYWdnx1WrVlGr1eYSHtVblSpVLAW5FgAshVGQ8cJy6M3T05OxsbE8deoUvb296e/v\nz3HjxvH1119nVFQUk5OTTb0iFYrDUgvxlVdeYXJysqGlrv9+8+bN/P33381pqSnK8dJLL/HGjRvc\nunUrZ86cmS+85oQJEyiKInv16mWKRTEOe3t7Llq0iFqtljk5Obl07hITE6nVann48GFz4T9lc+i2\nW60j1atX5927d7l//36DHmXZsmXp7u5uSTFbcQ5jK1u2LPft28eoqChr+yrCUaVKFe7du5fTp09n\np06d8t23CxcupCiK3LFjh8046tevn08g2c7OjkOGDDGEEZaRdzYpl2bNmvHatWtMSkpiYGCgHA4B\n0kNhc1G7MhKRWyvLqjy9KaCaNWvy1q1b1Gq1uYJ9ODs784svvmBqairPnz9vTnp8PQogP26JA5D6\nKuPj4/ns2TOTvzd69GiKosjZs2crwmHOEdWoUYPp6elUq9U8f/68IWBPixYtmJKSwosXL5oLQaoo\nR+XKlXnmzBmS5N27d3MFHBcEgffu3WNERIS5iqYYR8OGDfn06VNqtVpe/3/tnXl4FFUW9t+CkAQC\nhi1gZAu7JIEAYwQJSxBBFoOfowMMgyCg4OeGRAIoJoMyouIoyrgAsu8iwRgBdRAYEgSFAQNhDyQh\ne8hKyNrdVe/3x+1ukk53p5NUY5yvzvPcB9Ld1fXrW1Wnbp177nnj480OOCQkhDqdjrdu3bIl51Qr\nDkfOEQD85JNPmJ6ezt69e1fpj6NHj9rTllOdo3KrhWNWhePhhx9mXFycVSFcT09PFhYWUlEUzpw5\n8672x/PPP8+ioiJevnzZnmix0zm2b99OknzqqaccOn7G77ZZMsFRxzwMQoWhsmN2RJ6+GtCECRNY\nXl7OsrIyc0c2a9aMX375pXmEpNPpuGfPHmu6XcNQC/lxexweHh7csmULFUVhWFiY1UpZrVu35uHD\nhzlixAi1OKpNdrm5uTE6OpoGg4GHDh2q8t7kyZNZXl7OU6dO2aquphqHqfXq1YsbN25kWVkZU1NT\nOXz4cPr4+PD69eu8fPmyPQVz1TgiIiJoMBiYl5fHoKAguri40Nvbm7/++itlWeaZM2fYsWPHenPU\ndI4AQvZLp9Nx1apVZvEE0wSPwWCwJwyrKoepNW/enK1bt+a4ceOYnp7OZcuW1eQEVOFo0aIF+/fv\nb3Uff/nLXyjLMhMSEqrcvJzVH+7u7gwODubOnTup0+mYmZnJWbNm1dQPTjsuCxYsoCzLXLVqlaMM\nJsf8MmxoPzrkmI1fYqku64g8fTWgRYsWmeXFTSELHx8fXr58mbIsc8WKFVyzZg1lWebGjRstt7+E\nWsqP2+Lw8/NjVlYWy8vLbQbpW7duTUVRrAm01pXjvOU+pk+fzpKSEhYUFFQ7qV977TUqisKUlBSG\nhoZy06ZNXLRokVM4Kjc3NzeGh4dTlmWmpKTw5MmTVBSFAwYMsFcKVDWODz/8kLIsMykpyay8HBgY\nyNLSUsqyzLffftueYoeq8vQBAQFUFIULFy40nxPh4eEsKipiXFycPdFP1TgkSeLw4cP59ddf89Sp\nUzx//jzT0tJYVlbGefPmsXXr1vacgKr9Ydk6d+7MM2fOUJZlrl271l5oRxWOBx54gCdOnGB2drZZ\noq6kpIRXrlxhTEwMY2JiuGjRInvqMqr2R/fu3WkwGPj999/T09OTgMjwspE0YHnt/gCgQ50cM0RO\nXwxE7EWBWOoLiCC6ScLoFoCNVratBrRw4ULzBW+KF82cOZN6vZ6JiYn09PRkUFAQZVnmsWPHLLdX\nhUOSJG7evJl6vZ5PPPGEzc6bNm0aFUXhm2++qQqHJcvAgQOZm5tLWZZ5+PBhLl68mEuWLOGHH37I\nvLw8syMyGAzU6XSsqKhgXl6e6hzWmoeHB7/99luSpF6vd+QRTTWOhx9+mMePH6dOp+OFCxc4ceJE\nZmVlUVEUyrLM6dOn25uHULU/unTpwvT0dF68eJHbt29nRkYGZVmmoih8//337wpHz549ef36dUZH\nRzMmJoYVFRVMSUnhjRs3KMsyDxw4YM85xxk5rgBYCFF7OA8ig6kUYmKrTurUHTp04C+//EJFUZiT\nk1OTM1KF49577+XBgwd57NixKu3nn3/m5cuXmZKSQp1Ox7KyMr799tvWUl5V6w+TSjZJbtq0iTEx\nMSwtLaXJDh06ZDO8Ys/nOuqY20PMVGbjjjZWBESVpisQeX+5AK468mPGjRvHsrIyGgwGczFtk5Bi\nWFgYPTw8+K9//YuyLHP79u2W26vCMXLkSGZnZ/P48eM2R17e3t78z3/+w4KCAmuSNXXisGTZunWr\n+a5v6hPT35VbVFQUZ8+ezenTp/ORRx5RncNac3d356ZNm0iSZWVl9rTcTE1Vji5dunDOnDk8efIk\n9Xq9WfJLlmWeP3/enu6f6v0RGBjIDRs28LvvvuMnn3zC1NRUlpeX1yT6qRpHr169eObMGSYnJ3Pv\n3r184YUX6O/vTz8/PxYXFzM5OZk9evSwxZFr5EiDqAP9GIAUiMqD1yHqQdRanXrYsGH89ddfqdfr\nmZCQYFYQt9OcwmFqjRo1YufOndm3b1/OnTuXcXFxrKio4BtvvOE0jvvuu4///e9/zddIWloao6Ki\nzAOsnJwc/vbbb85xzJXAfFBV9fc67qj++gHQOfJjOnfuzHPnzlGWZUZGRtLLy4vXr1+noiicMWMG\nFy9eTJ1Ox59++okDBgyo9mPU4Jg2bRrLy8ttxgddXFzMIpxr1qyp9vheVw5LlsGDB/PHH3+koihM\nTEzk3LlzzcoQkiTx7NmzLCwstOmE1OKw1t544w2S5IEDB1hRUWHtJmnZnMLx2GOPsbCwsMqN6sSJ\nE/ZizE7hAMST1rBhw8z6jHezP6wphvTs2ZMGg4ExMTH08vKyy2H87iosEJNP11BLdeoBAwYwIyOD\niqKwtLTUkb5wCoe91rdvX+7bt49LlixxGsf999/PrKwskuSOHTuqLCYxTZYbL1Kr166ajvkyRCL2\nPQBuV3rvZQB6R36MJEmcPXs2dTodZVlmUVERS0pKqCgKKyoqqNfrWV5ezn//+9984IEHbDmienEc\nOXKEhYWFnDBhQpXXvby8GBYWxpSUFOr1esbGxlqd8KgrhzUWLy8vent7W53tjouLs5cFoSpH5ebr\n68vCwkKuWrWKbdq04ZEjR1haWurIhacqBwA+/fTTLCkpYXl5OVeuXMmOHTvaUgx3Kofp3I2JiWFR\nURGffPLJ36U/TM3NzY0rVqygXq+vaeLLB+IG4WNk6QbjBJeRYy8cFB9t1qwZ58+fz5KSEnM4xxRq\nu3r1KseOHWtvNaRqHPaai4sLhwwZYk4mSE9PdxpH9+7dmZiYyNLSUnbr1o2AuGk9//zzvHnzJnNz\nc20OaOrtmCFizDchHskIIfk9CyKtxBQzKwJQ6minNmvWjNOmTTPH6yof5IyMDH7++eds27attYkm\nVTiOHj3K/Px8jh492nySh4SEmB9/CgsL+eqrr1pT+q0XR21PtLi4OGZnZ991jhs3bjA2NpZeXl5s\n3749T5w4QUVRauKtMP5rALDbyJCFO7LwMoCxteHw8PDg0aNHzefF4MGDHek31TlMLTAwkDqdjrt3\n76a3t/fvxgGAs2bNYkFBAX/88cdqub1WOBTj/3+GqNetVOI4D6CkJo6WLVvyo48+4q1bt8zX7I0b\nN3jjxg3zXEhBQQGnTp3qVA5brUWLFgwODmZUVBSzsrJoMBiYkZFhVu52Boerqys3bNhAkvztt994\n6tQppqWlsbi4mBs3buSQIUNsToaq4ZjbA+gPUUB6EYQUewDEbGa48TO2ZjPtdmbbtm352muvcefO\nnVy7di1HjRpV02hIFY7w8HAaDAaePHmS33zzDYuLiynLMrOzs7lixQp7M8v14qjNiebn50dFUWgw\nGGzldDuFo2PHjiTJzZs3s1+/foyOjmZJSQmHDBnCli1b2mP+GcB8CLXhqxCTKO8DCK1rf4wdO9Y8\nItu2bZtD/eYMDkCMlr/44gvKssz169ffdY7mzZuzTZs27NGjB9977z3zsmQbC49UvWaaNm3Kjz/+\n2DwXcubMGY4cOZKurq5s0qQJPT09+fHHH1On0/HLL7906rULgOPHj+e8efPYt29fvvTSS1y3bh3T\n09NZUlLCwsJCxsXFccuWLezUqZNTOQBxw4qOjubp06d5+vRpHjlyxDzgs9fUcMxVpKVwJy7zK4Ao\n42vzAayqz+jQwaYKR69evXjhwgXzhNLevXu5bt06BgcH2yw6ogZHbfqkVatWjI+P50cffWTvZqU6\nR8+ePXnkyBFzKuF3333H+fPnO8K8stJ37wEQDaEK/Vpd++P111+nLMtMTEystUtPo9sAABglSURB\nVEq2mhyAuGFduHCB0dHRnDhx4l3lcHd3Z0REBFeuXMnk5GReunSJkyZNsleXQtVrxt/fn1lZWczJ\nyeHChQtt3gxeeuklW85QtWsXEIrUubm5PHDgAM+ePcvjx49z2bJlnDp1Kh977DF6eXnZS+tsEL5M\nDcdcWY7lAsQj2RMA3oNILymHmNH0uQuOWTWOypNsd4ujtn3iAJtTOF555RWS5A8//FCbPjHJ9VyA\nyEjoDDGpUgGRivQVgNa14Rg9ejT1ej1nz579u3IA4NSpU1leXs45c+Y4MkpVncN0LtThnFXlmqnH\ntaL6tdsQ+qO+rd6OuRJYcwjtuP9j/LstxGja5ppvZ/yYPzKH2iwNheN/4dhoHBrH3eaot2OGDclv\n3FGWvQogx9k/pqFzVGK5BDEycrY6dUPhaPDHRuPQOBoSR70dMyxizJVe74g7xc7nASiAhbKsEzq1\nIXO0w52i2m8C+AZW1Kn/Rzka+rHRODSOBsXhiGOWjDu2apIkDYVY+nvO+KUA8AaAVwE8BFFU+gaA\nkxBJ804RQf0DcEw1crSHmJGfDVEy0N0ZLA2FowaWhnJsNA6No8FwOGp2xVhpW/K7FYBEkv/X+Hc1\nAUM1raFzAPhekqSpAIZVYklzFktD4bDH0lCOjcahcTQkDketXirZkiQlQyRmtwDgAeB5dbD+cBwm\nlr9JkhSE31cGXePQODSOPx5HFauvSjYh7i6fAzBLXhtVkKlys6eS/XtzmFhcIGTQBwBYAwtV6P9R\nDv5ROZx8jmgcGoc9DqeqZKdAxDNPoY7Kso62hsxRiUUPUaSmiYkFv59K9l3hqOHY1Ilj8eLFjIiI\n4Nq1aylJjuep1oajtueIl5cXQ0JCzGod+/fvt1n315kczjouGsfvy2HZahwxS5K0QZKkbEmS4iu9\n3AxiKWNHiKTsTgCGGN8bBJHAXcXc3NzQp08fREREICoqCpMnT0ZUVBSmTp0Kf39/eHp63hUOS/P3\n98dXX30FvV6PiIgIFBYWYty4cbXikISo4nfGP89BKO5mkDxj4iCZXhOLyV5++WVs3boVTZo0+d04\nAgICsHjxYuTl5aFr1652P6smR9euXfHEE08AAG7cuOEIal05AAfOETc3N8yaNQs///wzevTogV9+\n+QWLFi2Cj48PpkyZgi5dujiVo3379pg8eTJ69+6NkJAQTJs2DWPHjsWqVauwatUqrFmzxua1o3Z/\ntGjRAm3atEG3bt0wZswY+Pn5YdasWRg4cKCtTZzCYbJGjRrB398f/fv3x6xZszBr1iz069fvrnNY\nsz179sDPz68umwpzYHQ8DMAAVBVj/RfEbGY7479rAZyGkKefCgsBw7lz53L69OlMSkpiRUUFZVlm\nREQEZVlmRUUFlyxZwsOHD3PkyJH27jTJAPYDuFhXDsv2+OOPMywszLw8OyIigoqiMDk52V7h7zpx\nsBZpN0uWLOHy5ctrGi06lSMkJMR8jByQ7lGNY/ny5ayoqODEiRPNqhC1aA5zGN+v8RwZPXo0CwoK\nuH79erZu3drMNHr0aL722mvcsGGDUzni4uJYVlbG119/nUVFRdTpdObz9MqVK7x48aK9MqiqcUyc\nOJGnT5/mK6+8woSEBBYUFHDJkiWUZZmpqal85ZVXzPJbd+O4dO/enfv27WNSUhIjIiJYVFTEtWvX\n1lQnW3UOa61p06YsKiqyJ7V1CcA2WFn96fCImWQsRG5fZRsPYCvJm8YdPAyx9jzQuOMqVl5ejr59\n+8LT0xM//fQTli5diqSkJERFRSEpKQnDhg3DiBEj8Oyzz8Ld3d0WSlcACQC868phsiZNmuDDDz9E\nZGQkHn30UaSmpuKZZ57BsWPHQBKdO3fGjBkz0KJFC6dyWDNfX18EBwdDURTTyWPLnMrRpk0bBAcH\nQ5ZlFBcX1/RxVTgGDRqEBQsW4MiRI4iOjsatW7eqfcbb2xsffPABAgMDrT1R1IYD9lgAYOjQoZg/\nfz727duHBQsWID8/38x09uxZ9OzZE7dv37a2qSocPXr0gJ+fH27evImrV68iPDwcYWFhOHjwINq2\nbYs+ffqgb9++SEtLs/UTVOHw9/fH7t270a5dOzRu3Bhff/01/v73vyM2Nhbvv/8+WrVqhdGjR8PN\nzc2pHADg7u6OiRMnYvXq1Xj00UehKAoyMzPh6+uLxYsXo1evXvDx8UGnTp3g4lItt0E1Dg8PD2vf\nDwBYuHAhmjdvbst/AIAvxBL9VbY+4GhM2QdVR8xFEGGEZpX+NsnTV1GWlSSJ5eXl3Lt3L8eMGVOl\nKI+rqyu9vb356aefUpZlZmZm8v7777d6lzHu50EAFXXhqNwmT57M9PR0KorC9evXMyAgwKyCsHfv\nXpaUlNBgMFitllVXDkdGqpIkMTQ0lIqi8K233rL7WWdyAODBgwepKAozMjJqKi1JtTjWr19PnU7H\nBQsWWN1PUFAQjx07RkVRWFhYyPDw8DpzVHoatKmC3LJlS/75z3+2qeCyY8cOxsTE1Ks/7HGMHj2a\nsixz69attRqxqc3Rv39/LliwgH/605+qPcV5eHjw2rVrjI+Pt1fESLXjMnjwYObl5VFRFB44cIB9\n+vQxvzdo0CBGRkYyOTmZN2/e5Nq1a53C0bVrV27evNlm5ccVK1ZQURSOGTPG3rVbb5XsDQByUFXE\n0J48fTVl2d27d5ulpKw1Dw8Pc1lBW2q8Ro5iVFW5rRUHAN5zzz28cuWKWejUsqKcJEl8+umnmZ+f\nz9u3b1urMVtXjhon3SRJ4urVq6koCocOHVrTRec0DgCMjY2loihMTU11xAHUm2PQoEHMyMhgbm6u\n1ZBWcHAwDQaDOeykKArLy8vrzGHvHHGkdenShQkJCbYcsyoc3bt3p06n43PPPVdrvrvRHy4uLnzn\nnXdYUVHB3bt3W9PYU5WjZcuWTExMpKIovHr1qlWtQ0mS2LJlS168eJGyLPPZZ59VnWP9+vW8du2a\nTUmv2NhY5ufnMyAgwOr7xu+un0o2xF1jPKqry9qsYQoLZVk7qsZ0c3PjBx98QFmWee7cOXt6bskQ\n8Z86c7i4uPBvf/sbFUXhyZMn7UnycPDgwVy9erU1zb+6cthVpzb107p166goiiNKu07j6NSpk7k0\n6r59+xy5SOvN0aFDB0ZGRvLXX3+tdlw8PT25f/9+8yhp2LBh3LNnD998803LG2utOKydI462oUOH\nMiMjg5988km9+8MWx/Dhw6koCn/++Wdu3LiR7777LmfOnMlRo0ZxzJgxHDFiBO+99157orCqcDRt\n2pRLly7ltm3bqrTY2FhevHiRb731llnR3JkcM2fOpKIovHTpElu1amX3+PTs2ZNhYWEMCwtTlaNx\n48ZctWoVt2zZYnPfmZmZzMzMrCnGXHeV7EpwQy1+kGo1TKdPn25Wi16+fLnNk0wNDn9/fyYlJdFg\nMHDZsmU1so0fP54pKSmqcDjSJy4uLjx+/LhDjtmZHC+99JJZzeXxxx935DjWm2Pw4MHMzMzkjh07\nqj0u9+7dm+np6bx165ZZC/Kdd96hLMuWYQ+n9Ie1tm3bNup0OmvhFFU4GjduzG3btlV5QjAJB+Tl\n5TE/P585OTm8cOEC165dy0GDBjmFAxAhlYqKiios2dnZzMrK4jfffOOIoku9Ofr168eEhARmZ2dX\nk4Wz1kznjEUYqN4c/v7+TE5O5gsvvGB1v127dmVpaSlPnDhhU33IIZ9bg0O2lJYqBDATwMcQw34F\noo5pv9qe7JIk8cknnyRJyrLMS5cu1aS2W2+O4OBg5uTkMDMz0yGpoqCgIObl5VkWaq8ThyN90rRp\nU+p0Ol6/ft0R5+A0jiVLlpgvPgdCKlSDw+SYd+/eXe3mbNKJrBx3HzZsGPPz8y1HJfXmaNSoEd3c\n3NisWTOrWTEeHh5ctmwZdTodP/vsM6f1h7u7O0+dOsWcnByzcLCXlxeHDh3KGTNmcNmyZYyKiuKl\nS5dYVlbGrKwsjhgxwpJDV4lnN+7UHpaNrx0F0NKR8yMkJIS7du3ie++9x6CgILZr144dOnTgnj17\nmJyczF69etk7P+rNMWXKFJaVlfH8+fP2QiYExABn5syZLCkpsRyA1ZvjoYceYlZWFvfs2UNfX192\n69aNvr6+HDlyJCdNmsQvvvjC/JRjS8xADcfcHoA/xOTfBdyRY/kSIr1EghiSX67txT9x4kTGx8eb\n037atWtXU3pYvTkGDhzIw4cPc/Xq1XbDK6bm7+/PxYsXW6Zt1YnDkT4ZNWoUDQYDr1275ogzdBpH\nHRxzvTlMoYyEhAT6+flV+f5Dhw5RURQuXbrU/FqXLl0YGhqqOseECRMYHh7OyMhIhoaGcsqUKeze\nvTsDAwM5c+ZM7ty5k7Is8/Dhw2YRTmf0BwA++OCDHD9+vL00NHbo0IEvvvgio6OjOXPmTMv3x0CU\nszRJXI3AnRSxtwD8F8AntT0/KreHHnqIFRUVXLlypb2QSr05evfuzf379zM9Pb2aULNl69OnDw8c\nOMDw8HDLkEe9Odzd3fniiy+ysLCQeXl5vHbtGvPz81lcXMzS0lKzBuLnn39u87jV2zFXAvNBLeXY\n7XWcJEnm4HxWVhaHDBlS4wmgBsfcuXOpKApffvnlGvfXuHFjbt68mTk5OapwOHLCz5kzh4qiOOSY\nncmxbNmyujjmenE0btzYHMaxzA3Ozs6u5pgfffRR5ufnq8rxj3/8o8rjuqnpdDrq9Xrz3z/88ENN\nozanHBd7bdeuXdZEc31gzKayZIHICriGOuh1WrbIyEgWFBRYEz9VjaNPnz5MTEykLMt247tdu3bl\nwYMHWV5ebk2fUbX+aNGiBSdNmsS5c+dy7ty5fPDBB+nq6sqtW7dSlmWuWLHC7rVbL8cMEcqIgZBi\nr4DIZ77H+P80CPmcVAAGR36MJEkMDAw0S6CnpqZy1KhR5pFy8+bNOWfOHK5bt46HDx+23L7eHGPG\njGF+fj4TEhJszqi6u7vTz8+PO3futJWVUCeO2jjmPXv2OHJBOIVDkiSmpaXV1jH/CvGIrgcQDrGC\naqmRJdX4mRpVoV999VUWFRWxtLSUGzZs4OOPP85evXqZU/fKyso4b948vvfeeywrK7OWDlUvjmee\neYaFhYXVsj8sW0hICAMCAuwJ96rSH462Fi1acO/evdTr9bY4rhvPkW6VzpFUiFCLw+rUjRs35l//\n+leGhoZW+e3e3t5MSEhgcXFxTf1RL46VK1dSlmXq9Xpu2bKFTz31lLk999xzXLNmDXNzc6nX67lr\n1y5rk/uq9odl8/Dw4DfffENZlq09zZmbGo65PYADECklCkQs5u8QsuzpuDO7eNuRH9O5c2f+8ssv\nZgn0+Ph4hoeHm9v+/ftZVFREvV7PdevWWW5fb46AgACmpKRQr9fz0KFDdHNzM7dmzZpx9uzZ3Lt3\nL2/cuEGdTsfS0lIuXLhQFY7aOGYHJlOcxlHZMV+8eJFdunRxhCXHyJELIAvCIWVB6N05zGGKDRYV\nFVFRFN6+fZuJiYnMycmpMnrV6XQ8d+6ctdTKenG4urrygQceYGhoKCMiIsxt27Zt5txZRVGYn5/P\n5ORkRkZG8tNPP6WPj49T+sNec3FxYZs2bbh48WLGxsZSr9fzyJEjlp+7CRFX1UE4on1GLhNHBwBF\njnIMHz6ct2/f5ujRo6uEAiVJYlxcHHft2mWLVxWOVq1acd++fdTpdJRl2Rw6KC0tNU9O3rp1i+++\n+66tJxpV+8Oyde/endevX6csy3YnKOvtmI1QZjkW3Bn+5wOIML7vsOS3r68vL126xPLycur1esqy\nbJ5tNs045+bmMjw8nO7u7pbbq8IREhLC/Px8876tNb1ez9TUVFv5o3XiqI1jriH1yKkcgYGBvH37\nNhVF4eXLl9m9e3dHWMxyPUaWTADvQ6hC14rDxcWFI0aM4OzZs5mYmMjMzEwaDAbKssyMjAx+/fXX\n/Pbbb6vFodXmsGz33HMPX3zxRX7//ffMyMhgWVkZFUXh9u3brS1AqTfHiBEjOGPGDC5fvpz//Oc/\nuXTpUi5dupRr1qzhhQsXzPm8er2eeXl5XLFihTUO1a5dAAwLC6PBYGBcXBwnTZrEPn36sGvXrgwK\nCmJxcTGjoqJUPVetfZerqyufeuopxsTEMCkpienp6YyLi2NMTAy3bdvGYcOG2YvJq9oflm3gwIGs\nqKigwWCwW17CEcdck4KJBGAzgDyIcppHISadfgLQHWJkUALgNMm5FttW++ImTZqgY8eOCAoKgqen\nJx555BFIkoT4+Hj4+/sjKysLGzZswJUrV1BUVGS5+VY1OBo1aoRx48YhJCQEEyZMQEJCAoKDgwEA\n0dHRkGUZ165dw5o1a5CWlgadTqcKh60+qWxz5szB6tWrERAQgPj4eHsfdRrHfffdh/j4eLRq1Qo7\nduzAsmXLcOXKlZpYPiY5X5IkHyPL9wC6AOgNUR+7AMAQkvmOcgDA/fffD09PT7Ru3RodO3bE2bNn\ncfLkybvOYWmBgYHo1q0bSkpK0KhRI0RHR6vOMXv2bDz55JPo3LkzAODkyZN48MEHq/z/2LFjuHz5\nMmJiYpCUlISCAsvKCepcMyZr3rw5QkND8eabb8LFxQWRkZHo378/mjZtCm9vb+zcuRPTpk2ztqmq\nHCbz9fVF06ZNkZCQYM1f3DUOk3Xu3BknT56Eq6srOnbsiNLSUqufIynV+GU1jJaHQgz1zxmhEyGE\nC3sAOGh8/TqAr+rzWOZgU53DFNs21Ul1JoejfdIQOGrZH4SQhD9rZHkLQGsA/zFy/BsiLcnp6sP/\naxyVa/haHhcHj49Trt3PPvuMt27dMhdTiomJsbYQy+kcdWhO53Dk2nFkxFyrUIaN962u+XZCp/6h\nOZzA0lA4/vDHRuPQOO4mhyOO2W51OWMoYz1EqbyVlV5vV+ljT6KONUtraRpHw+RoSCwah8bxR+Co\n0eqqkj0VQD8ArhDKsrNpUfi8tnE7B4x/ZA4nsDQUjjqzaBwax/+PHHQgxmzXMWummWaaaXb3ra5i\nrJpppplmmjnJNMesmWaaadbAzLo2Sj3NKMv9AYDGEKkpAyFW21yGEE4lgKYQSyHbQ6xYawWRzqJA\nJH2XQCyfbGb87E3j179O8geNQ+OoL4cFS0cAnhBLdDUOjcOSozFEvnMj4/6KjfvKg1jhORAi66OR\n8bXmxn/bQiijnIMolTANImfaPosjqRu1aagqT+8CsTz4JowiiBCF93dCqFq3h8jp/AXAPyCKvwcA\nWG3cJgAiOT9G49A41OSwwhIMcXNI1Dg0Dhvnqg7AbIgCVSaR6lwAb0IsVvkewDGIfOg/Q1SuWwhR\nyW6FkTPUkX07I5RhlqcnaYBIUXE1vUkh7joEQCHJbAD/BNATYjXUf42dMNr4IzpA3Gl8NQ6NQ2UO\nS5b/QIyymmscGocVDgNEMaoBlTgKALSAUH0/b9zX/RAj43KIJd/rja+fMXLWvOoPzglldISo1GSy\nNIjHgK6SJJ2DkAhvDTG8B8lcSZI8AMyDULCVIeTEXQDEQijWtpYk6RKENMwrtFjKqnFoHHXgsMZi\nMH6XxqFx2OL4K4BmkiS9BFEEyYVknvH9UiPb40YOLwjHHQghmLAJwIuSJD1bE4szRszW8u9+hKh1\nOsoI2NjifT3Eo8dfIB4DPADMI3kbwGcQ8ZyaJb81Do3DcQ5rLB8BuKVxaBw2OMIhqtAlGTmCLN7f\nZNzmLxDxcHcAX1di0UPEqWtkcYZjToOo42yyThA/BCRzIKo6VcDYuZIkeRv/vx3AfojHFAUiVgOI\nof9NiqDPGoi7j8ahcdSXwxpLCwB6jUPjsMHhCRHblo0c/QAYJElqK0lSEwAbAeSTjIIIYbgA+JZk\nlCRJXgCyabSaWJzhmE8B8JckqYMRdgqAEwBgfOQYCxFvaWlc8h0Ncff42PhjCLECx1Sm6nmI2sNA\n7ZZMahwaR21Y7gEQAuC2xqFx2OCYAlGMSjJyJEDEnacZ9+0OYKeRaw9EuKXY+F3TAByp9N12WZyy\n8k+SpHEQKSYmx98T4q4mQxSlbgwxoypD3FUKIdJaXAGUQXRsB4h0Ezfjvy6ws8xY49A4asthwdLF\nuA9J49A4rHC4QcScXYxNDzEp6QFxM3CFiEEbIM5rVwBXIAojNQFwEcKR90ENJRMAbUm2ZpppplmD\nM23ln2aaaaZZAzPNMWummWaaNTDTHLNmmmmmWQMzzTFrpplmmjUw0xyzZpppplkDM80xa6aZZpo1\nMNMcs2aaaaZZAzPNMWummWaaNTD7f1dglqpCKsRxAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWYAAAEACAYAAACAi9xRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXl8TFf/xz83iSSyEFmJIGqNNcRSxJbGTrVVO1VEN0VV\nbW2l1FKkHpR6KtRSsS99tBRFUEtrXytaDRIREUT2ZZb7+f1xZ0aW2ZLcyRPPb76v1/eVzMyZO+97\n7rnfe+45534/AklYzWpWs5rVyo/Z/LcBrGY1q1nNagXNGpitZjWrWa2cmTUwW81qVrNaOTNrYLaa\n1axmtXJm1sBsNatZzWrlzKyB2WpWs5rVypmVODALgtBTEITrgiDcFARhupxQLyJHeWKxclg5rBwv\nHkcBI1lsB+AA4C6A6gDsAJwH0KIk2yqNlxeO8sRi5bByWDlePI7CXtIec1sAf5J8QFIFYDuAPiXc\nVmmsvHCUJxYrh5XDyvHicRSwkgZmPwD3871O0LxX1lZeOMoTi5XDymHlePE4CphdCb9HABAE4R6A\ndACuAJwBvCcP1gvHoWUZLghCBwBqDcsRK4eVw8ph5SiulTQwJwCoAWmnugAYC8A+fwFBEGRNwkFS\nKMccWhY7AF1IpgiCMNWSLOWFwwiLlcPKYeUwn6NIoZIMmDsCuAcgHoAPpAHzloXKUE4vzxz5WJQA\nGgOoYGmWsuSIi4tjaGgobWxsintsyqw+rBxWjheZo7CbHGMWBGGdIAiPBEG4nu9tJwApkMZiEiH1\nWtub2hYA2NraolOnTpg0aRIyMjKQk5ODYcOGwdPTs0w5CluFChXg5eWFoUOH4quvvsKIESPw8ccf\nIzAw0CSHIAjuAH7WvLwGIANAIslLxWFo0aIF/vjjD4SHhyMqKgr29vYGy1qSQ2v29vZYsGABatSo\ngcqVK8PJyckQi0U5zLX/ZQ4bGxs0adIEw4cPR2BgIPr3748ePXqgbt26sLHRfxqXdX24uLjg7bff\nxsiRIyEIzzuFcnIEBASgQYMGBV7Xq1cPYWFhCAsLQ0BAQIHfzm/lpX2YZWb0jjsCaAHger73VgD4\nCIC35m8kgIsAQk1dZerUqcPExEQOGDCAzZs35zvvvMNPP/2UM2fONHWlkZUjv3fp0oUHDhzgpEmT\nmJWVRbVazfDwcB45coTvvvuuLBymWGrXrs24uDiKosjw8HAmJyfTzc1N9vooTg+gVq1aTE1NZV5e\nHv38/Az2mC3FUbFiRXbo0IG1a9dmaGgo7ezsTDFbtD6K4bJzNG3alPfu3WNeXh7Dw8OZkZHBlJQU\nxsbG8pVXXinz+nBzc2NgYCD79OlDAGzSpAnHjBnDI0eO8PPPP6e7u7vsHC1btuTt27d5+vRpDh48\nmIcPH2ZsbCxnzJhBtVpNURR548YNVqlSpUzro127dly9ejXHjRvH8+fP8/jx43R0dDRY3pwes8kC\nGjD/QjsUC8BD878ngH8AzAQw09TO1K1bl7m5uaxTpw4B0MXFhV9++SX/+OMPOjk5Gd0ZOTkEQaCD\ngwMbNmzImJgYqtVqHjx4kImJiTxz5gw/+OADfvLJJ6xRo4YsHMZYnJ2duWzZMoqiyKysLEZHR/Pp\n06fGGphFOPJ7xYoVuXHjRioUCgYFBZkqLwuHjY0Na9asySZNmnDUqFE8fvw4c3JyeOzYMZJkzZo1\nWbVqVdra2lqMQxAE+vj4sHr16qxTpw79/f0ZGBjIli1bsk6dOmzYsCFbtmzJli1b0tPT06L1ofWq\nVasyOjqaycnJnD59Onv16sUxY8ZwzJgx3LVrFzdv3sxDhw6xdu3aFuUAQCcnJy5fvpyPHz/moUOH\nePbsWQYFBfH48eMcN24clyxZwvT0dM6ePVtWDjc3N/773/+mWq2mWq3m0aNHqVarmZubyz179lCp\nVOrOH21ssfRxqVatGr/88ksmJiby4cOHjIqK4uXLl5mVlcWPP/7Y6Llb6sAMYB2AxwBy872XB+AB\ngCsALgPIAnACwKumdsbOzo5Tp06ls7Oz7kSIiIhgbm4ug4ODjZ38snHY2tryzTff5ObNm5mens6n\nT5/ywoULnDRpEtu0aUMHBwfZOYzVSatWrZiVlcUHDx5w1qxZVKlUzMvL46RJk8qUQ+vOzs6MiIhg\nZmYmV6xYYbSsxkvFUalSJY4YMYKRkZGMiYlheno6FQoFHzx4wPj4eJ1PmjSJt2/fZqNGjSzCMXbs\nWH733Xc8c+YMr1y5wrt37zIjI0N30iuVSiYnJ1MURYqiyKVLl1qEQ5+LosirV68WCb52dnYMDQ1l\nSkoKe/ToYXGOH3/8kefPn+fYsWM5c+ZM5uTk8I033qCHhwcBqeN19+7dwnVTao6GDRvy9u3bVKvV\nzMjI4Llz5zh9+nQOGzaMmzdvpkKhoCiKzM3N5YQJEyx+XDw9Pblv3z6mpKRw4MCBbNOmDWvWrEk7\nOzv+/PPPjIiIKNacTEkCc0cAvQvtUC6AeQCuanZKDeDL4pz8Wq9UqRJ//vlnqtVqtmnTxlhZ2Tj8\n/Px4+fJlqtVqLlmyhK6urtTMvJrjJeIwVifdu3fXnXiVK1dmbGwsRVFkWloaW7RoUWYcWv/ss8+o\nVCp5/vx5enl5mVMnpeIYOHAgC9uZM2fo4uJCQRDo5ubGuXPnUqlUkiTbt29vEY6srCxd0DXmDx8+\nNBWYZT8uw4YNY25uLq9du8YGDRoU+Gzo0KG8c+cOGzZsaHGO9PR0XRBu1aoVhw0bVuDz6dOn88GD\nBxbh8PPzY6NGjVirVi3d+XrkyBEqlUrdUIa2R71+/Xr6+vparD5atmzJP//8k9WrVy/w/pAhQ5iX\nl8djx47p6qmwmxOYTS6XI3lSEITgQm9nA1CQbC4IgheA30mGm9qW1mrVqoWxY8eiXbt2cHFxQbNm\nzXDr1i2cO3euTDgUCgXu3LmDpk2bwtXVFbVq1UJMTAzUarVJdkvUx+3bt5GUlIRGjRphxIgR+OCD\nD7B9+3ZUqlQJY8eOxYQJE7QNxKIcAODv74+xY8fC1tYWt27dwtixY9GjRw+sXbsW+/btQ1pamr6v\npZeG4/79+5g9ezbatm2L27dvY82aNYiLi0NmZia8vb0xf/58jB49Gra2tgCAtWvXolGjRrJzDBo0\nCB4eHnB1dUX16tVx8eJFqFQqJCcnIzs7W1cuNDQUERERhjZTag59tmXLFvj5+WHQoEG4ceMGDh48\niB9++AEPHz7EV199hQ0bNuDWrVsW5ejQoQM+/vhjPH36FPXr10dGRga2bNkCQJrUHzhwIDp27IiJ\nEydahCMhIaHA68aNG6NevXqwsbFBRkYGTp06hdTUVLz66quoWbMmmjZtisTERNk5AKkNXLhwQbd9\ne3t7BAYGom3btqhQoQJq166NKlWq4OnTp+ZsrqiZ1a0GglHwSnMWwBMAMQAuAFhdnKvu+fPneevW\nLcbExOh6ITdu3Cg8YVDkKiMXhyAI9PLy4rRp03jy5En+888/nD59Ol1cXEz2DkvKYaxObGxsOGjQ\nIIqiyJSUFCYlJenqZe7cuXp785bgqFChAk+cOEGVSlWg9yGKIjMzM/nVV18ZqpdScWzdupUkqVAo\nuHfvXi5btkznx44doyiKzG8JCQkW4XBwcKCHh4exMWwC4M2bNymKIiMiIizCYchtbW3p6+vLyZMn\nU6lUMiMjg4mJibx37x6rVatmcY5p06bx7NmzBMCQkBAGBATo2s3atWuZnp7Ohw8f6rujsUh92Nvb\nMzIykiEhIWzSpAnd3Nzo5OTESZMmkSTXrFljMY6QkBA+evSIP/zwAxcuXMgTJ04wLi6Of/zxB0VR\n5NGjRw3GM7NiromAXANAMqR1fgSQCmA0gCAATwHkQLrq7DG3Ul966SVmZWVRpVIxNTWVR44cYVRU\nFFUqFRcuXGjspJCVI39jDwsL4/Xr1zlv3jxWrFjRaPmScpjD8sEHH+iCkCiKnDFjRply9OvXj2q1\nmkqlkjExMVy3bh3nzZvH+fPn68bjDXy3VBydOnXigwcPqFarCwTgzMxMpqen88yZM1ywYAHPnTtH\nknzy5ImhCR6LHJf8XqlSJaampjItLY1NmjSxSH3kdzs7O9atW5crV67k+fPnGRISopusVqvVzMnJ\nYe/evQ1xKPLx7ABQF8AxSMvC8gA8BOBmbn0MGTKEjx49YuXKldmoUSP27duXJ06cYEpKCtPS0vj3\n33/zvffe09eRkJXDHBdFkY8ePbIYh6enJzdu3Mhz587xl19+4axZs1inTh327t2boihy06ZNtLe3\n18smR2D2AdAE0mzmnwD+BtAcmmUmmjLhAJ6Z2plKlSoRkHqrgwcP5tSpU9mrVy86ODjQzc2Nu3fv\n5q1bt+jv72+osmXhMOQtWrTgL7/8wu3bt7NWrVrGypaIwxRLgwYN+PvvvxcYy7x48SK7detWJhx2\ndnbcsGED1Wo109PTOW7cuAKfN2rUiPfu3dM38085OPz8/Dh58mTu2LFD5wMHDmTfvn11DTw4OFgX\ntEeMGGERDlOuPfGOHz9Ob29vQ+Vk4xg/fjzj4uJ45coVLlq0iG3atGGbNm04e/Zsfv3110xOTuZ/\n/vMfQxzdAVwH4FKYBYAvpIv7cnM4KlasyIiICCqVSh44cEA3D5KamsqDBw9y9OjR9PPzsziHOd6i\nRQtGR0frayMW55gwYQJFUeSaNWsMLu8sdWDOB+av2aFdkAbQ7+H5MpMZADKN7Yy7uzsvXLhgdIdC\nQkKoUql06yL17UxpOUy5m5sbs7Ky+OWXXxqdUS0JhzEWBwcH7t69m6IoMi8vj4sXL2Zubi5FUWRi\nYiLr1q1rcQ7tbPqZM2fYrFmzIvvfqFEj3r17l+PHjzcUiGSrD0OePzB//vnnZc5RrVo1njhxgqIo\ncs6cOcbKysIxfvx4qtVq3rx5U+9wliAIvHr1Kv/++2+jHJpt7wIwFJolYgAmANgH4B9THCNGjGBa\nWppuiEupVDIxMZGfffaZuRPnsnAA0kSnj4+Pwd9yd3fnjRs3SOodypCNQ587OTkxKiqKoijyo48+\nMliu1IEZRYcy1AA+0PxVQJrVTAeQbWxn3NzceOnSJY4YMYIVKlTQCysIAkVR5Jtvvmloh0rN0blz\nZ6PjyB4eHrx69SqvX79eZP1yaTkMHWAbGxuOHz+eqampVCqVXLFiBW1sbDh9+nSqVCqq1Wru37/f\n4hzawPyvf/2Lrq6uBT7z9PTkggULePXqVUNLCfMAiJr/f9QwJGn40jVcPUsbmJs0acLU1FSS5OrV\nq/Ut4rcoR/369Xnv3j2qVCq+//77xsqWmiMwMJB37tzhzZs32axZM72/07BhQ8bFxRm6SOXnUEFa\nCrZN81rLcQNAljEOf39/3rx5k8nJyTxy5AhFUeQnn3xi9AEKS3DUqFGD586dY1xcHNu1a1fkN+zt\n7dm8eXP+9NNPzMnJ4aNHj9i9e3fZOYx5QEAAHz16RIVCYWxJpyyBWTuU4QLgEqQ1f80hnfgf5yuX\nbmxnBEFg9+7dmZaWxsWLF+s9ucPCwpiVlcW2bdsa2qFSc0ycOJETJ05kgwYNGBoaylatWjEoKIif\nf/45v/nmG167do15eXm8du0aa9asKSuHoQPcs2dP3TKtK1eu8JVXXuHcuXN1y/lOnTpl6BZRVg4f\nHx+eOXOGGRkZ/Pbbbzlq1Ci2a9eOH330EW/cuMH79+/rWyer9daQJk+GQLpFzATwhZalOBzG3M7O\njtHR0STJzZs363vAw6IcHTp0oEql4sWLF3VDc5aqj6ZNm/LQoUMcPny43t/48MMPefv2be7Zs8fY\nEEKpzxkvLy9u2bKFq1atoru7O3NychgYGFis4yYHR7Vq1bhjxw4ePXq0yDxUcHAwt2zZwvj4eF1n\npnv37vrmq0rNYcx79epFtVrN1NRUgx1QyBGYNVAVABwCMBnPb81SAIRrPveCGd1/Gxsbjh49mgkJ\nCUxKSuInn3zCLl26MCgoiMuWLWNeXh5Pnz5dZF1gPi81R2RkJO/du8fMzEzdAVSr1bqJyLt37/LY\nsWOmGl6JOAwd4Dlz5hRZJ6tWq/no0SPu3bvX2NpuWTkA6eKYkJDAvLw85uTkMDk5mX/99Re///57\nU3VyCMBkzbZ3QZpEWQRgSkk4jPmOHTt0E6TvvPNOmXFUrlyZjx49oiiK+tYLy87x5ptvMjs7m++8\n8w6rV6/OqlWrskaNGgwODmZ0dDTT09O5adMmVq1aVfa2Wng7b7/9Nk+ePMkePXpw2bJlnDRpUnHW\n/cvC0bJlS96/f58xMTHs2rUr+/Xrx9WrV/Px48e64ZWkpCRu2bLFWJ3IUh+GPD4+nqIo8p9//jFa\nrtSBGYAA4AcASyGNz8RByldaomVqtra2bNWqFceOHct58+YxLS2NGRkZ3L59OxcsWMDGjRsb26FS\nc7i6urJWrVp88803OWXKFM6cOZPDhg3jlClT2Lt3b9aoUcOcVRkl4jBUJ/Xq1eOGDRv4888/8/Ll\ny9y+fTuHDh3KDh06GJzVtQQHIN3Z1KtXj2+99RYHDx7M5s2bG7tQ5velmu1qWb4DcADAHQCPANwC\n4C5HYO7RowdzcnIMBWaLcbRp04bR0dHMzc01NkEtG0eVKlW4detWZmZm8sqVK1y1ahVv3LjBzMxM\nRkVF8e233zYnd4hs526XLl34xx9/cP/+/dywYYPRHqElONzc3DhhwgQqFArm5OTw0KFDVKvVzMrK\n4s6dO/n111/z5ZdfNvXUrmz1Udh9fX25f/9+iqJobMKegDyBORjSGMw1SGMydwD0hLTM5LDm/VgA\n20uyM4IgFOfKazGOYnqJOMxhKWYvxGIcJfArkJ6eygIwB4A7gOMajl8BLAQQJQeHt7c34+LimJ6e\nzn79+pUZR2RkJMPDw3n37l2jOV3k5KhYsSLnzJnDpKQkhoeH89ixY1yyZIk5nQeLnDOurq4MDw/n\nxo0bixuYZeNYvny5LsnY2rVr9T3dV2b1kd9bt26tSz5mokNV+sCsgdJ1/w187gvgrzI4+V9oDguw\nlBeOMj82DRo0YK1atfStnLEIR1BQEO/cucPw8HDu2rXLVK/shW+rVo7ic/j7+7Nv375GkxdpvdSB\nGfmGMgq97w3panMd0vjZjTKo1HLNofnbE1Je6HQA0y3MUl44yv2xKS1HUFAQr1+/zmnTpumb6f9/\nVx9WjtK5HIFZO5Shzb50GUAvAJshLT25DekKdAWFJL8tUKnlmWMTpFshBaQniWpCjwz6/yhHeT82\nVg4rR7niMCcwG01iRPIU9ChpC4KQBaAyyb6a159Akvy+nO+7pnWtSmnlhQPAAUEQOgGYlo9FK4Ne\nlizlhaPcHBsrh5XjReAobCUVY/UDcF+POvU8mbheNA4tSydBEK7hv6u2a+Wwclg5XjyOAlbSwMx8\nf7tAega9S/4CZaQsW1448rN0oaS2O8SSLOWFwwiLlcPKYeUwn6OAmRRjNWAJkB7XBqQJwhoA7ms/\nFAShZwm3a9AEQbis8fzbLi8cWhY7DQfyswiC0LOQiOz/DEc+lheOQ8tizrZtbGxQuXJlTJ061aD4\naVlwFMesHOWaQx/LczNnIFrPpKAjpMQscZAeb8wGsFDzmQOAuzBjELxOnTrs2rUrO3fuzK1bt1IU\nRYMPmViKw97enh07djRnsb7RgXs8l0G/DmkCLg5Ay3wc1Y1tt2LFihw8eDCPHz/OkSNHMjg42Oi6\nZktxFHYHBweuXr2akyZN0ptMycSxKTaHnZ0dW7ZsaZCncuXKBteuFoejOG2kW7du3L17N8PDwymK\nIv/8809dLuKy5Ciuy8nh6enJiRMncvDgwbo86p999hlPnDhRRMXk/0N9FMc9PDxYo0YNnaKJOTHW\nZI9ZEIR1hWW/AThBepTRB0B9AN8C6CYIQiiAtpBSHho1d3d3rFu3Dtu3b0fHjh0xePBgAEDr1q0x\nfPjwMuNo27Yttm3bhnXr1sHNzc1Ucb0cwnMZ9ERITxVVhHQVdtdykHxgaJuOjo7o0aMH1q9fj44d\nO6J27dr417/+BScnpzLl0Gf169dHWFgYAGgbsj4W2TiqV6+OKVOmGOQJCAhASEiIHByAGW2kVatW\n2LZtG1577bUCDL169TL4HUtwAEBgYCAiIiLw9ttv49NPP8W8efMwZ84ctGjRAuvXr0dYWBgCAgIs\nwtGvXz8sXLgQDRo0QIMGDQBIqiUdO3bE0qVL0bBhwzKvj+KanByurq5YuXIl/P39jf6mq6srIiIi\nMHjwYHz00Udms5ozxrweUs7SH/K9NwfADySXCYLwEYDakJ49bw3pinO/yFbyWUBAAJYtW4bg4GDk\n5uaiWrVq+P3339G8eXOMHDkST58+RXR0NB4+fJj/ayGQHpmsLQeHt7c3tm/fDrVaDR8fH4wYMQIP\nHjzADz/8gCpVqqBp06Y4dOgQEhISoFKpzOHYT7JbPo4kc+vD0dERQ4YMgb29PZ4+fYouXbrAyckJ\ngmB0KEp2jsLm5uaGFStWQBAE2NjY4MEDgzFdNo6mTZvi2bNnej8TBAHDhg1DVFSUHBxHoJk8NrQx\nQApIDg4OuHHjBvLy8jB//nx89tln6N27N9asWYOMjIwy4QCAr7/+GoGBgbh27Rq6dOmiu1C+/PLL\nUCgUcHFxgaenp0U4AgICQBLt27fHw4cPkZKSAn9/fzx58gReXl544403sGDBAkPosteHjY0NNmzY\ngOHDh2PAgAFo3rw5jh49itjY2MJxwyIcrVq1wvjx43H79m0sX75c749VrFgRn332GeLi4nD//n2c\nPXsWACAIQgyAiwAmkkzR+2Uzhy78UVT22w9Sj9VT8/oEgFch5Tj9N/R06StWrMiBAwfyt99+KyCd\n5ObmRhcXF4aHhzMzM5OJiYn6sswJAJYhX5LxknLUqlVLlzc1LS2NERERzMnJoVqt5pMnT5ienk61\nWs3ExESOHj1aFg4aWQ9pb2/PHTt28P79+5w5cyZVKhVnzZplMCe0pTgKe48ePZiZmUlRFDl06FBj\nZWXjCAsL4/Tp0/X+jp2dHX/99VdDMkrF4tB8brCNaL1BgwZ8/fXXdUnxX375ZYqiyISEBNavX7/M\nOLS/rR3yO336NMeOHcuxY8dy2LBh7N27Nxs3blz4cXHZOHr27Mnvv/+ew4cPZ1BQED08PFitWjV+\n9913FEWRq1atMtZeZa+POXPm8OnTp8zLy+PZs2f54Ycf8vvvv+exY8cMDrnJybF//36SNKbIzZUr\nVzI9PZ0nTpxgcHBw4XN3DvQ8lq9jMyMor4N+2e+HeC6Vo1OXhaTevE8faM2aNXnx4kWq1WpeunSJ\n169f57/+9S/d571792ZqaqqhwLwOkjyPWBoOFxcX/vnnn7qgHBYWRnt7e917oihSoVDw0qVLTExM\n5J07d2ThMBUQGzRowJdeeokrV66kKIrG0p9alCO/z5w5U1cfJsrKxhEWFsYpU6bo/Z1evXrxwIED\ndHNzKzWHqbZqyP38/JiRkWEqMFuEY+DAgczIyODt27eNyVpZhMPGxkan5de+fXt+//33/Ouvv3Tn\nzM2bN40p/8haHy1btqQoiszKymJOTo5uTkIQBK5bt45Hjx61KMeMGTNIkklJSQbrPjg4mMnJySSL\nJtvSbNtgygRzA3NH6Jf91pvDFM8n5ArA+Pr66hJtZ2RkEECRJDTawLxr1y59Wc06Qrp6qUvDMXTo\nUIqiyLi4ONapU4cjR45kQkIClUolT5w4waioKAYFBdHOzo7+/v76lAhKymF00s3R0ZHTpk1jTk4O\nY2JizJmMtAiH1mvVqsULFy4wLy/P6GScxmXjCAsL486dO4u8LwgCb968yYULF8rCYayNGHNtj/nG\njRvGcnbLzuHh4cGff/6ZWVlZJrOXWYJjwoQJVCqVVCgUVCqVOpFerR87dsyY1Jas9TF79myKosjw\n8HA2bNhQl3fZ2dmZixcv5qVLl1ilShWLcQwdOpQkDUp6CYLAK1eukCTXrl1bhEWz7QkwoP1oVmDW\nbKSwuqzRHKaQHnUsALNy5UrdwTQky2OixxwD4I/ScLRp04ZxcXF88OABe/bsSUEQmJCQwJMnT3LF\nihX09vZmhQoVdKsh6tWrx/j4eLk4bhg5gThy5Ejm5eXphlPM6BFZhEPrWtXu5ORkcwKAbByvv/46\nY2Nji6xI6dq1K5VKJUNDQ2XjMNRWjbk2MO/evZvOzs5lxjFw4ECqVCpeu3atOJndZOPo16+fblir\nsO/atYutWrUytopINg5XV1fu2bOHN2/e1K1y0PqPP/5IlUrF7OxsQ0pFsnAcPnyYJA3KRwmCQIVC\nQZKGRINjABwEUL1EgRnSmr7fII29iJAe9QWkQXSthFEagPV6vqsDqVChgi7BuSiKbNq0qd4dmjx5\nMrOzsw0F5lJzfPbZZ1Sr1boMUIIgGJSqAaRk5UqlUhaOwiz53d7enrt27dLVD0mePXvWlCis7Bz5\nG9ZPP/1EtVrNtWvXmhMAZOOoU6cO79y5wwkTJtDT05Ourq709fXl6tWrmZKSYkrSSDYOV1fXIie3\nra0t586dS1EU+emnnxoLRLIfl1GjRlEURS5ZssSc46H1KxqOvwBMg5R7+CkkRZVsSBNbZqlCDxky\nhH/88QdjYmL4yy+/8KWXXtL7m9WrV2dQUJDFOLy8vHjixAmGhIQUeL9ly5ZUKBRMTk7mwIEDLVof\nFy5cYGZmJl9//fUiv+Hk5EStvffee3o5jMVcrZtalaHQQLtoXs8XBMERwE1Ijy7mQRor6WBsIw0b\nNkRgYKDRH/L09MTYsWPh6OiIBw8e4NGjR4WLlIpDEASMGjUKz549w5o1awAAJDFs2DDcunWrQFlb\nW1t4eHjgs88+w/Hjx2Xl0GeiKCIjIwMqlQqZmZk4fPgwBgwYgMjISPTv3x+5ubn6viY7h9Zat26N\nwMBAPH78GFu2bDHnK7JxxMfH44svvsDSpUsxYMAApKenw8/PDw0bNsTKlSsN1YVsHIIgYNCgQRg8\neDBEUcSdO3d0n1WsWFG3TM7FxQWdO3fGyy+/jHPnzuHYsWPak1gWjsKWlJQEpVKJ/v37Y86cOUhP\nTzfna36H51rYAAAgAElEQVSav84APgYQBmCVhiMHUhqDOQAmmdrQ7t27cfDgQdjb2yMrKwtZWVl6\ny2kZmzRpgo0bN8rOQRKiKOKtt94CAOTl5aFRo0YICwvD/fv3MWHCBBw6dMjQ12XjsLGxQfv27fHj\njz8WeH/IkCG6/8+fP29qM4bNnOiNoqq/sXiu+tsYgMLYVUYQBM6aNctoj7lFixYURZEqlYrvvvuu\n3qtMaTlGjx5tSOW5gA8aNIhpaWn85ZdfiogqlpTDVI/I3d2dAQEBrFatGgVB4O3bt6lWqw3KGFmK\nAwDHjRunk8gx1DMq5LJzODg4sFmzZvT392dQUBDv3btnToL6UnO4uLhw48aNem/Z9UmARUdHMzw8\nnCNGjLBofQiCwAsXLlAUxcIz/CbrQ7PtAiyQLhD/oARSSkbkzghIk7STJ0+2GMfQoUOpUCh00nCi\nKPLx48d0d3cvk/qYM2eOrlcsiiJTUlKYnZ3N7OxsPnv2jCT57NmzYj0sV+Q3ixGYb0Fag1oJQEa+\nzyYAUJramU2bNuka9N69ewt8VqtWLX744YcURVGf5HjhQFRijq1btzIxMZFdu3ZlpUqV6OLiwrp1\n67Ju3boMDAzkhAkTeO7cOaalpTEuLo4RERFFVgCUlMOcBq91FxcXjhw5kjk5OeYEZlk57O3tefPm\nzZIEZovVR5MmTXj16lVzFF5KzfH2229TqVTqJqnzB2KFQsH79+/z7t27Oo+Pj+fDhw8LP41okfr4\n7LPPShSY8VxK6SVoJrg0HHtQDPFROzs7/vjjj/zrr79Yr149vWW8vLwYHR3N+fPnW4wDkKSm2rZt\ny8GDB/PJkycMCwsrs/ro1asXz549S2Nm7GnIUgdmSGPMyZAeWSQkSZYxkJaVaMfM0gFkm9qZ1q1b\n85tvvqFKpaJCoeCvv/7KX3/9lYcPH+bVq1eZkZFBlUrFAQMGGNqhUnN07dqVSUlJfPToEX///Xee\nOnWKsbGxjI2NZUJCAhUKBXNzc7ljxw62bNnSkFJFiTjMOfE++OADrl+/nkePHmViYqLRHrOlOKZP\nn67rhRQjMOdp/qoA7NAwJOG5LLwaQM+SBuY33njD4Ay43Bw+Pj48deqUrkecPzBfvXqVQUFBuot5\n3bp12aBBAzZu3LjwRcMi9fHvf/+7uIE5D9KYKgGchpSvW8zHcQNAljkcgiDwww8/pEql4tOnT9mi\nRYsiZYYNG8aNGzcyNzeXsbGxFuHI73Z2dtywYQNjYmLMlZiSjaNq1aocPnw4p06dyp07d3Lnzp1M\nTEwkKfWijfXe5QjMPgACISWQng5Jir05pNnMWZoyZivLVqpUiZGRkVSpVEVuC+/du8fPP//cmCy8\nLBw9evTgzZs3+fjxY6akpDAhIYHHjx/nqlWr+PXXX5tzgEvEYaqh2dnZ8fz587pgoFKp+OzZM2PS\n9Bbh+Pnnn3XH5Pz58/Tx8TGnwZ+GpDzsomG5D0kV+uOScuT3uXPncvPmzWXG0aRJE/7666+8dOkS\nL126xCNHjrB79+4mtdwsWR/Vq1fn48ePqVAo2Lp1a3M5ZDt3bW1tuXjxYp26/ObNm7lo0SIuXryY\nixcvZlJSElUqlW5op0GDBhbhyO+tW7dmQkKC3qFPS9eHPtfa7t27TZUzGZhNTf4lA4gAcJPkIkEQ\nWkNaf3obQJCmzAgAv5jYDgAgPT0dn3/+OZ4+fYoHDx7go48+gq+vLyIiIrB//36cO3fO2Nc/loPj\n0KFD6NixIxo3bgwHBwfcuXMHDx48MDWpJDtHYRNFEYBUR9HR0Th48CCSk5ORkJBQphzXr19Hnz59\nkJGRgQkTJuibhNVn50guBQBBymtrD6AZpMdaS8RR2GJiYsqM48aNG+jRowcEQQBJCIKgOz5mmiwc\n7dq1g7e3NzIyMtC9e3d4eHjgyJEjuHbtmrkcsrURtVqN7du3o1mzZujevTuGDh2K48ePo0uXLroy\nx48fR5MmTRAfH4/k5GSLcOS3gIAA3L17Fz/88IPpwhbk0Jq2PgYMGFDSTTw3Ez3m/NJSf0K6JXsd\nkspvNqRb5kQA/iW5ygjFV8m2CEcxvUQc5rCURX1YgIN4LtfzJ4BHkCStYiHdOmYC2A7AvaTHpl27\ndub2iizKUdb1MXDgQN0kV3h4OK9fv27u0JJFz5n87UP7f/7XZcWxc+dOfvrpp//1+tB67969OXHi\nRJPlzOkxmyygAXOBpB33mua1J6TnvQ0+812MyjLLX3QOuVnKC8f/wrEpzxxhYWGMjIxkaGiosfmG\n/zf1kd8jIyP51Vdfmd2JKE/1UerAjP8H0uNlwWEBlvLC8cIfGyvHi8nh4+Nj8GG18lwfpQ7MkK4i\n5ULyu7xzaP72hHQ7lA5guoVZygtHuT82Vg4rR3nikCMw5x9jLpbkt5z+AnBsgqR+oABwDNKY4nlL\nsZQXjhfk2Fg5rBzlhsNcN7oqg+Qp6NEFFMyQ/JbTyjsHgAOCIHSClBtBy7LdUizlhcMYS3k5NlYO\nK0d54jDXSqqS7QfgviAI9yDdLrtCev58nkxcLxqHlqU8yKBbOawcVo4Xj6OAlVQlm/n+dgEwE9Lj\njAB0KsiU2fUpy5YXjvwsXUi2APB5IY7r/6McfFE5LNxGrBxWDmMcRlWyS9pjToD0uDYgTRDml6Z3\ngJSQWlbTVFp55dCyFJFBz8cRrCnzQnH4+/vj4sWLWL58ORISErBu3TpzWcq0PorLAfxX2qqVw8ph\n7NwtUMjUoPk6SIvk82v+VYOUJk8BTU4GAAs1n3WCCZmcbt26cfz48cakefS57Bym3NbWloJQZI2k\nPg53AEc1n2dAeuY+DkBLLYemXJHfqFu3Lnv27MlGjRoxLCyMYWFhbNGiBdu1a6fvty3Goc/d3d15\n7tw5iqLI9957z2C2LEtxVKhQgc7Ozqa0D0vEIVcb+W9wtGjRgmFhYaxdu3a5qQ97e3u6u7vzrbfe\nYlhYGL28vMqEQxAEjh49miqVirGxsdywYYMh9ZJy0z7MmfwzZyhjPaTlJPntU0hLT2IhBcMbALoJ\nghAKEwq3tra2+Ne//oUqVaoUkFo3w7Sq0LZycBgzZ2dnBAYG4vfff8fgwYPN4ZgDSQZ9KKQnu6rj\nuQy6UY6wsDBs3boVr732GhYtWoT58+ejW7du6Nmzp7kq2bJw6LMePXogKCgI9+7dw+7du4vkrc5n\nsnHY2tpi+PDh6NOnD/bu3YtTp05h8ODB+O677zBjxgxUqlTJWL0UhwOmWEphFuNwdHRE3759ERkZ\niZYtW/7XOArbq6++ikGDBmHt2rX62CzCYWdnh7lz56Jq1arYtm0bdu/ejdDQUAwZMgROTk76vlIu\n2ocgCDGCIEQJguBuqIzJwEzyJIDCevK9AXxKMgBAE0g7sguS7DcNbcvV1RUrV65E48aN0apVK6Sk\n6FfuNmC1IS1pqVZaDjs7OzRs2BCtWrWCo6MjXFxc0LBhQ4SGhuLw4cNITU3F0qVLkZWVhYoVK5rL\nsYnkNgBNIakirDTFAQDr16/HvXv30KBBA7z00kvw8fHBN998g0WLFpnKzyArR36ztbXFmjVrEBYW\nhp9//hmtWrXC48ePoVarDX1FNo4PPvgAkZGRmDJlClq3bg0HBwf07NkTISEhmDlzJr777jt88cUX\ncHfX26aLwwFTLKUwi3FERESga9euePLkCa5evVrmHF5eXjh69CgaNWpU4P2GDRvi6tWr6NChA0aO\nHAkfHx+LcgBAq1atMGbMGFSsWBHvvPMOpk2bhoEDB6Jz586oV6+evq/IxuHi4oKOHTti2rRpSE5O\nxoULF3Do0CEolUo8efIEs2bNwksvvQQbG70hthGkzuQ3BnfOnG418iWY1rxOhyT57ZTvtVae3qDC\nbadOnZidnU1RFJmYmMiVK1dy4cKFnD17tk7Kx9Btq+Z32gDIKy1Hs2bN+M8//zA9PZ179+7lTz/9\nxAcPHlCtVjO/qdVqXr58WRYOY7fuL7/8MnNzcwtn5DJ5OyQ3h9bfeecdJiUl8fLly+aqMcvC4eLi\nolNRT0xM5IgRI+jt7U1vb2/WrFmTffv25bJly5iWlsbTp0+zVatWJebQvC7SRtzc3Ni7d2+Ghoay\nefPmDA4OZu/evTlgwIAC3q1bN86bN4/Lly/XlwKz1ByGfMWKFRRFkfv27ZP1uJjD4erqygsXLvDJ\nkycMCAjQW6Zbt248depUYT6L1MfSpUupUChYo0YN3XuOjo48ffo0T506pS9trywctWrV4q5du3jx\n4kWeO3eOO3bs4Mcff8xZs2Zx8eLFnDt3LmNjY5mSksLu3bsbOndLrZK9DsBjFBQxNCZPr1dZtkmT\nJnz69KlRNYicnBx++eWXhlJNroN0u6EuDYeTkxOvX79OY3bnzh3OmTOHw4cP1ynwysBhUJ26Ro0a\nTElJ4cGDB8052SzGoXWt/qBWG9EMl4Xju+++oyiKfPjwodHx9ZCQED58+JAHDx4sfHzM5tDXRrp1\n68bc3Fyq1WqqVCoqlUq9itDatKza98eNG1fi+jDWVgu7vb09N2/eTLVabW5ieFk5ZsyYwcTERPbv\n31+v2Olrr71GtVrN1NTUwsmWZK8PV1dXxsfHF1FNd3Fx4dWrV3n06FGL1cfJkyeZmprKfv366W2n\nYWFhTE1NpSiK/O2334p8rtl26VSyIV01eqOouqzBHKbQoyw7dOhQXUNWq9XMzc3VeV5enu6vWq3m\nokWL9PWc7wG4WFoOGxsb7t27V9c7jouL461btxgdHc1ly5axc+fOplSIS8phUJ3a1taWq1evZnp6\nOmNiYnQeHh7OihUrlhmHIAg8duwY1Wo1N27cqO+iZMhLzWFra8tvv/2WCoWC4eHhJn+za9eunDJl\nSuHcxMXiKNxGZs2axfDwcEZHR5slLSWKIo8cOcLAwMBS1YehtlrYq1WrpsvZHRERIftxMcXx4Ycf\nUq1WFxAvrlq1Kvv27cvjx49TqVTy8OHD7Nmzp8XrY+vWrUxISCiS2Kl69er866+/OGvWLIvUh7Oz\nM9esWUOVSsXvvvuOERERbNiwIWfOnMmmTZvy3XffZWRkpG7SfNSoUfo4SqeSnQ8uuNAOnQXwH83/\nkwF8o+c7BWB8fHx4+PBhPnv2jEeOHGGLFi2KeGhoKO/evctnz56xV69eBb4vFwcg3Yps2LCBJJmV\nlcUFCxbQw8PDrEToJeUwxKL1Ll26MCoqisuWLeOoUaP41VdfMT09nW+99VaZcbRs2ZJ5eXkURZH9\n+/dntWrV+PLLL9PHx4d2dnbG6qXUHM2bN2d8fDzv3btn1vCJg4MD161bx9TUVNk4tJp6oigyKSmJ\nFy5c0Pm+ffv48ccfc8yYMfz444915U6ePMmqVavKXh/6vEaNGrx+/bpOTcVUebk53n77barVarZq\n1Yre3t788MMPeeXKFaalpTE5OZkLFixgixYtisixyc3Rpk0bpqenc9WqVUXO2cGDBzM7O7uIVqdc\nHDY2NmzQoAF79OjBiIgIDh8+nPXr12f9+vXp6OhIR0dHVqhQgXv37qVSqdQ33EazYq6JgFxYWioV\nwGgAyyB1+0VIeUybmVOpXl5eRmVxBg0axMzMTGZnZ3PQoEGFP5eNA5CWYi1dupT37t1jXl4e33//\nfbq6uprT2EvEYc6JV9gvXbrE//znP3R0dLQ4h6OjI3/44YcCvUGSuv/PnDnDTp06GWItNceQIUOY\nnZ3Nffv2mXWBtLGx4dKlS5mVlSUrh1YyytCSK1dXV964cYOiKPKvv/4yVCcWaR8vvfQS//nnH4qi\nyFOnTpnThhT5eHbgee5htea9EwDczOWoU6cOs7Oz+fTpU2ZkZFCpVPLOnTtcunQpa9asWSYcNjY2\nnD9/PlUqFceMGVPk82+//ZZJSUmGzhlZ60OfC4LA8PBw5uXlcc+ePXrLyBGYfSCtdvCHlFxaK8ey\nBsBHkBZlHwRwq7RByN/fn0ePHqVarWZUVJS+q65FOIKDgxkREcGHDx/yiy++MDZ0UCqOktRJ//79\nef/+fUNBQlYOLy8vHjp0yGBgFkWRP/zwgyHWUnM4OTlxw4YNjI+P16snV9idnJw4ZMiQwhqRFj8u\nzZo1040xv/feexarD32uDcxqtZpTpkwxh7c7pKxpWomrzgBWaFjmQFo+ttwcjqCgIP7yyy+64chL\nly5xzpw5hnqmFuPw9/dnTEwMT58+XWRyr0mTJrx161ZhhW6LcBjyDh06MCsri4mJiQYn80sdmPOB\n+aOYcuzF2Rl3d3fGxcXpAsCFCxeK3DpbmmPq1KmMiooyuWi/pBwlCcwAmJGRUWDW2VIc7du3Z3p6\nuu4YzJgxg/369dP533//zStXrhjiLDWHra0td+3aRbVazSVLlpisl1atWjEpKYnVqlWTlcOYOzo6\nMioqiqIo8uzZs4V/2+Ic+QNzcVShNdsuwAJpVcA/MKFxV6FCBYaHh1OtVjM7O5vHjh2jKIoMCgoq\nTjsuNYfWAwMDmZOTw08++aTIZ9u2beOtW7fo7+9vcQ597unpyePHj1MURUNj3Lpzt1SBGdJQxm+Q\npNjzIK1nrqT5PwFSBqb7AFQl2Zl69epxypQputUaKpWKZ86c4cSJE/VN/lmMA5AuDqtWrWJSUhJf\nffVVY2VLxFHSwPzkyRO9gVlujsWLF1MURSYnJzM7O5ujR48mIM0NjB8/nrdu3eKuXbsMcZ6FdIuu\nBDAL0lNUszUs9zVlTKpCBwcH89atW1QoFPziiy9YvXp1vb/XtWtXXrlyhb/99hudnJxk5zDkbdq0\nYVJSEkVR5Pjx442VtQhH//79mZ6ezsePH7Nz587mMGs5YjVt5KV8beQ+pKEWo6rQ7dq145EjRzh6\n9GjWrFmTgiDw0KFDXL9+fXHacak5tP7aa68xNze3wLi+g4MDp0yZwoyMDHbr1q1MOPT5559/ToVC\nwT///NPQUAoBeQKzDyRxwoeQxsfUAL6AJMv+AM9nFzPM2RlnZ2fOmDGDNWvWZEBAAM+cOcPMzExd\nL+3s2bPG5HNk4zDkbdu2ZV5eHr/77jtjKzNKxKGP5fXXX2eHDh2MMqWmphoKzLJxAODly5cpiiKH\nDBnCN954g/7+/rSxseGnn35KpVLJq1ev6lt9oPXHGo4nAJIgBaQkSI/AFoujTZs2vHTpku4iHRIS\nQg8PD7q4uNDb25tfffUVHz58yKSkJL7yyisW49Dn2qVqSqWSHTt2NFbWIhxjxoyhSqXi3bt3zV3z\nngxpXFUBKRDt03BpOaoDSDfG0adPH54+fbrAdocMGcKYmBizzys5OLQeEhLCuLg43R21p6cnN2zY\nwOTkZM6aNcvUJLVsHIV95MiRzMrK0rtSpLCXOjBroHRyLHje/U8BEK753GzJbw8PD0ZHR+vWh2oD\ncmZmJv/8809juRgoB0f37t3p7e3NKlWq8KWXXqKvry9dXV1ZrVo1Nm/enEuXLtXdShtZKlYiDn11\n0qdPH72rLmxtbenl5cV58+YxOTmZnp6eFuUAwFGjRnH58uVcs2YNAfDLL7/k3r17ef78eV64cIF9\n+/Y1dmx0cj0alocAFgGYUlwOQMoFcfHiRSYnJ1OlUjE3N5dPnjyhWq1mWloaT5w4wa5du1qcI783\na9aMOTk5VKvVnDdvnqnyFuHo168f09LSihOYS33OeHl5cevWrZwwYQKrVKlCJycn9unTx9zJR9k4\ntB4YGMiMjAwuXLiQn376KR8/fszY2Fi+9tprZcqR34ODg3n//n2q1WquXLnSJEepAzPySUtBGp+J\ng5Sv9Cyk3kAMpAHz1ebsjJOTE1evXk1RFBkdHa3rnfbr18+chEal4hAEgbGxsdy4cSMPHz7MO3fu\n8NKlS5w7dy7Pnz/PJ0+e8MiRIyTJYcOGyc6hr06aNGnCyMhILlq0iOPGjePChQu5aNEiTpgwgSdP\nnmRubi6HDh1qaJWCbBwy+FLNdrUs3wE4AOAOpN7ILRRTndrV1ZUhISGcPXs2ly1bxq+++opfffUV\ng4OD9T7cYCkOQFoJsGjRIkZHRzM1NZWVK1cu8/oAno8x79y5U+8yLLnaSP5taNftxsXF8dChQ5w9\nezbj4uI4ffr04rQP2WKIn58f9+/fzyNHjjA+Pp4RERGsV69emXNovUKFCrx8+TLVajW3bdtm7K5S\n53IEZq0cyzUAWZqG1RNAXQCHNe/HAthu7s5oc5Jq/y/GwS01h62tLW1sbGhvb6/z/K+1/5vgKhGH\noTpxdHTkqFGj2L17d2ZmZlKtVvOdd97hxo0b2bx58zLjKKVfAXBVwzIHUs6S4xqOXyEtS7K4+rCl\nOF555RU+efKE4eHh3LRp03+Nw9nZmT/99BPDw8M5duzYMjlntN61a1feu3eP4eHhPHDgAH19fcv0\n3M3vJYwfsnMA4NixY6lWq6lWq81OqVDqwKyBKhfKsi86hwVYygvHC39sTG1Xu8Z65syZ5gbE/+n6\nsHJId1GjR49meHg4MzIyipO+oPSBGVaVbLM5NH+tKtnl8NiUlsPd3Z0tW7akj4+PuQ8h/U/Xh5VD\n6q3XqlWL1apVY7NmzYyuwijscgTmEivLWqBSyzOHWerU/6Mc5f3YWDmsHOWKw5zAbDGVbJJGs7zL\nYeWFA2aqU5cBS3nhKDfHxsph5XgROApbScVYC2f2T9C8V9ZWXjjKE4uVw8ph5XjxOApYScVYCQCC\nINyDNI7pCsAZwHvyYL1wHFqW4YIgdMB/VwbdymHlsHK8eBwFrKQ9Zq06NQF0AbAKwHLth2Uo+V1e\nOLQsdngug74az9V2ewqCcP1/lMOQLHy557BwG7FyWDmMcehjeW7mDETrmRTUZvaPh/TY9nk8V5Z1\nAHAXega9BUHgqFGj+Ndff7Ffv34cNmyYoceNzRowLylHadxEnSghJampoGXJx2FSOeRF5DBxbErE\n0bhxY7Zq1YrJycncv38//fz8ZOco6zZi5bByGOMo7CZ7zIIgrBME4ZEgCNfzve0E6VFGP0jLsmoA\naK/5rC2klIf6toUaNWqgXr16aNGiBaKionDjxg306dMHHTp0KDMOfebo6Ig6depg3LhxCAoKKhaH\nIKnd/qx5eQ1S0ppEkpe0HCQfmMtijpUFh52dHV599VW8+eabplhk4xg+fDh++OEH9O7dG56enujV\nqxdee+01NG7c2CRvMTkAM9pIhQoV8O233+LMmTMYM2YMzpw5g+3bt6Nz584W5XBwcED9+vXRrFkz\nvPLKK2jRogXCwsIQFham+79v377w8vIqs/qwsbGBg4MD+vXrhyVLlmDw4MFISEhAbGwscnNzERoa\nitq1a1ucw5h5e3ujcePGqFKlyn+VQ2sODg7o06cPPDw8ivU9c4Yy1kNa55ff5kBaE1gV0vP/PwEY\nLQhCKIxIfouiiBUrVmDevHmIjY2FKIpwdXVFUFAQ9uzZg1GjRhnjCIF++fFicxQ2X19fLFy4EAMG\nDMDq1avx448/YvTo0Wjfvr2+4oY49kPqBU7RMPkVlyO/OTk5wcfHB87OzujRowdCQ0MRGhoKPz/d\nvITFOVxdXbF8+XJs3LgRtra2xorKxjF16lS0aNFC95ok3NzcjF4sS8gBUyyApMT87rvv4uWXX4af\nnx9efvllDBw4EJs2bSqsBC0rh6urK7744gvs27cPO3bsQL9+/RAZGYnIyEjd/5s3b8aSJUvg6Oho\n8frw9PTEihUrMGbMGERFReGDDz5A3bp14eHhgZycHABA+/btDZ0zsh8XfSYIAnbv3o1+/foZumDJ\nzmFvbw9fX1+Dn3fs2BEBAQGoXLlyfs4YQRCiNBcGvWYyMJM8CSkTU37Tyn4nA4iCFCR2wQx5+rS0\nNISHh2Pbtm3w8PDQXWG9vLzQuXNnYwGgNgzLjxebQ2u+vr746aefMHHiRPTsKV1//Pz8MHLkSOzc\nuVNfQ7MIh4eHB3bs2IFBgwYhIiIC169fR3x8PDZu3IgVK1Zg8uTJqFevHpKSkizKkd/8/f3h4eGB\nrKwsQzLsWpON49GjR0hJSUFeXh527NiBlJQUhISEYO7cuahUqZIp5OJwwBQLIPV4oqOjMXnyZJw9\nexbTpk3D5cuXUbVqVbz11lsW42jevDm6dOmCChUqQKFQoFmzZjh58iTi4+PRpUsXAFLw9vX1hb29\nvcU4AOnidPz4cYwaNQodO3bE7NmzUa1aNcyfPx8VK1ZEkyZNMGHCBLRr1w737+uNY7Ifl8Lm4uKC\nTZs2oW3btnB2dsbff/9tcY6aNWti9+7dmDRpkt7zw9vbG5GRkXj33XcLXzwbQXr8+xuDGzdjPNmQ\nSvYDPF+snYVC8vQwc7zF2dmZ3377LUVR5DfffGOs7DoATwGIcnF4enoyOjqaKpWqgFKHQqFgZmYm\n8/Ly9AmDloiDRhaqV65cmXv37qUoikxLS2NUVBQnTpzI4cOHs3Xr1oUVhy3GUdhXrVpFlUrFTp06\nURCM5iWQjaNu3boMCQkhICWI0eaJVigUHDp0qClmszk0nxerreY/Xnv27OHt27cNJZgqNYenpydb\nt27NNm3a6NzNzY1z5swpoNo9ePBgi9aHra0tDx48yNTUVE6dOlVvSksfHx9euXKFCoXCUBIfix+X\nV199lSqVimlpacYUcGTj8PDw4NatW5mXl8eJEycWOT+8vb3522+/MSkpqcj5o9m2wZQJJM0KzPpU\nsnMBzIOUqOUK9MvTm1WhWn0sURT55ZdfGivbEcC/UVB+vMQcgiDw119/1TVwtVrNmJgYKpVKhoeH\n08bGhhs2bOCOHTvk4jA42dWxY0c+ffqUO3bsYJMmTUwFQYtx5PeAgABmZGRQpVKZw2IxDgC6YzRu\n3DjZOErSVvP7pEmTGBMTYyhvt8U41q5dq6uPmzdvmsp0V2qOevXq8Z9//ikgkuDq6srVq1dz5MiR\nXLt2LbOzsymKIqdNm/ZfOS6+vr48e/Ys1Wo19+3bRy8vL4tzdO7cmY8ePeKVK1f0yeBx1qxZVKlU\n3MXLiX0AACAASURBVLFjR5GLt2bbEwDsKXFg1myksLqs0RymMEOKfdy4cdy9ezcVCgWfPXvGefPm\nGcuBTEhp+f6Qi6NTp04FesmLFy9mxYoV+cEHH+hyD48dO5Zt27aVi+OGPg5nZ2fevHmT/fr1K25w\nkJWjsHfv3p2iKDIjI8McFotxAMUKzMXiMLetFvbatWvzzJkz3LdvX5lxeHt7c86cOUxKSqJSqeTh\nw4dNKe3IxqGVW6tVqxZ/++03/vzzz0xJSSlw/uTk5HDu3LllflwqVKigE2c1ovYjO8eqVav4+PFj\nhoaGFvmsX79+TE5OZmJiIgMCAgyduwcBVJc7MJcqh+lrr73GrKwsiqLIrKwsfvjhhyZ7iXJy+Pv7\n6xQ70tLSKIqiLsWmjY0NnZ2d6e3tzaSkJI4YMUIWDkMs7u7uTE9PZ9OmTYsVHOTmKOyrV6/W5Zg1\no7zFOIBiBWaLcmj9yy+/ZFxcHLt06WJxDk9PTy5atIinTp3SiUskJSWZUlCxSH3UrVu3QDDOy8vj\nf/7zH86YMYOnTp1iZmamobzqFjsu77zzDvPy8piSksL27dub6tzJwuHs7My///6bCxcuLPIblSpV\n4pUrV6hSqbh06VK9iipmxVwTAbkGJDmWwnLsQZDGa3IgyX8X6ZIbq8zhw4fz9u3bOkWIp0+fMiQk\nxFSlysbx6quvMisri4cPH2br1q3522+/cd26daxUqRIBSUPs/fff59OnT9mjRw9ZOIwF5oyMDHMT\nn1uMI79XrFiRR48eZXp6urk9edk4KleurEuE7+fnx0WLFul6ZK+//nqZcLi5udHDw4M1a9akn58f\nK1WqRFdXVzZu3Jj79u2jUqnk6tWrDY0vy1ofXbp0KdI7FUWRx48f56BBg1irVi1jckqKfDw7IOUe\nPgZpWVgepGxqbua2j8qVK3Pfvn08ceIEx48fz9atW+uGcpo3b864uDgeO3ZMH4+sHFr39vbm8ePH\nmZuba5aAr1wclSpV4sOHD3ngwAE2b96coaGh7NChA1u2bMmVK1dSrVbz999/NzQ3JEtg9gHQBEXl\n2FcA+EhTJhzAs+JWaoMGDThkyBB+/vnnPHbsGNPT0/nWW28ZC86ycezZs4c3b97UpXCsVq2aTr5J\nEAT279+fDx484KJFi/SdfCXiMMTi7OzMxMRELliwwJyGZTGO/N63b18+e/aMd+7cMalfpnHZONau\nXcuoqChOmzaNFy9e1AWi27dvlwlH48aNuXDhQh4/fpw3b97ktWvXuHfvXu7Zs0c3ByGKIidPnkx3\nd3eL14eLiwtXrlzJ1NTUIsE5MzOT58+fZ6NGjQxxdIeUztKlMAukyadkAMuL0z7s7Oz0pj6tW7cu\nb9++zW+//ZYODg4W5wDARYsWUalU8s8//zQkv2YRDkdHRz569IhqtZp5eXlUKpW6ZPmiKPLp06fG\n7qZKH5jzgfmjoBz7PTyXY58BILO4lZrfe/fuTZVKxdu3b7NOnToGd0YOjnbt2jEzM5MzZszQ+zuu\nrq5Uq9VUqVRs3bq1bBzG6qRTp07Mzc3VJy5q9ODKzaH1sWPHUqVSGRtD1ReISs3h6+vLhISEIgFI\nq9797rvvWpRDEATevHlT7+8Xdq3+4PXr1/nGG29YpD7ye9u2bTlr1izOmjWLS5cu5bNnz3QsFy5c\nMFofmm3vAjAU0jItD0iTT/tQAo07Q37y5EnGxcXpG5aTneP999+nQqGgWq3myJEjzZ0wl40jODiY\nu3btYlhYGNu2bcu2bdty48aNzMnJMZk0v9SBGUWHMtQAPtD8VUCa1UwHkF2ag+vg4KDTAhw4cKCh\ncrJwjBw5kgkJCUWW1Dg5OXHKlClMTk421LhKxWGsTipXrsx58+bxwYMHPHToEBctWmRKVsoiHNAE\np5MnTzIpKYnBwcHmHsM8SLluCeBHDYNWHTpdw9XTFEfLli1548YN3bi/vmB49OhRjhkzhsOGDWNY\nWBgDAgLyJykvFYcgCCRZ5Hezs7MZHx/Pu3fv6u25Pnz40CL1Ycjr1q3Lu3fv6n7/7t27po6LCtJS\nsG2a11qOGwCyTHEEBQXx5s2b3Llzp97fcXNz4/Dhw3nr1i3+8ssv+u56ZeEApDmg9u3bMzk5mUlJ\nSZwzZ47ZcUZOjsIeGBjI+/fv87fffmPVqlWNlpUjMGuHMlwAXIK05q85pBP/43zljEp+d+jQgUeO\nHOGBAwf4/fffc8mSJdy2bRv37dvHM2fO8Pz587x9+7apJXOl5oAmMMfHx7NZs2a697y9vblw4UKm\np6dTrVYzLCzM0DKoEnOYOsAODg4MDg7m9u3bqVaruXHjRlNS7BbhaNSoEbOzs80dOtB6a0iTJ0Mg\n3SJmAvhCy1Icjpo1a7J///6cP38+9+/fX2DNrvb/3Nxc5ubm6oJSvvH5UnEIgsADBw7ofuvatWuM\niopihw4dWL9+fdatW5etWrViaGgoJ06cyNGjRzM0NFTf/IBs9aHPmzZtqruzUCqVxpapyXLOjBo1\nSvdbJ06c4MyZMxkWFsawsDB+++23vHjxIvPy8qhWqxkUFGQxDkBaP3zw4EGq1WquWbOGTk5OxWmn\nsnHkd1tbW27ZsoUZGRl8//33TXKYE5hNJcp/JAhCCqQu/iYAHSCtP83W7CAEQfCC1HszaOfPn8fp\n06cxaNAgtGnTBlWqVIFSqYSNjQ0UCgWysrIQHx+Pn376CevXrze0mb9KywEAiYmJqF69Og4cOIAl\nS5ZgwIABaNiwIapUqYKMjAycOnUKa9euNbYJWTgAwM3NDZGRkfjnn39071WuXBl37tzBgQMHoFKp\nyoQjv02aNAmOjo64fv266cLPbR6AzSS3CYLwJqTUiU4AMovLER8fj/j4eOzdu1f3nre3N6ZOnYrQ\n0FBUqVIFHh4e+OWXX7Bv3z5s2rRJNg6S6NOnDypUqABbW1soFAqDx+DIEaOZIWWrjwoVKmDw4MGo\nWrUqfH19UaVKFTRv3hy+vr4giWvXrmHz5s2Gvi5LG9myZQtCQkLQv39/dOzY8f/YO+/wKKq2jd+T\nBiShGBJCgFACGKQ3IyDBUKRIFwtSpEiVJs0gTXgFXkC6iHSQIgpSRAUsFEVqQgtShQAJpJEQ0jZt\nZ+7vj9ldN8mWyWY2hPfLua7nSnb3zOxvzznzzJlTnhuBgYF58sTHx2Pw4MG4cOGC3TgEQcDcuXPR\nrl07REdH47vvvoNGo7F2mOocuVO3bt3QrVs3nDp1Cl9//XV+DzedrPSYDZp/KKDkt7e3N6tXr86O\nHTty+PDh7NChA4cMGcK33nqLDRo0UKKlphpHaGiooRem3/l3+/ZtdunSRYk0vU0cplgcHBzYvn17\nzpgxg8uXL2doaCh37dpl9VFIbQ69OTk5cfXq1UxNTeUbb7yRn57Ict159SxrARyGrEQcC+AmAA9b\ne4h68/X1NfSoGzduzGrVqj0TjsIsDy8vL+7Zs4e//vqrYYfqb7/9xrt373Ljxo1s06YNHRwc7HrN\nAPJKnXHjxnHDhg2Ga+fIkSO8d+8ep02bxjZt2liauFeF44033mBKSgp37txpacLT7j4kt40aNYoa\njcbihJ+xKekxW3PMes0/VSW/bTTVOHr37s309HRKksTZs2dz8eLFSicPbOZQUib5YLALh7OzM0eP\nHs2dO3daWgpmyi5D3j2VBjkwjAeAEzqOXwEsBLCjENrI/yRHiRIl2LhxYyYkJFCSJNavX19JB0LV\na8bY9HGF9f8XFsfgwYM5dOjQgtSLXcpj4cKF/PrrrxVzFNgx66D+56THnwWHHViKCsdzXzfFHMUc\nhclRYMcMo6GMXO8/19Lj9uDQ/e0MOS50MoBgO7MUFY4iXzfFHMUcRYlDDcesH8p45pLfRZxjO+RH\noSzIO4mqQlZCsCdLUeEo6nVTzFHMUaQ4lDhma6sy/oKJmM1CEZH8LiocAA4LgtAGwMdGLN89A5ai\nwlFk6qaYo5jjeeDInWxVya4CIFLIq049TyWu541Dz9JGEIQwPFu13WKOYo5ijuePI0ey1THT6G8Q\n5D3oQcYZdLO1qiUzd62iwmHMEkTyiSAIfe3JUlQ4LLAUcxRzFHMo58iRlGj+mUoPIW/XBuQJQl/k\nkvy28bxmk2Ba8ruocOhZnHQcMGYRZAn0fO3YKIoc06ZNw44dO1CuXDlTLM+0PGzh0LMUcxRzPAMO\nUyz/JiUD0SYmBfWR/R9A3t6oAbBQ95lZyW9HR0fWrl2b7dq1Y7169dirVy/269ePTZs25aBBg/I9\nYG4rhyXz9vbmwIED+frrr/PatWsURZFPnz41rOu1UibZkGd3w3RMTY04TCp2lC9fnj179mSvXr14\n+/ZtPnr0iMOHD2e/fv0sbRxQncOSCYLAZs2aMSoqinfu3MkTaMpeHE5OTqxcuTKrVq3KwMBABgYG\nsly5cmbLJT8cBWkj1uz/C0eNGjXYv39/li9fPsf7zs7OeaSU/j+UR0E48nApcMKbIe9Wumr0ngdk\nR5gBOQ7A5wAuAOgAoA3M6GSNGzeO4eHhTEhI4IwZMwy6ep9++im1Wi1nzZplyRmpxmHKmjVrxjff\nfJNXrlyhRqPh7NmzDTucrl69atzQzHH8pqvUFMgzvI+MOWhidrds2bLcv38/w8PD2bBhQ9arV491\n6tShp6cnDx06ZC0OgGoc1uzjjz/mtGnTmJaWxpEjR5qqI1U5XF1d6evry0OHDvHmzZucMmUKY2Nj\nGRsby3HjxnH58uXmdpkp5tB9nq82kg+zK4ebmxu/+uorAnJEvoCAAHPxvO3G0b17d3788cfMyMjg\nkiVLDO+XKlWK//3vf3MH8v+fr5caNWqwU6dOPHr0KENCQvjNN9+YvX6VOGYlY8xbIMcs3Wb03lwA\n20iuEAThI8iKzXp12QcwI/kdHByMypUrAwA6dOgANzc3ALLEt6OjI2bNmoUff/wRly9fNnV4O8hb\nJmsUlMM4lS1bFmvXrsVbb72FkydPokGDBtBqtWjatCm2bt2K3bt34+zZs/qKtMTxM8nXjThirHG8\n88478PDwQJMmTZCUlJTjs/79+0Oj0WDo0KE4cOAAnjx5orQ88s1hLgmCgPfeew9z5szBwYMH8dpr\nryE0NNRUVtU4KlasiC1btsDBwQF+fn6IiopCxYoV8ffff8PZ2RlBQUHo0aMH0tPTMW/evNyxEvLD\n8TtMyNO7uLigatWqKFmyJFJSUpCRkQFRFJGYmAiSEATB0BYkSTL3MwrMYSkNHjwYo0aNgqenJ9q2\nbYurV68iOzsbkyZNwt9//213jvLly2PWrFk4fvw4bty4gT179gCQlaqHDh2KpKQkPH361C4cgiDA\n3d0dbm5uqFq1KsqWLYvHjx8jLi4OUVFR1tBVLQ93d3d4eXlh9OjRGDlyJEJDQxEQEAA3Nzc4OzvD\n1dXVZCwPQRBuQO5AjieZ58IGFEz+kTwpCEL1XG+/AeA1QRBcIct+n4M8VrMU8qoIk+nYsWNwcXGB\nKIqIjIxEeHg40tLSEB4ejjJlyuDll1/Gu+++a84x14C8z71VQTn0KTAwEPPmzUOLFi3g6OiINm3a\n4Ntvv8Xp06dx7do1XL9+HbGxsXbh8PT0xOLFizFkyJA8ThkAkpOT0a9fP0yYMAG///67Kcesennk\nTu3atcOcOXOg1WqxdetWXLx40VzWf9TiGD16NDp06IB//vkHnTt3RkREBLKzswHIAX1atWqFypUr\nY8KECYiJicGqVTkU4PPDAcg9mBxp06ZNeO+995Ceno6HDx8CAB4/foy7d+8aHHJmZia0Wi00Gg1i\nYmLw9OnT3MG3CsxhLvn7+2P58uVIT09H69atsXbtWgwcOBA+Pj5o3LhxbsdsF47XX38dV65cwbx5\n8xATE4PLly+jXr16+Oyzz9CtWzds374d165dswtH7dq1MX/+fDRp0gTp6ekoUaIEfHx8cOXKFSxc\nuBCHDh2ydMNUjcPV1RXBwcEYO3Ys7t+/j4ULFyIuLg47duzApk2bcPv2bWRkZJg7vC6AOQBWARhg\nMofCoYzHyKmVpZdh0UvlGKsg2yQJ7+fnR5IcN26cuTybYVp+3CYOQRB4+vRpZmdn88aNG1y/fj27\ndu2qhNUmDlOP7pGRkfzkk0/yfEdAQAB3797N7OxsS5I5qnGYsiZNmjAtLY1arZbDhg2zll8VjoCA\nAKalpTEjI4P79+83+yhYrlw53rx5k+Hh4blDoyrmMNVGBEFgVlaW2eD4ZN5YzWbiMReIw5Lt3buX\ncXFxbN26NQVB4Lvvvsv09HTeuXPHIJpqb46VK1caBIsFQWBQUBCTkpIoiiK/+uorU8ouqnHoVcJF\nUaSHhwcFQeALL7zAn376iaIoMiAgQJV2ao2jRYsWlCSJHTp0MAxzlihRguvXr2dqaiq9vb0JgPPn\nz2eLFi1yHKs7t9mQCUrHmAMh31mMHbPZGKawURJ+2bJlJMl33nnHXJ5AmJYft4lDX7Dbtm2zFHtZ\nTY48k12NGjXi2bNneeHCBa5Zs4Y///wzw8LCGBERwb/++ovp6elcvXq1uXF31ThyW8eOHRkREcHk\n5GROmjSJL7zwAl944QVLxxSYw8XFhUuWLOGtW7fYs2dPurq6WoxH3aZNG86cOZNVq1a1icNcG2na\ntClHjBjBzZs3c9GiRVy8eDH37NnDNWvWGN5btGgR9+/fT41Gw2PHjpkSdygwhznbs2cPt2zZQn9/\nfw4fPpxJSUk8e/asOXVo1TkEQWBYWBgnTpzI0aNH87vvvmN2djaTk5P55ZdfGosW2IWjfPnyfPvt\nt+nn55djgtHHx4fHjh3jgQMHLEWqVI1j7Nix1Gg0TEtL44oVKzh06FAeO3aMGo2Gbdu25dy5c/no\n0SMeOnQojzyb7tzjYEb7UZFj1p0kt7qsEnl6iw2sXLlyOf6PiYlhREQEa9eube6YG8in/LglDj8/\nPz558oRRUVHs0qWL1QtCBY6/TTXyypUrc9u2bczMzOTGjRvZvn171q5dmxUqVGDnzp15584dDhky\nxK4cxlaqVClGREQYNOWOHj3K0NBQnjlzJs+d38gKzNGlSxcmJiYyODhYUT00btyYGo2Gf/zxh80c\nltqIsW6dm5sbnZyccrw3ZcoUajQaZmRkmHqiUI0jt1WsWJH9+vXjTz/9RJL8+eefLV0zqnM4OTnx\n/v37TEhIoFarpSiKTE1NZbdu3cw5ZVU53N3dWbt2bYNwsrF17NiRiYmJbNmypd05XF1d2apVK06Y\nMIFDhgzhgQMHOH/+fA4aNIiVKlXiJ598YhBbMMF6A8ARAJXVdsw2xzDt378/Hz58yKysLN68eZNX\nrlxhVFQUSTIiIoLdunVjvXr16ObmluM4tTkAuXcUHx/PjIwMTpkyxeLytIJymGN5//33mZGRYTac\nYYcOHRgZGZlHGUJtDkBWpTbWksvMzDSYJEncv3+/uXIpMMeIESMoiiIHDBhgtQ4AuYd07tw5arVa\nVTmUmJ+fH48dO8bExESOGjXKVLuxC0f9+vW5efNmkmRKSgr37t1rjVV1jpEjR1IURWZlZfHGjRuc\nP3++JYesKsfo0aMZHx/PJ0+eMC4ujlFRUdy9ezc//PBDNmzYkN7e3gwJCeGGDRsKrTxMWbly5fj3\n338zJSWFvXr1MulDrPpcKw45t+afYjl2c9ATJ06ktRQXF8fXX38997GqcujtzTff5J07d/jo0SOl\nGnc2cZhicXNz45EjR3j06FGzQcYdHR05ffp07tu3L/eYq2ocgCzJ/s0331CSJGZlZXHnzp0cMWIE\nhw8fzmHDhvHw4cMMCwszVyYF5hgxYgSzs7MV6wz6+Pjw/PnzuR2zauVhzlxcXHjx4kWmpKTwgw8+\nMHczV52jSZMm/O2336jVannhwgV2795dCW+WEc9uyLGHj0NeGqYfXy2nlCMoKMggIbV69Wq++OKL\nSstNFY5Tp07x9u3b7NmzJ/v27cvg4GBu27aNkZGRjIuL45kzZ5iamsoLFy5w6tSpbNq0KV966SXj\nITFVy8OUVapUiQcPHmRKSopZyS81HLNe86868inHbgnez8+Pw4YNY2pqqsEZJyUlGf4/fvw4mzZt\nmvs41Tg8PDxYqVIlw+v+/ftTq9UyIiIij0irCbOJwxRLmTJleO3aNXNrUHPYBx98kHvsTDUOQB5z\nF0WRFy5c4BtvvJHH4YwZM4bffPONOb4CczRt2pSHDx9WomRDAKxZsyanT5+ee/JUtfIwZY6Ojly8\neDElSeLRo0cNEzz2KA9j69evn2Hy8f79+/kRVOgIeeOEe24WyJNPcQBWKuEoW7Ysf/zxR5LyBKh+\n8q8wOcaPH8/4+HhOnTo1x/tOTk788ssvKUkSIyMjGRMTw2PHjnH27NmcPXu28Zpq1crDlHl7e/Ov\nv/6iJEmcMGFCvjZC5csxG4FVRz7l2E0Bubi4MCgoiCtXrmRWVhYTEhI4fvx4enp60tPTky1atGBM\nTAw1Gg3feuutPD9GDY4XXniBP/74IytUqJDj/alTp/Lp06fcvXs3S5UqZbbwbeUwxeLu7s6jR4/y\nv//9r8UK9/HxYXh4OP39/e3CAYBLly5lREREjvEwNzc3Dho0iLt27eLOnTtNzbYbO6ICcQwbNoxa\nrdbkKhVT1qdPH8bHx7Nnz56qcliyAQMG8M6dO7x586a12X/VOPz9/RkVFcXr16/z6dOnfPfddxWx\nGnPozv09gPcgq3SUhzz59BNMj6vmOVePHj24a9cutmnThhcuXMivY1aFw9vbm4sXL+adO3eYlJTE\nu3fvMjY2lsnJybxy5QqHDx/OEiVKsGTJkvTz8+PUqVO5atUq9ujRQ/XyyG0VKlTgsWPHmJWVxdWr\nV+eYQ8ttBXbMyDuUIQL4UPc3C/KsZjIAjbUf07BhQ65Zs4bx8fEkyWPHjjEgICDHioguXbowNDSU\nn3/+uSndO1U4atWqxZiYGA4dOpSurq4G69GjB2NiYqjVaunn52epEmziMMXi4ODA8ePHMzY2ltWr\nVzf5fS+99BJPnjzJEydO5K5s1TgA8Ny5c4yJieG8efM4b948zpo1i/7+/ty7dy8XLlxIHx8fS2Wi\nl4UngP06hhj8KwsvAuhsiaNmzZq8c+cOr169amkyiy4uLnz77bd5//59fvHFF7l7jwXmMGelS5dm\nUlISU1NT2aZNG2v5VeMYNWoUSXLNmjW8du2aqSVxSji0kOWUvtW91nP8DSBNCce4ceM4bdo0AuDq\n1avz65hV43B2dqafnx/btGnDjh07smPHjgwKCsq9OsfuHMam36WakZHBzz77zJq6vSqOWT+UYbPk\nt4uLC7t3787ffvuNJJmWlsYffvghT7wFBaaK9Hj//v3NrlOVJIlhYWFs1KiR6hzmKrhkyZIMDQ3l\nqVOn2Lp1a9asWZM1a9Zks2bNOGfOHMbGxnLt2rV54hGozRESEkKtVsvk5GQmJCTw2LFj+amblyFP\nnvSF/IiYCuBTPYtSjqFDhzI1NZWnTp1i27Zt+eKLL7JGjRps2LAhmzVrxvnz5/Pw4cOMjo7mmDFj\nTE06qcKR21xdXQ29ofHjxxdaeZQqVYpRUVE8ceIESXLfvn2Kh3oK0kZMnWvz5s1cunQpfXx8uHr1\nanbq1OmZcBTQVOVwdnZmo0aNePz4ccPkuJeXl1WOAjtmHZRBJwv/PpopWWZCQL67kvK4cVhYGD/8\n8ENbC7VAHHrz9PTk+fPn+eTJE4NKdlZWFkNCQjhlyhQ2aNDALhyWKrhatWoMDg5mbGws7927x127\ndjEiIoKbNm1iYGCguYtRVY6GDRty6NChbNmyJbt165ZfB2DQUdOxRANYBGByfjjc3d0ZHBzMxMRE\n/vLLL4yKiuLt27d55MgRpqenMzIykgMHDmRQUJC5yVJVOHLb5MmTmZKSwsWLF1t7mlKVo1KlSiTJ\nqKgoHjt2TNFchBptxNS5Vq9ezaSkJK5du5ZXrlzhK6+88kw4CmiqcTg5OXHkyJH8+eefmZ2dzWXL\nlilyyoA6PWaD5h9slPw+ffo09+7dy9KlS+dXBTq3qSY9rlf5FYyUfvPBZhOHkoaWm+lZcdhgy3Xn\n1bOsBXAYshJxLICbADyU1k21atXYrVs3rl+/nuvXr2e3bt3Yvn17JcrdqnHoLSgoiGlpaZQkKccY\nf2Fx3L9/nyQ5ZsyYZ3rN1KtXj/fv3+fs2bP566+/WttwZDeOAppqHI0aNWJiYiJnz57NNWvWWB2+\nMDY1HLNe8091yW8b7LnmsANLUeEgZJ20KzqWuZCjdp3QcfwKYCGAHc8bR40aNTh9+nRmZWVxwoQJ\nz4TDw8ODc+fONTXn8j9/zRRVjpIlS/KTTz7h+vXr2a5dO7q7u+eLo8COWQdVJCS/n3cOO7AUFY7n\nvm7Mne+VV17h7NmzuXPnTpM7zf6/lUcxhzpWYMcMo6GMXO//v5UeN8eh+9sZQBTkGd5gO7MUFY4i\nXzfFHMUcRYlDDcesH8rIt+S3mvYccGyH/CiUBXknUVUAIfZiKSocz0ndFHMUcxQZDqVmMR4zyb9g\nQhdQieS3mqmocwA4LAhCGwAfG7F8Zy+WosJhiaWo1E0xRzFHUeJQmmxVya4CIFIQhPuQH5dLQw6A\nPk8lrueNQ89SFGTQizmKOYo5nj+OHMlWx0yjv0GQ96AHGWcoZOnxZ81hzBLEQpBBLyocFliKOYo5\nijmUc+RIph6HlaSHkLdrA/IE4bOS/C4qHHoWkzLogiB0FgTh6v8ihxHLc8ehZ7Hluzp37oy+ffs+\ncw5LqZijSHOYYvk3KRg0N6XG7AM5hGEWdDEZACzUfZYvye/+/fsrXaNpV458mDl16qO6z1Mg77l/\nAKCpEYdV5ZCixuHt7c3XXnuNgKyK/Oeff5rbWGAXjpdeeomXLl3iRx99ZC1oUL45CtpGPv/8c77/\n/vuFzhEaGsquXbvmiI74rMrD3d2d+/btoyiK/Oijj9i8eXNzsZkLrV6eRXnUq1ePH3zwAWvWhmdb\nHwAAIABJREFUrMlevXpZDTehZPJPSY95C+TlJMZpOuSlJ3chO8O/AbwuCEIHAK9ADnloNdWtWxdb\ntmxBQECAkux248hnMsUxF8CPkKNVpUJ2Ok6QK/4VANdIPnqeOF5++WX07dsXS5YsAQBkZ2ejVatW\n6Nevn6nsduEYMWIEateujVOnTuHmzZtKsPPDAdjYRtatW4fRo0fDwcHs5WM3DpKoX78+mjRpoiS7\nXcvjlVdeQZcuXeDg4IClS5eic+fOqFOnTqFwuLq6YsSIEVi8eDGGDh2KgwcPon///ihZsqSlw+xS\nHl26dMH777+POnXq4NVXX8WRI0fQuHFja4dZTAVRyQ4gmSAIgidkyZZNUCBPb5yuX7+OhIQEDBgw\nAAcPHrSWfT3krayOBeX48MMPERcXh+nTp+Pp06cICgpCaGgofv75Z9y8eROXL19GeHi4QZ05nxy/\nK+Xw9vbGzJkz8eeff+LWrVvw9fVFbGwsnJyc4OnpCQDw8fFBrVq1cPDgQfj4+ODSpUu4e/euqhy5\nU8mSJTF37lyUKFFC37OARqOBRqNBxYoVTR0yW22OihUrYuDAgThz5gxCQkLg7u6Ojz/+GNHR0Thx\n4gQiI02eIj8cVuXpTaVatWph+PDhiIiIwOnTp81lsyvHa6+9hnv37inJajeOxo0bY/LkyXBxcUFk\nZCR8fX3Rvn17lChRAjdu3EBmZqZdOBwcHPDuu+9i4MCB6NSpE9LS0vD777/jtddeQ7du3VC/fn3M\nmDHDnFK2XcpjyZIlhg7MnTt3MGnSJNSvXx+XL182mV8QhBsALgAYT/KJyUxKutUwimOqe50MwBWA\nq9HrPwD0gHz3+QoKHy8OHz7Mhw8fKskrAFgBoyDjtnLs3r2b6enplCSJWq2WGRkZTE9PZ3p6OrVa\nLaOjo7lx40ZzgdBt4tC9n+NcW7ZsoVarpVarpUajoSiKfPr0aY5od9nZ2bx37x7v3bvHqKgo9u/f\nX3WO3NaqVSvGxMTw/v37BkkrX19f3r59m6dPnzZ1jKocTk5OvHTpEh88eMC2bdsSAL28vDht2jSG\nhYXxhx9+MMeumEP3Ol9ttXTp0ty+fTvj4+P56quvWpIisxtHSEgIRVE0hOC0Ynbh8PT05OnTp/n0\n6VNu3ryZjRs3plarJUk+ffqUnTt3thtHtWrVeP36dUqSxH379rFnz55s1aoV3377bWZnZ3P79u2W\nYqrYtX0AYKdOnSiKIvv162cpnwC5t55nW76BTeEY82Pk1MqyKk+v9IfExMTw0aNHSvJuRj7kxy1x\n7N69m6IoUpIkfv7553RzczMEEFq/fj0TEhIoSRLPnTtnKtymTRymHFFmZiY3bdrEVatWMTAwkIsW\nLeJ//vMf1qpVizVq1GCNGjXo6+tLJyenPGKganLktrFjx1IURZ47d87w3uDBg5mRkcH58+ebOkZV\njtGjR5MkJ0+enCeY05AhQ5iammouNKtq8vSmrG/fvszMzOTy5cut5bUbRz4ds104Fi5cSI1Gw+++\n+87w3vDhwylJEsPDw03F01aNo2nTpszKyuK3336bI5Z769atKYqiNcds1/YBgOvWraNWq7Uo8Kw7\nt9mQCUodcyDkLn9uddlZuv9zhMpDPqTYX3nlFZLk7t27lfzoQOSVH7eJ44cffqAoily+fLnJqFCB\ngYGMiYnhjh07TDlmWznyTHaNHz+eGo2Gn376KVu1apXfiF2qcRibn58fQ0NDGRcXx7p16xreX7p0\nKSVJMieWqhpHqVKl+N1331Gr1ZoMwdq5c2c+ffqUgwYNKhBHftvqsGHDGB8fT0mSuHHjRmv57cYR\nEhJCjUbDgQMHKmkjqnI4OTnx7bffZmJiIu/evZvD+TRr1oyPHj3i119/zbJly9qNQ++Yc9fBe++9\nR0mSrDlmu9ULIPeWk5KSuHLlSov5dOceBzPaj6SCyT+SJyF38Y3TP5AFJgFgAIBDRvkzAIy2dl5A\nnjwgqR8ztZbWA2gCWW2gQBwtW7YEAMycORNarTbP59WrV4e7uzuio6ORmJioFscvuU+0f/9+/PHH\nH5g9eza+//57HDlyBEFBQRAEq8scVeUwTh999BEaNWqElStX4vr16wCA+vXrY+DAgQBgbhJONQ4v\nLy/Uq1cPly9fxu3bt/N8npqaiqysLLzzzjsF4sjFYjH16tULCxYsQOnSpXHz5k20bdvW2iF24dAn\nR0dHuLq6KsmqKsdLL72ELVu2oFy5cvjPf/6DI0eOGD4LCAiAm5sb3NzcoNFo7MqRO3l5eWHYsGFK\nstqVo1u3biCJZcuWWcynG2PuCtk5m05WesvmVLJXQO72S5AVABqaONbiXcPZ2ZnfffcdExIS2L59\neyV3JNU4kpKSmJycbPJ7HBwcuGfPHoqiaE6x2SYOcyzOzs709/fn6dOnGR0dzczMTEZFRfGjjz7K\nPXRhVw5AjjErSRJv3LjBatWqEZD1Bi9fvkxJkrh06VJzLKpxBAUFMSsry6y2XZs2bfj48WNOmTLF\nrhzG9fPLL78wMzOTc+bMYalSpXj//n1rbVV1Dr1t3749P0MZuVWhF+LfR/ZsyOOpilShXVxcuGjR\nIpLkf//7X3p6ehKQBWqrVatmmKPp2LGjXTnq1avH+Ph4pqamsmnTpqxWrRo3bdrE7OxsJT1m1Thy\nW0BAABMTE809yeUwSz7X8J1WHLM5lewNkJVlBQBHANzM749p2bIlo6KiePHiRYvChUamGsfZs2e5\nefNmk9/Tu3dvpqam8ocffjA1jGEzh7UyKVGiBFu0aMFJkybx2rVrTE9P55o1a1irVi1Vy8Mch6Oj\nI4ODgylJEjds2MASJUrwhRde4LZt2yhJEiMiIhgUFGSORTWO4OBgkqSvr6/J73r33XcZGRlpToNQ\n9Xrp06cPJUni8ePH6ejoyA8//JChoaHW2qrqHHo7d+4cJUlS6phzq0K/hn9VoedCDgyvSBW6ffv2\njImJYXZ2Nl999VXD+927d+eFCxdIkr/88ovBYduLw8XFhStXrqQkSbxy5Qpv3bplcMoKHLNqHMZW\nsWJFHjx4kMnJyezevbvVeimwYzYCq46cqr938a/qbz0AWfn9MQMGDGBmZiaXLFmipIFRTQ5ziiWu\nrq68desWJUkyrEZQi0PphafnW7p0KUVRNDfZpjqHp6cnT5w4QVEU6eHhQRcXF06fPt3Q4JcuXWpJ\nVUU1juDgYGZmZpq7wLlw4UL+/fffducA5JUgqampPHr0KD09Penh4cGjR49y2LBh1urQbu1jx44d\nFEWR+/fvV9KWqiOnKrSBBfLk0x0olFL69NNPmZWVxXbt2hnec3d35w8//ECSTElJYWBgoN05AHnj\n0/379ylJEuPj47lnzx5Dp8KKY1aVQ2+9evViSkoKd+3apej6Vtsx34S8BrUMgBSjz8YByM7vj/ns\ns88YGRmpOPq/vTiMbdSoURRFkQ8ePDCr1GwrR35ZKlWqxMuXL/PBgwcmd0aqzVGvXj0mJCRQFEX2\n7duXp0+fpiRJTEtL44YNG6xJXanGERwczMePH5vcQdayZUs+fPiQkydPtjsHAPr7+1MURfr6+rJu\n3brcv38/b926paT+7NY+5s+fT1EUeebMGaUcV/GvlJIfdGKjOo59UCA+2rp1a2ZkZPDWrVt0cHBg\n+fLlGRQUxLNnz/LMmTNs3749/f39ldy4C8RhbI6OjmzcuDFLlSpFAGzbti0lSeLJkyctae+pzuHs\n7Mz9+/czKiqKbm5uiq7tAjtm5B1jTgMwFPKYTBbk8bJkAJr8/BhBEHjjxg0eOXJE0Q/Rmeocxlam\nTBkeOHCAoihy2bJlljS8bOIwx+Lm5mZ2a+/+/fsZHR1t7rFdVY5mzZpRq9VSkiSDUK1Go+HChQuV\nCLNm6v5qIY/dZQGIwb+y8CKAzko4JkyYQFEUWadOnRwX4ZAhQxgdHc0///zT3PpyVTkA8M0336Qo\nijx16hTv3LnD+Ph49u3bV0l7UpXD2GbMmEFJkpT2zjIhj2sTwCnI8bolI46/AaRZ43j//fdJkvfu\n3eOyZct4/vx5rlixgvHx8UrFlVXhsGR6x3zt2jVWrVq10DgGDBjA1NRUDh06VDGrGo7ZG0BjyDPo\nwfh3zMziMhNrP6ZOnTrMyMjIr2K26hzG1rBhQyYnJ1Or1XLs2LGqc5hjqVmzJu/fv8/333+fHh4e\nhvfbtWvHtLQ0Hjp0yNwkoKocjRs3Nmy60W902bFjh9K6OQVZeVg/dhcJWRV6Un45atWqxbt37/Lx\n48cMDAxk48aNuWfPHiYmJvLEiROsUaNGoXAAsubf48ePKYoib926ZYgbUpjlkdsqVaqUn6EMVa6Z\nDh06UBRF6pMkSezatavSm5Tdr109oyRJ/OWXXywtO1WVw8XFhQkJCYyPj8+xtNSaKXHM1rZkxwH4\nHMB1kosEQXgZ8vpTi8tMrCWNRoPvv/8eFy9ezM9hk9TmME6VKlVCaGgoAgICsHnz5kLjuHv3LkaM\nGIF33nkHAwcOxNq1a3Hz5k0sWbIEgiDg008/zb291S4cycnJePToESIiIqDVarF+/XocOqT48PMk\nlwOALq6tC4CGkLe15osjPDwco0aNQv/+/XH06FEIgoCNGzfik08+wbZt20wtxbILBwBERESgffv2\naN68Oc6fP4+///5b6aGqchinlJQU7N271+RSQhNJlTZy7949zJ07F9OmTcO5c+eQnJyMsLAwc9vi\n7cZhLjk6OiIoKAgAEBcXh5SUlELh6Nq1K8LCwpCRkYHo6Ghb8U0nKz1mYzmWa5AfyXrj32UmGZC1\n5arn927XokULvvzyy4rvMvbi0NvatWs5e/ZsJTPuNnFYYhEEgQEBAczIyKAkSZw9ezYlSWJwcHCh\ncxj/zYfp5XquQY7gVRXypEom5OAw3wHwyG/dmJukLWwOG6yocKh6zdjQLuzCYcqMJ/8sbJVXleOd\nd97h7NmzOWbMmHyVh5Ies9UMOjB3yNpxvXSvPSEv/TG751vtRmZvjt27d3PixIn84IMP7MKhhKVm\nzZr8/PPPOWzYMC5ZssTiOmZ7chS1uinmKOawZhUrVuSUKVMsLeksUuVRYMcMM5Lf+FdZ9jaAx4Vw\n97crR40aNejh4ZFj/31+OIxYbkDuGdmkTu3o6Eh3d3drm0vszlGU6qaYo5jjf4mjwI4Z8l3ElOR3\nFfwb7HwCgETkUpa1Q6EWZY4K+Deo9kwA+2FCnfp/lKOo100xRzFHkeJQ4pgF3RebTIIgtAbwJ4Aw\n3UkBOTj9RwBaAngEeT3geciL5u0igvoccPTTcXhDnpH/AHLIwJL2YCkqHFZYikrdFHMUcxQZDqXJ\n4qoMmpf8fgFAOMnRutd5BAzVTEWdA8BhQRD6AQg0YnloL5aiwmGJpajUTTFHMUdR4lCaCqSSLQjC\nfcgLs0sDcAMwSh2s545Dz9JfEIRX8Wxl0Is5ijmKOZ4/jhypoCrZhHx3WQNgpf5DnQoyVTZLKtnP\nmkPP4gRZBr0JgHXIpQr9P8rB55XDzm2kmKOYwxJHwVSyzUwK6gNIR0AezwyBnRVuizKHEUs25CA1\nznoW2Eklu6hwWKmbIsvxjNpqMUcxh6LJP6s9ZkEQNguCECsIwlWjt10hb2WsAnlRti+AVrrP7KJO\nbQ8OHx8fVK9eHY0aNcJ3332HyZMnQxRFBAcHm1VANsUhCIIHZLVdQJ5cSAEQRfIi8qEK3b17d5w+\nfRqBgYHWstqVw9HREVOmTMGgQYPw8OFD/PTTT6hevbrZAP5qczg6OsLBwQEtW7ZE7969UblyZZQp\nU8Yadn45APu11f8XHB999BGuXr2KChUqFDqHo6MjFi5ciLi4OAwePBgNGjSwyltU6kVJUjKUsQWm\nZb+3AagIYDKAgwCGCILQATYoDytM7SDHSzVWubWJo2zZspgxYwaOHj2KgIAATJo0CVeuXMH27dux\nZ88e9OnTx5JChDmOnyH3AifrmKrktzxWrlyJV155BXXr1lWS3W4czZs3x+DBg3Hnzh107NgRwcHB\nSElJsaSsohqHj48PNm7ciGHDhmH//v3Yvn07+vbti2+//daaNH1+OWCNRRAElCxZEo6OjnBzc4O/\nvz9GjhyJTz75BC+//DK6d++OkSNHmrqJq8pRgGR3jnr16qFq1aqFztG4cWMMGzYM4eHh8PX1xaBB\ng5Tg2qU82rRpg71792LYsGEICQnB+fPn0atXL0sdmRuCIOzQ3RhMJqXSUrn1ld4AsJ1kHIAdkJ3E\n95Blv5n7HAMHDsTw4cOxf/9+g3322We4c+cOJEnCt99+ix49eliTVKoBeV+7j60c+lSpUiWMHTsW\n2dnZyMzMxLBhw7BgwQLExcVh9uzZSElJMdtjVpMjd/rhhx8AyI5RQbIbR/Xq1bFq1SqcOnUK169f\nx7Vr15CQkGBOEh5qcnTo0AEDBw5E3759Ub58eTg7O6Nr167o3Lkz/vOf/1hDzw8HLLE4OTlh1KhR\n+OGHH7B582Zcv34dderUQXR0NLy9vREVFYXo6Gg0b97c1A1DNQ59cnZ2RseOHfHhhx+icuXKqFix\nIurUqYNXX30Vs2bNwubNm9G+fXv4+fkZX0eqcxinFi1aKM2qOsfnn3+On376Ce3atUPVqlXRunXr\nQufw9vbG8OHDcfz4cfTu3Rv9+vVDs2bN0Lx5c3z//fcYPdqsKlVdyFv0V5k9ucIx5erQBZjWvbYk\nT59HWXbMmDGMjo5mSkoKNRoNU1JSeP36de7Zs4dbtmxhaGgoExISDHJGpkz3PQEAMm3l0Fu9evV4\n4cIFlilTJs9nixYt4o4dO+jq6qoqBxUsVG/WrJlBmcFaXntyDBgwgKNGjTL5mX4CI9f7qnE0bdqU\niYmJlCSJCxYs4Lx58wwR7+bNm2etXBRz6F6bbSMtWrRgREQERVFkeHg4x44dmyN2ePny5bl7926u\nXLnSVBxe1TgAWcBhx44dTEtLoyiKjIyM5Llz5xgXF8eLFy8yODiYb731lilxAVU5ctuDBw+YkpLC\n6tWrF1q96E2SJE6dOpWAHOfmn3/+UcKsGoejo6MhBKskSczOzmZ4eDj//PNPhoeHMzExkcnJySZ9\nmu7cBVbJ3gzgMXKqZFuSpzepLCsIAkuWLMkKFSrkubhnzZqVo6DN2GbIAWDEgnAAYNmyZfMEwhcE\nge3atWNKSoo53bKCclid7GrWrBlFUeTly5eVNDK7cjRs2NDkZ0FBQabiEajG4ebmxrlz53Lnzp18\n4403mJCQQEmSmJKSoqRMFHNYayORkZGUJInJyckm5b3atm3Lx48fm2srqnEIgsARI0YwOzvboNoR\nGRnJZcuWcfHixdZiZavGkdtcXV0ZHR3N8PDwQq0XvW3bts2gFJ4Px6wah17NRu+Y4+Pjc6y8GD9+\nPCVJ4vr16/Mcqzu3RZVsJY45EHKX39gxW5P97qKkcvWmd8xff/21pRgR9wFcUJOjRIkSXLFiBefM\nmcNffvmFKSkpDA0NtaZEYCvH39bKoXLlyoyIiGB2drbFYCz25qhWrVqeWLv+/v7ct28f9+3bxwYN\nGuQ+xi4cO3fuNDT8qKgovvjii9bKJF8cptqIk5MTp0+fTlEU+fDhQ7NPcZs2beLDhw/txqE3veRX\n79696efnx8DAQEtCAXbjyG1BQUEURZFr1qx5JhwODg50cHBguXLl+OTJE549e7ZQOQRBYJcuXbhs\n2TKOHj06T6zuOXPmUJIkdurUyRTHDcjaj5Vtdsw6uNa5ftA5AAd0/08EsMrEMYoaj6OjI5csWUJJ\nkrhp0yazel324Chfvjy1Wi1FUWRKSgoPHTrE9PR0BgQEmD3GVg4lZeLk5MTjx49TkiS+/vrrFvPa\nk6NWrVrcunUrAbB58+YcPHgwlyxZwpUrV7JLly6mhoDswvHll19SFEXDo+KdO3dyKJuYsAJzeHt7\n8/r169y7d6/ZsLSCIPDJkydcuHCh3Tj0VqVKFV6+fJkVKlRQdD0VRr0A4Ny5c6nRaNi/f/9nyhEY\nGEitVmuyZ1oYHA4ODixTpgxLlChBFxcXOjs7s1u3boyLi6NGozH55KnI51pxyLmlpRTLsSttPHpB\nR0mS+Pnnn9PR0dFcXtU5SpUqxX379nHmzJls1aoVAfDIkSNct26dSc25gnAodcwnTpwgSW7atMlS\nWdiVAwCnTZvG8+fP8/z58zx58iT79OljdnjDXhyVKlXixIkTefnyZcOQxtWrVy1JBxWYw9HRka+9\n9ppZ3Th9j/rChQusXLmy3cujYsWKPHv2LGfOnGlqbN+aZRnx7Ma/sYdF3Xt/ACiX33qpUKECr1y5\nwrNnzyoZX1aVQxAEvvjii7x48SKzs7MpiiKzs7M5YcKEQuVwcnLim2++ya+++opPnz7lnTt3eO7c\nOa5atYqSJFGr1fL48eMmOdRwzN4A6sMGOXaljadKlSq8cuUKJUkyq32nM7tw5G7sZcqU4cmTJy1d\n/DZxKHXM+h6zAsdsN44SJUqwb9++zMrK4vjx4y05IL3ZhcOYp0+fPoax5tatWz8TDkAeW05PT+f3\n339vachLNQ5HR0fOnz+fsbGx7NKli2JOnXWEHM5SL3H1GoAvdCxzIS8fW5nf8vD39+e9e/c4bdo0\nJXqQqnJ4eXnx8OHDTEtL46+//sr09HSKoshz584pCZWrGoefnx9v375tGGrLbQcOHDB70yqwYzYC\nq458yrErbTzt2rWjRqPhxYsXLeazN4fenJ2defnyZbOPzLZyqO2Y7cHh4+PDiIgILliwgP7+/pw0\naRKXLVumpNzsUh7GVqlSJUOjtyB8aVcOHx8fnjx5kqmpqZaeHlTn8PLyYkJCAmNiYti4ceP8tOfq\n0K2mys0CeVXAHdigtTdy5EhmZGSwV69ehc7RqVMniqLIiIgIpqenMz09nb///jtFUTQ89RYGR/36\n9Q2ixbktKirKkopKwR0z5KGMPyFLsWdCXs9cRvf/Q8jyOZEAtLY0dhcXF/7222+UJMmqY1aTQxAE\nNmnSJM/KDH2ju3r1Kn19fVXlUOqYT5w4obTHrCpH6dKluWPHDm7atMnQEyxZsiRr1qyp5MI7B/kR\nPRvALMg7qOboWCJ1eWxShdZbq1atDMvmBgwY8Ew4xo8fz8ePH1t7srMLR4sWLXjs2DEmJSVxz549\nHDdunMXlpbk47uraiJ9RG4mEPNSSL1VoQRAMnYc2bdoorT/VOPz9/XnkyBHeu3ePu3btYocOHdi8\neXNKksTVq1cTkJ8yzKjcq8ZRs2ZN3r59m1qtlqmpqbxy5Qp/+eUXarVanj171uKwkxqO2RuyOGE0\n5PExEcCnkGXZH+Hf2cUUWxp7nz59mJ2dTUmSLE2k6E01DhcXF27atIk3b940NG43Nzd+/PHHTE5O\n5tKlSy09FtnEYQfHrCpH+fLluXjx4hwKLn5+fhwyZIiSC++xjiMeQAxkhxQDWe/O5vIICAhgyZIl\n2apVK545c8awVKx+/fqFyqG3lJQUnjt3zmJvyJ4cFStW5NixYxkfH8+UlBTevHnT2tLOOMjjqlmQ\nHdFPOi49R2UAyfnh8PDw4OPHj/nnn3+yXLlyispNTQ5BEOjh4cFatWoZOhDGjtnX15dbtmxhnz59\n7Mrh7OzMF198kU2bNmWjRo1YpUoVNmvWjMnJyRRF0erTboEcsw7KIMeCf7v/TwDM1n1us/T4okWL\nDBdb2bJlreVXjaNMmTKGpVgajYYXLlzgpUuXqNFouHfvXmvLkWziyK9j/uqrr6w5ZlU5SpUqxaFD\nh3LatGns2LEjX3/9dW7fvp2LFy9WcuEZ5Hp0LNEAFkHe5mpTeezbt4+ZmZncunWrQaQ2OTmZQ4cO\nteQYVefQt5fly5dTo9FwxIgRz6Q8ctuoUaMoSRIHDRpUKNeM3jp06GCoC4UTf3bhMLZGjRoxJSWF\nkZGRTEpK4tmzZ821Ebty6FfQ2N0xw0haCvL4zAPI8UrPQe4N3IA8YL4uvz/GwcGBe/fupSRJnD59\nupIfripHUFAQJUnisWPHKEkSMzIyOGbMGCW9IZs4lDrm48eP88CBA2zTpo21WXjVORo2bMiXX36Z\nv/zyCxMTE7l161Yl66kJnVyPEctaAIcBhEPujdxEPlWhK1WqxOjoaEMdZWRksE+fPtbqR3UOABwx\nYgSTk5O5efNm+vj4PJPyyG0jR45U4phVv3YHDhxISZK4f/9+li9fXimvXXyI3kqVKsVFixYxOjqa\nCxYsMLUDslA4ateuzUePHhWKY24NuasfBiBN17A6A6gF4Dfd+3cBfJffH1O5cmXDhde9e3clP1x1\nDr3jM7PNWFUOpRVcFDjyWR6ELAl/RccyF4AHgBM6jl8hL0vKt/pwYGAg161bx0mTJim9QajOUapU\nKT558oSiKFoaQimU8jA2/Vb1rl27Fuo1o28f+WG1F4cNXHbjKFu2LCdMmEBJkvjw4UP7Tv7poMyq\nMes+N7nn29oPcXd35549e5iYmGhyEs6E2YXDBrOJww4sRYXjua8bS+esWbMm161bx3Xr1hWp8pg3\nbx4vXrxoMt7L/4d6edYczZo148CBA1m3bl0GBQVx5syZ7NatG9evX59nF2BuK7BjhnmV7Ar4V/I7\nGsDfthSqh4cHGzZsaG4GNbfZjSOfZpJD97cz5LjQyQCC7cxSVDiKfN38L3JUrlzZ0sqh/3fl8Txx\nqOGY9UMZlyEvwboEee/4TsjLTP6BfAe6DPtLjxdlju2QH4WyABwHUBWyEoI9WYoKR1Gvm2KOYo4i\nxaHEMduqkp0GoCzJbrrXUwB01f1Y/bEWgyurkYoKB2R16jYAPjZi+e4ZsBQVjiJTN8UcxRzPA0fu\nZKtKdhUAkUJedep5KnE9bxx6ljaCIITh2artFnMUcxRzPH8cOZKtjplGf4Mg70EPMs6gmyFVLZm5\naxUVDmOWIJJPBEHoa0+WosJhgaWYo5ijmEM5R46kRPPPVHoIebs2IE8Q+iKX5LeN5zVOWdaJAAAg\nAElEQVSbBNOS30WFQ8/ipOOAMYsgS6BfhZnk4OCAJk2aYOPGjXj48CEGDhxoVZDVHhy2pueVQ89S\nzFHM8Qw4TLH8m5QMRJuYFNRH9n8A4CLk0HkLdZ+Zlfx2cXFh+/bt+c4776gyYG4rR0HMSplkQ57d\nDdMxNTXiMKscUrp0aX744YcMDw/n48ePOWvWLIaHh1uMU2EPDjXLxFYOQRDo7e1NPz8/Dhs2jMOG\nDWONGjXYvHlzVTkKu40Uc/xvczRq1IhTpkxhVFQUe/bsyZSUFM6cOZMTJ07MsxFHkY9V4IQ3Q96t\nZKz55wHZEWZAlmv5HLI6QAcAbWBGJ6tq1aqG2Lo2FKxqHKasQYMG7Nq1K48cOcKQkBAOHz6cc+bM\nyQ/Hb7pKTYE8w/vImIMWZncdHBzo4eHBmjVrsm7dunzxxReZkZHB3bt321IeNnMUwFTj8PHx4eHD\nhzl16lTevXuXd+/e5ZgxYxgeHm4u/oFNHLrPFbcRFxcXNm7cmH/88QdDQkK4Zs0aSzvf7MZhr3pR\nwhEYGMiBAwdajJHh4eHB0aNH595goXp5+Pj4cMyYMdy1axeHDx/OkJAQtmjR4pm0j/r16/P8+fOc\nPXu2ITStJEmcPXs2NRpNHjUgJY5ZyVDGFsjr/IzTXADbSJYEMBOAC/5VlzUr+V29enXUqFEDZcqU\nQceOHeHh4YESJUrA19cXY8eOtaaS3Q6m5cfzzaFP3t7eWLhwITIyMhAaGopRo0ahSZMmcHJyQrt2\n7eDv7w8vLy+lHD+TrAY5mtghAKuVckiShCdPnuDu3bu4fv06bt++jbCwMPj4+Fg6THUOQFZjrl+/\nPiZOnIgDBw5AkiRIkoSlS5fCw8Os2rpqHMnJyTh06BDCwsJQs2ZN1KxZE4cOHYKbmxu+/PJLa/j5\n4YA1FkEQ4OTkhGnTpuHUqVNYunQp/P39UaZMGQwZMsSSareqHPpUunRpVKpUCfXr18eiRYuQkZEB\nSZJw/PhxDBo0yK4cDg4OaN68OYYMGYKZM2eaVZGvXr06PD09Ua5cObtwNG3aFNOnT8fWrVuxYsUK\n9OrVC2+99RaaNm2KdevWmWSyB4c+ubu745tvvkGTJk1QtWpVdOrUCe+//z5CQ0MREBCAM2fOICkp\nKccxgiDcEARhhyAIZi8opUMX1ZHzTnNXB+0KwFP3+g/IKsjvAfgKJu4sGzduNMQsTUxM5O+//86t\nW7cyIiKCiYmJ1sIYCpCVIBILylGmTBkOGDCAp06d4pMnT7h69WouW7aMb7zxBlu1akVnZ2f26dOH\noihy7ty5qnDkp6far18/JiQkcPny5aqXhyWOcuXKcenSpXz48CG1Wi0lSWJWVhYTExP56NEjSzua\n7FoetWvX5oMHD5icnGwtr2IO3edm2wgA9u3blzt37mRMTAx///13fvTRR2zRogUrVarEFStW8MmT\nJ+aGWFTlcHR05IQJE7hv3z5euHCBaWlpzM7OZlZWlkE09tChQ3blqFGjBsPCwihJEmfMmGFyy3G5\ncuV4/vx5Zmdns27dunbhCA0NNUTWW7JkCQcOHMhDhw5RFEWDHFphtQ9nZ2fu2LGD6enpXLp0KRs1\namT4rEKFCnzrrbcYFxfH0NBQU9fuXJjYlp/foYz8qGSblfzevXu32Yj/kiSxd+/elgp1M4AEAFJB\nOd577z1DuNHjx4+zYsWKefJUq1aNoihy2LBhqnAodUQNGjRgcnIyJUmypNRhF45Vq1ZRFEVqNBqO\nGjWKLVu2ZMOGDTlx4kRmZ2dbqh+7lQcgxyJOSUmxNrSTLw5rbaRZs2aMjIxkeno6P/300zy7U9u1\na8fY2FhT7UNVDi8vL+7Zs8dwjcTExHDjxo2cMmUKBUHgjBkzKEmSqQ6Eqhx//fWXQQ3anOza22+/\nbQhwZC8OYyVqQA52JYoiRVG0qpOpJoeDgwMnT55MSZK4YcMGs2USEhLCX3/9Ncd7unObDZmg1DGb\nUsnOADDJ6HWy0f9mJb9r167NDRs2MDAwkLt372ZSUpJBbFMURWthBAMh373EgnC8+eabhjCSISEh\nZiNRDRkyhJmZmaaCstvKYXbSTRAEtm7dmitWrOClS5coSRLPnDnDF154wR7lYZJj4sSJTEtL44kT\nJ+jr62voEfn6+jIqKoqSJOVpYEamGoezszMDAgLYtWtXvvnmm3z33Xf5+PFjXrt2ja6urtYuPMUc\nltrIyy+/zMePHxucsqnvWrx4MaOjo8212QJzVKlShQcOHGB6ejozMzP5xx9/cPz48XlEWdeuXcuH\nDx+ai3pXYA4XFxfOmDHD8AS1c+dODhgwgG+//TZbtmxpiFseGBjIf/75h5GRkTl6jmrWS27r2bMn\nnzx5wtTUVG7atMla21CVw9fXl6dOneLUqVMtxis5f/48g4ODc7ynO/c4APtsdsy6k+RWl7UYwxQW\nJL/1Kthly5ZlgwYNOG/ePINulxX9sBsAzhaEw8fHh9u2baMkSQwLC2OtWrVMfle7du148+ZN7t27\n11Q8Als5/jb329zc3AyB4PUWHR3NAwcOsH379mqXRx6OEiVK8ObNm5wxYwa9vb3p4uJikNaaMmUK\ns7OzmZGRYa53SDXLIyAgwBBXNzU1lRqNhpIkMTY2llOmTLF24eWLw1xbXbBgAbVaLXfs2MFSpUqZ\nbMc3btzgDz/8YDeOd955h7/99hufPn3KkSNH0tPTM8/wgb+/v7lHZdU4SpUqxc2bN+domxkZGdRo\nNIyOjubvv//OKlWq8K+//qJWq+XQoUNNRXlTpV6MzcfHh2FhYczKyuKCBQvo7e3Nli1bsm7dupbC\n96rGcfr0aUZFRVkSbWa5cuW4e/duU3JgeiGLymo75gLFMHV0dDTYq6++yoyMDIqiyNq1a9PT05Oe\nnp708/Nj3bp1DXFN1eAYMGCAQSds+PDhZp3ksmXLmJWVxSNHjuQZ5rCVw1KZuLi4cN26dbxx4wb3\n7dvHb775hiEhIUxPT+e9e/f40ksv5TlGTY6OHTtSFEXGxsby6tWrPHHiBPft20cAfOONNyiKItev\nX29pNl618qhUqRL37NnD0NBQnjlzhqtWreJ///tf/vjjj0xOTub27dstiSoUmMPd3Z1bt27lrl27\ncqi56M3BwYFz5sxhYmKiJWmlAnOsWbOGWq2WtWrVMhvO8ttvv6UkSZbEDArMUb58eZ49e5ZxcXEM\nCwvj3r17OX36dB46dIi3bt0yDLtJksTw8HC7t48GDRowKCiIsbGxFEWRWVlZvHz5Mv/55x+KosjU\n1FQmJyfzp59+MrVqpsAcrq6uhnkHS6uEXF1dOWvWLGZmZrJfv355rl2rPteKQ/aFLMeSW469GeTx\nGv3YTJ4ueW5QNzc3tm/fnpMmTeKGDRu4ZcsWbtmyhSdOnDA8Jl26dIl//PEHT5w4wbt37/LmzZuG\nHrYaHDNnzjTES23atKnJAh08eDCfPHnC6OjoPI+NBeGwdrMqW7YsK1asaLgRVaxYkUOGDGFWVhZX\nrlxpV47q1avzt99+4+3bt7l06VK+8847hqeXMWPGUKvVWhMfVb08clvp0qU5ePBgZmdns23btnbl\nEATBpEq6IAjs2bMn4+LiePz4cfr5+dmNo0ePHjxy5IjJHrvenj59yqSkJEtrvLOMeHZDjj18HPLS\nMP34ajlLHM7OzmzVqhUDAwNzdFJcXV1ZpUoVfv311yTJqKgoS/sTCsyhN73SEEnD5PS5c+d46NAh\njhgxgiNGjOClS5d48+ZNVqlSRXWOHj16MDk5mePHjzf2TTnMy8uLX3/9NePi4jh27FiTnbuCOmZv\nAPWRV479CwAf6fLMhtFMp7lCdXBw4OXLlw2TbnrTPybr1/9FR0dz79697NGjR+4eS4E5mjZtyr17\n93Lp0qV5FAYcHBwYGBjIlJQUZmRkWJrhtYkjN4sgCOzTp49ZNW5Alt4SRdHchacKhzFP7p6Zi4uL\nYSXN4MGDLTlO1TgsWeXKlSlJEj/55JNnwuHl5cWTJ09SkiROmjTpmZWHg4MDZ82aRUmSuGLFCkt5\nO0LeOOGemwXy5FMcgJW2cvj6+hpWamzZssWso1KTY+DAgTx58iSrV6/O6tWr09fXN0fbnTRpErOz\ns/nll1+aGmYoMEdQUBB/+ukns0o2np6eBnm4K1eumMxTYMdsBFYdOeXY7+NfOfZpAFKVFKqvry+n\nTJnCrl27sk6dOqxTpw5r1arFxYsXU5IkTpw40WwjUIPD29vb5Di2k5MTX331VV6/fp2iKDIsLMzs\n0j1bOXKzuLq6UhRFrl271uQk3+jRo5mcnMyUlBRLQxkF5rBkLVq04P3796nVavnGG29Yc0R24wDk\nm8SaNWv44MGD3EuxCoWjZMmSnD9/PrOysvj777+zcuXKz6w8vL29eebMGYqiyKFDh1rl0J37e8jL\nv+4CKA958ukn2Khx5+Liwq+++oqiKPLGjRt88cUXnwmH3kqUKMFVq1YxJSWFv/76q7nrt0AcgiAw\nMzOTBw4cyHHeChUqsEuXLpwxYwZDQ0OZnJzMPXv2mN25W2DHjLxDGSKAD3V/syDPaiYD0BSkULt1\n60aS3LBhg8lxPZ3ZjaNdu3aMjIykKIqMiIhg7dq1LQXvt4kjN4uLiwsfP37M7OxshoSEsE+fPhQE\nge3atePPP/9sGLvbsWOHuQkGVTgs2Y4dO6jVanngwAFrKyIyIce6JYD9Oga9OnSyjqtzQdpI7969\nmZmZyd27dxvUkQuLQxAENmzYkMnJyUxKSlKiuGPX8mjXrh2fPn3K69evWyoLYw4tZDmlb3Wv9Rx/\nA0izhePtt99meno6w8LCLIYOsDcHIA9zffHFF0xPT+fVq1dNdmTU4BAEgZIk8e7du9y6davBLl26\nxKdPn1Kr1TI7O5szZ85k2bJlzc4NqOGY9UMZ7pC3Pj+C3P23uMwkvxedq6srJUniwYMHLa3MsAvH\na6+9xjt37jA7O5uPHj2ypqFmM4cpFm9vbx46dIjx8fGGDQNarZZJSUk8d+4c/f39Ld0gVOPIbc7O\nzpwxYwYzMjJ48OBBa2rdhLxTKhRAX8iPiKkAPtWz5IfjhRdeYMuWLeni4kJBEFi5cmWOHj2a8fHx\nvHLlCmvUqFEoHMZWqVIlXr9+nampqRwyZIiSNm0XDr3t2rWLkiSxWbNmdmmr1r7fy8uLISEhTE5O\nVqrXaReOEiVKsEGDBjxw4ACfPn3KjRs3slOnTnbl+Pjjjw0Czvqh2PDwcJ46dYr9+/dn586drZaH\nEsdsLVB+rCAITyB38bcDeBXy+lON7gdCEAQvyL03m1N2djaePHkCQRCg1WrNZbulNoejoyNeffVV\n+Pn54dq1a+jXrx+uXrUa9Ew1jtjYWPTq1QutWrVCqVKl4OsrB8oLCwvD5cuXkZGRUSgcuVOVKlXw\n/vvv48iRI1i7di1EUbR2yDwAO0l+KwjCW5Bj2roCSM0vx4gRIzBv3jyMGzcOVatWRceOHRETE4PV\nq1fjq6++QmxsbKFwGKd169ahZs2amDFjBvbv36/kELtwAICfnx9Kly6N5ORkPHz40Fp2u7SRwYMH\no1GjRvj666/xxx9/KDlEdY7SpUtjwYIF6NatG44ePYrBgwfj4MGDkCTJrhyOjo7Izs4GIPutDz74\nAA8ePMClS5eQmpqan59gOVnpMRs0/2AnyW+9VaxYkdu2bbM0gaA6R+PGjQ07p6ZPn66U1SYOW8rk\nWXHUrFmTt27d4uTJk9mqVSslLMt159WzrAVwGLIScSyAmwA8lHDUqFGD165dMwSEiYmJYbly5SwN\ncdmFQ29t27ZlZmYmk5OTLT0i251Db8OHD+fs2bO5Y8cOu7URa+fVq9srCBpkN46JEycyMzOT27Zt\ns/s1Y+pcpibLlZqSHrM1x6zX/LO79LgCswtH69at+cEHH9idww5lYjeO2rVr886dOxw3bpxSBfPL\nAK7oWOZCjtp1QsfxK4CFMBEXwA5tRHUOHx8frl+/nn379s3PhWi38hg2bBhnzJjBd99995ldM0uW\nLOEXX3xhqRNld47WrVvzvffeUzLMZvfyyK8V2DHroP7npMefBYcdWOzG4ezszHr16tHLy0tpT/W5\nrpvnicPT05Pe3t4WtwH/fyqP55GjwI4ZRkMZud7/fys9bo5D97czgCjIM7zBdmYpKhxFvm6KOYo5\nihKHGo5ZP5SRb8lvNe054NgO+VEoC/JOoqoAQuzFUlQ4npO6KeYo5igyHErN2qqMv2BCF1CJ5Lea\nqahzADgsCEIbAB8bsXxnL5aiwmGJpajUTTFHMUdR4lCabFXJrgIgUhCE+5Afl0sDcIO8TKgwU1Hh\n0LMUBRn0Yo5ijmKO548jR7LVMdPobxDkPehBxhkKWXr8WXMYswSxEGTQiwqHBZZijmKOYg7lHDmS\nEs0/U+kh5O3agDxB+Kwkv1Xh8PLywoYNGxAcHAxRFCFJEt577738cOhZTMqgC4LQWRAEqztX8pOK\nCocRy3PHoWcp5lCPo0WLFvjwww+fOYepVMQ4TLH8m2wcSNdH9n8AeXujBsBC3WeFLT1eIA5fX1/e\nvn3boGobGhrKGzducPr06Zw5c6biGVWYkUE34jCrYKJWeTwLDit1U2Q5bG2rDRo04I4dO3jkyBFW\nqVLF5HLCwuAoKuWhNy8vL/bo0cMQW8UeHI0bN+a9e/fYpUsXsxzt27dnjRo1DMoq9iqPMmXKsHfv\n3pZCJtDT09MQT8QaR26z2mMWBGGzIAixuXo4rpCj/3sDeBHAlwBeFwShA4BXIIc8VDXZi6NcuXKo\nVq0aEhIScOPGDfTq1QtdunTBvXv30KFDB0Ucgqx2+yPkJWrVAZSCfBf20HOQfJT7XI6Ojvj0009x\n/PhxdOnSBV988QW++OIL+Pv7o3379vkuD1s5lKbXX38dU6dORY8ePXKz2IXD3d0dY8aMwaBBg/DH\nH3+gW7duFvPnk+P/2jvzsCiu7P2/BQiouAc3MOAWBVxwAY27JhoXMu6KxBXjNomJGqNJGDWOP40m\nJhg1asSYxdExxojiNvpTNCZiHIKo48YirlEWMWEV6O56v3/cptNgb0C1kpk6z3Mf6O7q6k+dqjp1\n69S95wXKeKx26tQJ27Ztw9ixYzFgwACMHDkSCxcufEzd3Z4cDRs2RHBwMGJjYy2pdNudw9g8PDyw\nb98+tGvXDqtXr8b06dPtwtG4cWM0btwYderUMbe92LFjB0aPHo0hQ4aY+lwxf3h6emL9+vUICgp6\nbP8D4twODAyEi4uLSVZrZkuO+UuImqXfGL23FMA3JNdIkjQHQFOIMnoBEFcck5LfkiTB2dkZ1apV\ng06nQ8uWLfHqq6/C0dERAwcOxCeffILPPvvMMBe9lPWDmDLZtKIcxla7dm1cu3YNs2bNQkxMjOH9\nV155BRcuXCgLx0GS/Y04Uq1xuLq6YvDgwQgICABJ9OnTBwDg5+eHDh06oGPHjrhx44Y5dMU4zJmD\ngwPc3d0xduxY+Pr6IjQ0FKdOnUJeXl7pRRXnePbZZ/GPf/wDrVu3xsGDB1GtWjVs374dY8aMwdGj\nR4t7OxXhOAYb5OkBwNfXF6tXrwYAtGvXzvD+0KFDkZqairp16yIzM9PuHAMGDMCqVauQkpKCjh07\nolWrVli9ejWys7PNfcUuHMVWrVo1zJgxAx999BH27NmD9evX4/fff7cbR35+PrRaLYqKiswy1a5d\nGwMHDsRHH31kNw4AqF69Otzc3DB79mwcPnwYhYWFJT7v2rUrXn31VZw8eRK7du0q8ZkkSVcBxAF4\ng+RDkxtiY+rCG/o6pvrXVuXpYaJr7+Pjw61bt/LIkSM8ceIEMzIyqNVqDTV/b9y4YamEoIQyyI9b\n4jBuderUMVkDYfv27Tx16pRiHPrlSqzL0dGRc+bMYVZWFrOysnj16lX+8MMPBjEBC4oQinKYal5e\nXly5ciV//vln6nQ6ajQaXrt2jfPmzTNVuF9RjhYtWvDSpUs8d+4cBw4caJjp9re//Y3ff/+9pQqE\nisrTA0KxIjk5mTqdjllZWUxPT+f69esZExNjEHkYN26c3TleeeUV3r59m2+99RaHDBnCW7duUZZl\nDhs2zNJ+VJyjuHXs2JEHDx5kYmIip0yZYlH7TgmOWrVq8ezZs7x37x67dOli8nckfb1kWZYZGBho\nV38sWbLEoM5tKm0yYsQI5uTkUKvVMiIiwtS5uxQmpuUb2GwIylsBZKCkVpZVeXpTGxMYGMi0tDQW\nFBSwoKCAOTk5nDlzJp2cnFhQUMCbN2+aFUjVc9gsP26Jw1rz8vJiYmKiucBcLg5LgUgykmSXJIlf\nf/21LYFZcY7i5uDgwMjISENpw9TUVE6YMIFubm7mvqMox/jx4ynLMqdPn17i/XHjxjEhIcFS6U/F\n5OmdnZ356quvUqPRMD8/nxMnTqSHh4dBucLV1ZWnT5+mLMum9CMV4yhuhYWFnDlzJgHxXOTChQuU\nZdla2U3FOQDQ19eXt27dYk5Ojq11ZirMMXnyZObk5PDKlSvmJN9KBGYzFwpF/NG0aVODHJ5Op3us\n/Koxh/F+K276dZstmWBrYO4JocJgHJhtkac3u6O8vLxKnFzt27enRqPhF198YUnjrCfKID9uC0eN\nGjVYs2ZNNm3alM8++6zhQU6PHj1469Ytc/Vuy8th08MuSZL466+/UpZljh492tKyduFwcHDgjBkz\neOvWLX733XecNGmSLfUyFOOoWbMmIyMjeffu3ceK8x89epSJiYmWArMi8vTu7u7ctm0bExISeOTI\nEXbq1MlksZzo6GhGR0eb0o9UhKO4tWnThkVFRYY7hZYtW/L27dvUarUWpcmU5ijeP2fPnjX4xcpx\noRjH4MGDGR0dbbGqnnFA7N+/v9380ahRI0OnJTEx0XBsODo6cvLkySVUxXft2vVYITD9umfDjPYj\naWXmH8RafpQkqUept83WMCVZIEnSLACHzK3z1q1bhv9r1KiBBQsWwMHBAZGRkZZqEG8GkAXxBLVC\nHM7OzujRowcWLVoEkmjSpAk0Gg3WrVuHzZs3IyQkBLIs4/z580pyHDG3YQDQt29fTJo0CQkJCahb\nty5kWUbz5s1Rp04d/Pbbb0+Eo2bNmvj4448xcuRI/POf/8SCBQuQn59vLp9rbB2U4qhbty58fHwQ\nFxeH/Px8w/uSJKFRo0bIzMws8X55OUqxGI6RFi1aYOvWrQgMDMTy5cvx+eefIz3dfInePn36oFOn\nTjh37pyiHMY2fvx4SJKEnJwcAMDw4cPRsGFD6HQ6JCcnm2VTmgMAjhw5Aj8/Pxw/fhxNmzbFw4cP\nLT0HUYyjVq1aCAgIwN69e639FgCYq6uuiD+qVq1q+P/UqVMAgN69eyM4OBhBQUHw8PAAAGi1Wpw6\ndQrXr18vAaHPMd8CMNXsBljpLTcBcAoi9yJDTPUFRBK9WMIoC8CXJr5r09W0ffv2vH79OnNzc+nn\n52dpWUU4ateuzf379zMjI4P5+flMTEzkr7/+yrS0NGo0Gp4/f57JycmWpOnLxWHJJw4ODtywYUMJ\nkdri9vbbb5srN6koR9WqVfnFF19QlmUeOnSIzzzzjK29ISrJ0axZMyYlJXHjxo0l2N5//33KsszI\nyEhLKZUKc2zcuJGFhYX89NNPLco2ubu7Mz4+3pzunqLHR3h4OHU6HXv37s1Ro0YZJK4yMjKs7Zfz\neo4EAAsgag9nQiiq5EM82LJJndrR0ZHLli0jSWo0Gup0OhbbnTt36O/vb6ksaoU5PDw8GBcXx6ys\nLK5bt44LFiwwtCVLlvDIkSPMzs4mSebn55srSVphDkmSuGzZMsqyzNzcXPr4+PCnn34y9NSNW2pq\nqkl/WIq5ht+0EpgbQFwt0vCHNtZiiBEaCRDj/h4ASCxvYI6IiKBWq30sD2OiVZijevXqXLNmDWVZ\nZnR0NEePHs3mzZuzZ8+eHDZsGO/evUtZlg26f0pyWPKJJElcunSpycC8atUqczVnFeVwc3MzSBYl\nJSVx9erV7Ny5s6UgaNwU42jYsCFjYmJ47949Dhs2jGPGjOHOnTuZlJREWZa5adMmS6mVCnF06tSJ\n8fHx3L17N729vS1u85AhQ3j//n3evXvX1C29osdH3759mZ2dzXv37vHKlSt8++23GRUVxUOHDlnb\nLw/0HHchRhsEAbgNMTzsOkQ9CJvUqZs2bcrExEQePnyYEyZMYGhoKLdv3869e/eSJGNiYszmfpXi\nmDFjBq9evcq8vLzHzhOdTmfI+6akpJg7ZyrM4ezszFOnTlGWZebn5zMmJoY6nc7wuvjBvV0DsxGY\nN0qq/l7HH6q/fgCKyhuYSTI9Pd1qHlMJjrZt2/LIkSP817/+9djoj8DAQD58+NCwk999911FOaz5\npG7duuzUqRPPnDlDWZa5YsUK+vv7m+212YPD0dGRrVq1YqtWrfjxxx/zzp07PHz4sC37UVGOl19+\nmQUFBYYD/MqVK2zXrh1lWebKlSvtxtGmTRvOnDnT6t2CJEk8ceIEdTqdyUlI9jg+3Nzc6O3tTRcX\nF7q7u/PHH3+0pTPjjZKq0AYWiIdPybBRnbpDhw7Mysoy2Stu3rw5SVrKOSvGUadOHfr6+jIuLo47\nd+7knj17OGvWLHbp0oWLFi2iLMtctGiR3TgcHR0ZERFR4qLwyy+/0Nvbm/7+/vz9998N7+fl5bFh\nw4Ymz10lA/M1iLxITQA5Rp/NBqApT2AeO3Ysi4qKGBYWZnXZinJIksRLly4xJibmsYdHL7zwAqOj\no1lUVMTFixczISGB6enpbNKkiWIctvikSpUqjIuLo0ajsSY6alcOQKRXWrRowRMnTnDbtm3WVLIV\n52jSpAlnzZrF/v37083Njd26dbNFAqxCHDdu3OCtW7fYtm3bEut1cXFhs2bNOGPGDB44cIB37tzh\nzZs3uWvXLnp5eT0Rfxi3kJAQ3r9/35aHst4QFwhvPUsz6B9w6Tn2wEYRVH9/fxNzmrUAABpmSURB\nVD569MjkUMV+/foxKyuLbdq0sTuHuebo6Gi447UWmCvC4erqyvj4eEMPOTIykh4eHgSE7Fdxj/k/\n//kPk5OT+dxzz5k8dysUmCFyzOkQt2SEkGQJhRhWUpwzywaQX1anduzYkSkpKbxz5w47dOhgi/Mr\nxCFJEjMyMtivXz/DOlu1asUFCxYwMTHRkFd0cHDg1KlTmZeXx+DgYMU4bPGJu7s7s7OzmZuba4uM\nkd04jH32xhtvUKPRWNO7K9T/1QLYpWdIxR+y8DoAAyty4hX3hkaOHGk3jhEjRlCj0TA+Pp6HDh0y\ntOjoaCYlJZXII4aHh7NWrVpPxR/Lly9ndHS0LcsWQty6E8BpiHrdshHHJQB5tnB07NiRGo2GFy9e\n5NatWxkaGsqpU6cyKiqKmZmZ3Ldvn6W0l2Ic5pqLiwtlWaZWq+Xw4cO5fPly9ujRQ3EOR0dHRkZG\nUqfTcceOHYYLlaurK8+fP2+44+7cubPZORlKBOYGAPwhnqAvhJBibw8xDXqRfhl32HgbYtzeffdd\najQa7t6921pvrLhVmGPOnDncsGEDo6KiePLkSep0Oj569Ij//ve/+cILLxiWq1q1Kr/55hvOmzdP\nMQ5bfLJ69WrDLZC9/FGaY+jQoezbty99fHzo5eVFb29venl5sXnz5gwICGB0dDQvXLhg6BWYaacB\nzIV4wp0I8RBlFYB5FfGHcVu+fDllWebQoUPtyjFp0iQeO3bssRxmdnY27969y++++44vvfSStd6q\n3fxRr1495uXl8fXXX38i50xxc3Nz44YNG5iamspHjx5RlmVqNBqmpaUxLi7O2tA5u8QQ4+bs7GzI\nM8fHx/PAgQOmequKcPTr14/79u2jp6en4T0fHx/DsZKcnEwHBwezrLYEZmvD5dIBfATgCslVkiQF\nQIw/TQLQSb/MeFgYXmPKJEmCm5sbJEnCsmXLLA1/MrZ5FeU4ffo0jhw5glq1aqFJkybYsWMHkpKS\ncO3aNdy/f9+w3KNHjzB37lw0bdrU1GoqzGHKXF1dMWHCBABiSJINpghHdnY2Jk6ciEePHiEjIwO3\nb9+Gt7c3XFxccOHCBRw7dgxffPEF0tLSLK3m3yTDAUASdW2dAbSDmNZaLn+YswcPHtiV49ixY3j+\n+eeRlpaGmjVrYuvWrfD09MTNmzeRkJCAlJQUaLVaa6uxmz98fHwQHR1dYsipBVPsWM3NzcW8efOw\ndu1atG/fHjVr1sTNmzeRm5uLM2fOPDEOc6bVanH69Gl0794dV69exfnz53HnzmOzqRXhOHHiBH7+\n+ecScatnz544efIk+vTpg7CwMMiyXJHNgbUes7Ecy2WIW7LhECq/+RC3zPcAeJflajdlyhQuXrzY\nUi7IVFOco5ytXBy2sBQ/fLQyzdbuHOVoxXI9lyFGJDwL8VClEGIo0rcA6laEo3i4XL9+/Sz1VhXl\nsCGd9MT9sWfPHr7++uvmctv/VedMWX+neObs0+Ao/l1bjhlbesxWF9CDuUFoxw3Tv34GYr632Tnf\nlsCSkpL417/+1dL0a5MbozRHeVp5OWxhmTp1Kjdv3myTX+zJ8aR8UpbfqFGjBtesWcNWrVqZvU38\nsx8jtqw7NDTU1mcy/xP++LNyVDgww4zkN/5Qlk0EkFGWjfH19WWdOnXMjTU01xTnKGczK4GuZ7kK\n0TOytzp1ZeGo9PtG5VA5KhNHhQMzxFXElOS3J/4odv4mgN9QSlnWDk6tzBz18UdR7b8BiIQJder/\nUo7Kvm9UDpWjUnHYEpgl/Q+bNH2NjFMQM5aKF3wPwBwAzwP4FWI84L8hBs3bRQT1T8ARoudoAPFE\nfipEyUBXe7BUFg4rLJVl36gcKkel4bDVLI7KoHnJ7zoAUkjO0r9+TMBQSavsHAAOS5IUAqCnEctd\ne7FUFg5LLJVl36gcKkdl4rDVKqSSLUnSTYiB2TUAVAcwUxmsPx1HMcsrkiR1x9OVQVc5VA6V48/H\nUcIqqpJNiKvLBgCfFn8oCRXkxwrAV7BZUsl+2hzFLE4QMugdAHyOUqrQ/6Uc/LNy2PkYUTlUDksc\ndlXJvg2Rz4zF01P8feocRiwaiCI1VYpZ8PRUsp8Ih5V9U2k5ntKxqghHy5YteeDAgafOUVn88d/A\nUbpVVCXbE2JQdhMA3fSfWVXadXBwQPXq1fHOO+8gOTkZixcvxrZt2+Du7v5EOQBRHL5+/frw8/ND\n/fr1rS1uTZ0aEA8XcgDcI3kOCqhTVwYOR0dHDBkyxCAYW4rFLhzNmjXDpEmT4O/vj+HDh6NDhw5w\ncjKffSsjB1BOVWhnZ2cEBATAw8MD48aNw/jx49G2bdsnxtGrVy8MGjTI5L4wNntzdOjQAY8ePULX\nrl2fCoefnx9CQ0Ph7++P7t27w9PTE56ennBwMB3W7O0PSZLQqVMnvPjiizhw4ADGjh2LsLAwjBw5\n0tZVGMyWVMaXEOP8jG0pxNCThgDeAhAFYIokSS/CBqXdJk2aYNKkSVi0aBGaNWsGAAgODsbo0aMt\nfa1YFdqxohw9e/bEnDlz8MMPP6BBgwbIy8tDREQERo0aZen3rXEchOgFvqVn8rTVHwBQr149zJ07\nF/PmzcNf/vIXBAYGPhUOc+bh4YENGzbgq6++wvPPP1/6Y7twzJ49G6tXr0bfvn2xfPlyREVFoX37\n9mZPvDJywFaWoKAghISEAADatGmD6Oho7Nu3D8HBwfjyyy+xdetWDBo0yO4cgFBMcXd3R2ZmZmnV\nFFNmNw4ACAwMhIuLCyZOnPhUOLZv346IiAi8/PLL2LNnD6KiohAVFYVhw4Y9UY5ia9u2LXbv3o0t\nW7Zg8ODBaNasGQYMGICYmJgSy0mSdFWSpH/oLwymzcbUhTceV8kuri/7DEQd03f1zaLS7oABA5ic\nnMz9+/fz4MGD3LJlC48fP06dTscjR46wTp065m4BzKlCl4nDycmJly9fplar5U8//WSoDuXh4cGQ\nkBD6+fnRwcGB9evXZ82aNRXjoInxkFWqVOE333zDwsJCRkZG8tatWzxz5gyjoqIYGxtrUUFDSQ5T\nPmrcuDG9vb0NBaaqV6/OsLAwfvDBB3Rycir9HbtwHDhwgM8//7zh9bRp0xgeHk5fX19z37GZQ/+e\nVVXoVq1asaCggGlpaWzevDkTExMNxWr279/PdevWsVevXqUnSynOAYDBwcFMS0vjsWPHrNWltitH\ncdu+fbtBvOBpcBjvB+OCU9HR0Xz77befGMezzz7LBg0acPfu3SwoKGBCQgLDw8MtFf6quEq2mcCc\nDZFGqGb0ulie3qzSbqtWrRgXF8eioiIuXLiQ8+fP58WLFw0O1Wg0XL58ucmN0f9OIIDCinCMGDGC\nWq2W586dM1u2cdSoUbxw4QK3bNmiGIepQOTu7s7Dhw/z73//O4cOHUpfX19WrVqVS5cuZVpaGmvX\nrm32YFCSw7i5ublxxowZPH78OLOysgxK1R4eHvz666/N7R/FOQBw5cqVj4lvhoSEcMCAAea+YzOH\n/rVVVejx48ezsLCQmzdv5ocffkhZlllQUMCdO3dy8ODB5i6einJ06dKFS5Ys4YMHDwx1gK0I9drN\nH8XNwcGBKSkptgZmRTnc3NwM1Qbv3LnDQYMGcfr06fz000+5ZMkSTp8+nb17934i/hg8eDAvX77M\n7du387XXXuPkyZPZuHFji/7Qr7vCKtlbAWSgpEq2JXl6s0q7CQkJBukXHx8f3rhxgzk5OTx79ix1\nOh11Oh2LiooYEhJiaoO2QhSA0VWEo7h0oYlaraxevTrPnTtnKHYdExOjJIfJh12SZLroyc2bNy0G\nZqU5oD/gc3NzqdPpeP78ecbHxzM9PZ2urq6MjIykVqvl3LlzTX1XUY7itmDBAmZnZ5eo8zt58mR+\n9NFH5r5jM4e1Y7W4BQUF8cSJE6xXrx7btWvHzZs3W5WdUpLjvffeY1paGmVZZnp6OmNjY3n79m22\nb9/eGoNd/FHcBgwYYOhQ2RCYFeXo1auXQc4pPj7eFj/YzR/fffcdZVnmyZMnbebQr9uiSrYtgbkn\nhASLcWC2WMMUwKDSMF5eXszLy+OxY8fYqFEjrlq1irm5uWzfvj1DQkIMgVmn03Hu3LmmCtXcBBBX\nEY7atWvzyy+/5Pr16+nq6kpA1O0YNWoUV65cyUuXLjE+Pp5Xr16lTqczdztUXo5Ltu44FxcXZmVl\nWSsKrzhHy5YtefnyZTZu3JiSJLF+/fo8ffo0t27dyqysLC5evNgci138MW7cOD569Ii+vr4MCgri\n2bNnef36dc6YMUMRDnPHqnHr1q0bz5w5Y2s1N8U5Zs2axVOnTvGTTz6hl5cXly5dytu3bz+msvKk\n/AGI2sebNm0qS2BWlKN3796G305JSbGkNWh3f4wePZr5+fmMjo5mixYtzHa0SrWrAP4FwKPcgVkP\n16PUBp0FsFf//1wAa018xwDi4uLCb7/9lllZWRw2bBi9vb2Zk5PDr776igAeC8zx8fGP5XeV4Oja\ntSt//PFHjho1isuWLeP+/fuZkpLCvLw85ubmcu3atfTz8+OWLVtYUFDAevXqPebU8nKUZrHUXnnl\nFWo0GnN3DnbjaNmyJW/cuGHIl7744ovMzMykTqfjkiVLDBczE80u/ujbty8fPHjAxMREPnz4kLt2\n7aKPj4+pHLfdOFxcXBgbG8u9e/daev5hN45ijb/i12FhYWUJzHbZL8899xyTk5MNah2BgYFPlGPF\nihWGwKzVannhwgW+8847T8UfTk5OXLNmDfPz83nu3Dl27NjRKodNMddKQC4tLfU7gCkQSXQdRH3T\nAgDtLG3M2LFjmZ+fz4iICAKgt7c37969Sz8/P9aoUYNRUVGUZZk7duzgL7/8wgsXLph68FZhjsDA\nQN67d6/ETs3IyOChQ4cYFhZGZ2dnenp6Mj09nVeuXDHn2HJxlCUwL168mBkZGdZSGYpz1KlTh7Is\ns1evXpwxYwYLCwt5//59Tps2zVpPwC7+8PPz482bN5mdnc3XXnvNFt/ZhWPQoEFMTU21Jp9kdw4A\nnD9/PuPi4ixdnIxbkRHPLvxRe1inf+8HALXLytGuXTvevn2bsizz+PHjT5TDz8/PcEdrrJAtyzLX\nrVv3VPxRr149bty4kQUFBYyPj7cq5qtEYG4AoA3Ew7/L+EOOJQKi+IcE0SW/Zmlj/Pz8ePjwYa5a\ntYqAuMpMmTKFnp6eHDhwIDMzM5mTk8Pg4GDGx8dzy5YtdHZ2Lr1BFeZwdXXl2rVreenSJSYlJXHF\nihV84YUX6OLiYlhm8+bNlGWZGzZsMOfYcnHYeuI988wzTElJsSUwK85Rv359ZmZmMi0tjWlpafz+\n++/ZrVs3izI5+mYXf2zatIkajYapqans1q2bLQHALhwODg6cNGkS09PT+cEHHzw1DkAE5oSEhBKy\nRhbaAIhylsUSV70BrNOzLIUYPvZpWTmGDh3KnJwcarVaWyWuFOPo168fHz58SJ1Ox7i4OG7bts0g\nMJGSksJGjRrZlcPcSKkqVapw8eLFzMnJ4fHjxyssLWV1AT2YN8oox24MMnbsWObl5TEpKYmtW7cu\nARkeHs6cnBx27tyZU6dOpUajMdljVoIDQImpkaacFhMTYzEwl5fD1hOvT58+BkFQS8PllOaoXr06\nv/nmG5JkZmYm/f39bTnhjAORov4ICQlhYWEh9+3bR61WyylTpjwRjr59+5rVr1u1ahULCgo4ZswY\naxcrux0f8+fPZ2pqKidMmMDu3bszMDCQVatWtcihX3cJFohRAckoh9belClTqNVqmZWVxSFDhti8\nX5TgmD9/PmfPnl3iHO7cubOh9xwaGmo3DkmSePLkSbM94po1a/LgwYOUZZmTJk2yeO5WKDBDpDJO\nQUixF0LUKq2p//8uhHzOHQBaS059+eWXmZWVZVCiNg7OixYt4oEDB9irVy/GxcVRq9Vy6dKlporo\nV5jDWvP29mZ+fj5/++03c8Ntys1hC4skSZw/fz51Oh3Hjh1rjVdRjqCgIF65coVhYWE8e/asSdl1\nC+0sxC26BsAiiBlU7+tZ7uiXsVkV2t/fn7m5uZw2bRqdnZ354MEDSyMxFOWYPn06v/32W3bu3Pkx\nkeCqVaty3bp11Ol07N69+xPzx8yZMxkZGcktW7YYhswZ38Y/ePCAw4YNM5X+K+a4rj9GmhkdI3cg\nUi1lUqeWJIlRUVHU6XQ8evSotbs6xTnCwsJ479499u3b15DzNw7MGzdutCvHihUrmJWVxUuXLnHX\nrl0MDw/nW2+9xVWrVjE2NpaFhYXUaDQW5eGUCMwNIMQJ70Pkx3QAlkDIsv+KP54u5ljamFq1ajEi\nIoJarZaFhYVMSkpiWFgYmzVrxkWLFvHatWtMT0+nLMvcuXOnuZ1dYQ5rB9zcuXMpyzJ//vlnNmzY\n0Nyy5eKwhaVKlSqMi4tjQkKCYeKLhaYox4cffshp06YREBfLLl262OQ3fcvQczwAkAoRkFIh9O7K\n7I/XXnuN9+7dM6SzwsPDGRsb+0Q4Jk6cyPz8fP7666/86aefuHbtWr755pt89913efToUV69epWy\nLFsaGaK4P1asWGF4MF4cjDMyMnjnzh3GxMTwl19+4bfffmvqNj4dIq9aBBGIDui5ijk8AGSXNTBr\ntVrKsmzrWGpFOQICApiens6MjAwePXqUXl5eXLVqla2BucIcbm5uHD58OC9fvsyioiLD/ijeN9nZ\n2Vy+fLlFFfUKB2Y9lEGOBX90/x8CWKz/3Gbp8ffee48pKSnUarUlNkaj0TAvL4+HDh1iu3btzG2Q\nYhymWo0aNQwziMLDwy0tWy4OW1hcXV0py7LZSTb25Pj+++8NPcQxY8Zw8+bNtp50hJFcj57lPoBV\nENNcy+yPt956i4cPHza87tKlCxMTE58IR8OGDRkREcH79++bbdeuXTOb7rCHP5ycnDh79mzOnz+f\noaGhvHv3LgcPHmy3Y8TSOt3d3Q3nbf/+/W09PhTlWLhwYYm7BuO7h549ez4RDicnJ7Zu3ZrTpk3j\nhAkT+P777zM0NJRNmjSx6o8KB2YYSUtB5GduQdQrPQvRG7gKkTD/3JaNcXBwYNeuXblp0yauXbuW\nqampTE5O5uzZszlmzBhrM2YU4zDVGjZsyM8++8yWwFwuDltY+vfvT1mWOXXqVEt5Q7twLFy40DAs\nKygoiEePHrX1pCP0cj1GLJsAHAaQAtEbuYYyqEKPGjWK+/btY3BwMEeMGMGVK1fy0KFDT4yjdevW\n7Nq1K7t27UofH5/H/rdwN2UXfxg3Z2dnBgQEsG7durb4Q/FzZurUqZRlmXl5eWzatKmtx4eiHI0a\nNWJQUBCzs7MNU7BlWWZSUpK1fWPXGGJrUyIw94Do6l8EkKc/sAYCaAHg/+vfvw7g2/JsjKWHcCaa\n3TgAcM6cOVy8eDFlWebs2bMV57CF5auvvqIsy3zjjTcey2/am8Pf35/Lli0jAB48eJAXL14sy8F2\nHsAFPctSAHUBnNRzHIUYlmSz+nCNGjU4YMAAFhYWGh7otGrV6olzVKBVFg67nDNlPG/txtGjRw9u\n2rSJ7733Hj/77DO+9NJLT4WjrK3CgVkPZVaNWf+5yTnfdjjI/tQctrAEBARwzZo1Nt0O2ZPjf23f\nqBwqx5PksCUwW5SWkiRJAvAFgCskw43er08yXf9yJMpR07Yc9l/PERsbi9jY2KfOUQ6rLCwqh8rx\nZ+CwauVVyQ4B0A6AM0SuZipLFT7X3+ooafwzc9iBpbJwlJtF5VA5/hc5SErWlrEYmFVTTTXVVHvy\nVl4xVtVUU0011exkamBWTTXVVKtkZvHhX3lNL8v9EYS+Vh6EOnIRxPhNT4gcT1WIqZANIGas1YEY\nziJDDPrOg5g+WU2/bHGC/l2S/1I5VI6KcpRi8QRQC2KKrsqhcpTmcATQHKIzq4Uoui8DyIQYB90R\nYtSHg/49N/3fZyCUUS5ClEoYDzEz1DKLLUM3ytJQUp7eCWLgdjrE01BAFN7/J4SqdQOIMZ0/A/h/\nEMXf20MMyE/X/38YwCmVQ+VQksMESx+Ii0OKyqFymDlWiwBMhShQ1RNAB4ig/DeIao+HAfwEMR56\nBETlugUQlew+1HPOs+W37ZHKMMjTk9RCDFFxLv6Q5I8AugH4nWQagNUAWkLMXf9F74T++o3wgLjS\n+KocKofCHKVZTkL0stxUDpXDBIcWohhVByOO3yBmD24keUn/W60hesYFEFO+v9C/f07PaXVEBmCf\nVEZpye+7ELcBTSVJughgM8RMqGwAIPlAkqTqAN4E0AiiIE99PduPAAIA1JUk6SqENMwbJB+qHCpH\nBTlMsWj161I5VA5zHOMAVJMk6XWIIkhOJDP1n+fr2YbqOdwhAncAhGDCVwBekyTpVWss9ugxmxp/\ndwSi1ukLekDHUp9rIG49RkPcBlQH8CbJHACfQeRzfPWfrVU5VA4FOEyxfAIgS+VQOcxwLIKoQndD\nz9G91Odf6b8zGiIf7grgOyMWDUSe2iqLPQLzXYg6zsXWBGJDQDIDoqpTIfTOlSSpkf7/7QAOQtym\nyBC5GkB0/dMpkj6fQ1x9VA6Vo6IcplhqANCoHCqHGY5aELltnZ6jHQCtJEnPSJJUBcCXAB6S3AuR\nwnACsI/kXkmS3AGkUW/WWOwRmGMBtJEkyUMPGwzgDADobzkGQuRbauunfEdBXD3W6DeGEDNwxuvX\nNxOi9jBQtimTKofKURaWmgBeBpCjcqgcZjiCIYpRSXqOJIi883j9b7sC+KeeazdEuiVXv67xAE4Y\nrdsii11m/kmSNAhiiElx4G8JcVXTQZQ9dIR4oqqDuKr8DjGsxRnAIwjHekAMN3HR/3WChWnGKofK\nUVaOUixe+t+QVA6VwwSHC0TO2UnfNBAPJatDXAycIXLQWojj2hlAAkRhpCoArkAEch9YKZkAqFOy\nVVNNNdUqnakz/1RTTTXVKpmpgVk11VRTrZKZGphVU0011SqZqYFZNdVUU62SmRqYVVNNNdUqmamB\nWTXVVFOtkpkamFVTTTXVKpmpgVk11VRTrZLZ/wHt05+v5zFs8wAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWYAAAEACAYAAACAi9xRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXdYFNf3xt9BuoC9FxBRY+8SG6JBY4kaOyaWiJiYqEnU\n2A2xR42JJiqxosYu2Bsx9qDRRJHYjRUrSu9td97fH7O7WXAbMEvw+9vzPOcBZmeHz5y5c+fOLecV\nSMJiFrOYxSxWdMzqvwawmMUsZjGL5TRLxWwxi1nMYkXMLBWzxSxmMYsVMbNUzBazmMUsVsTMUjFb\nzGIWs1gRM0vFbDGLWcxiRczyXTELgtBVEIRrgiDcFARhipxQbyJHUWKxcFg4LBxvHkcOI5lnB2AH\n4CGAKgCsAfwFoGl+jlUQLyocRYnFwmHhsHC8eRy5Pb8tZk8AN0g+I6kAsBNAj3weqyBWVDiKEouF\nw8Jh4XjzOHJYfivmqgCeaP39VLWtsK2ocBQlFguHhcPC8eZx5DDrfH6PACAIwiMASQCcARQHMFoe\nrDeOQ83yoSAIbQEoVSzHLRwWDguHhSOvlt+K+SmAapBOyhvASAC22jsIgiBrEg6SQhHmULNYA/Am\nGScIwiRzshQVDgMsFg4Lh4XDdI7XdspPh7k9gEcAHgOoAKnDvFmufSinF2UOLZZsAPUB2BSEpVix\nYgwPD2e5cuX+Uw4Zro2Fw8Jh4TCBI7cb7WMWBCFIEISXgiBc09rsCCAOUl/Mc0it1jbGjqXP3Nzc\nIIoiAgMDUaxYsULhsLKywrBhw9CtWzfcvXsXtWrVgp2dHZydndGwYUMIgu6Hmi4OQRBKAzio+vMq\ngGQAz0mGm8KibdWqVcMHH3yAzMxMVKxYUe9+5uYAgOrVq6N3797w9/fHW2+9hXLlyuljMRtHuXLl\nULduXTg4OBjd19zxyG2Ojo4IDw9HcHCwWTlcXFzg4eEBPz8/jBw5EvXr14evry/69u2L3r17w8bG\nRuf3zB0PGxsbtGzZEsOHD4e/vz9cXV11shT2ddFnRYXDJDOhddweQFMA17S2LQfwJYDyqp9rAFwG\n4JOfp0yNGjWoVCq5c+dO2tra6ttPNo5q1apx8eLFnDBhAlu0aMG33nqLNjY2tLe354wZM7hjxw46\nOTnJymFqTCZMmMCAgAB2797d2L5m4XBwcOCIESP4zTffcMKECUxKSqJSqeS0adM4d+5cfd8zWzx6\n9OjBzz//nLVq1TKlLJmNQx/b8ePH2bt3b7NxODg4cNmyZZwyZQqVSiUTExM5bdo0ZmRk8Ny5czx7\n9iyLFy9e6PGws7Nj//79+fz5c2ZnZ1MURU6aNIkNGzYsNA5ra2t26tSJQ4YM4Z9//smdO3fSxcWl\nyJQPfW5Ki9noDiowt1wndB9AGdXvZQHcAzANwLT8nMxHH31EpVLJWbNmGTwZuTjee+89KpVKJicn\n84MPPsjxmZeXF+Pj4zl9+nRZOUyJiY2NDc+dO8cvv/ySjo6ORi+unBy2trb08vLivn37qFQqGRUV\nxc2bN/PatWs8fvw4d+7cyQMHDujrXjFLPACwT58+3LRpE6tUqWJKWZKNw8bGhmPHjuXgwYNpbW39\n2ud169bltm3bGBcXp+shKhuHh4cHHz16RD8/Pzo5OdHW1pZ2dnZ0cnKilZWVoYaM2a6Lo6MjmzVr\nxpMnTzIjI4O3bt3inTt3+OuvvzIiIoIVKlQwO0elSpUYFBTE1NRUBgUFMTg4mPv27eOSJUtoY2NT\nqPEApAeolZUVq1Spwr59+/KPP/7gmjVrGBsby1OnTnHOnDk57t0CV8wAggBEA8jQ2pYJ4BmACABX\nAKQCOAOgV14rZhcXFwYHB1OpVNLb29vQvrJxNG7cmBs3buSkSZM0LbFSpUrR09OTJUqU4N27d7lx\n40ZZOUyJSbt27Xj+/HmdFYG5OXr27MknT54wIyODd+/e5cSJE+nl5cVKlSoRAFesWMGHDx/qa52Z\nJR4AOHr0aP7zzz+sXr26KTGRjaN27dp8+vQplUolS5Qo8drnP/30E7Ozs7lgwQLa2dmZjaNWrVp8\n/Pgxx48fb9L9VBjXpVu3boyIiGBmZiaXL1/OGjVq0N3dnZMnT+ajR4/YtGlTs3L06tWL9+7d48uX\nLxkQEEB3d3cCoJWVFUuUKEHVYF2hxaN27dpcvnw516xZw/DwcKanpzM7O5vJyclMSUnhqVOn2Lhx\nY83+clXM7QF0z3VCGQDmAfhbdVJKAHPyetNBVUmmpqZSoVAYHOwyF0eHDh34/fff8+7du5pWtFKp\n5NGjR2XlMIUlNDSUU6ZMMfWmk5UjIiKCSqWSw4YN01mwV6xYwYCAAH0sZokHAG7ZsoU3b95kxYoV\nTYmJbByRkZFMS0vj+PHjX4tHu3btmJWVRYVCwTJlypiVQ10xG3qbLIx4qF0QBIaHh/P27ds6G1Kx\nsbH09fU1G0fJkiV54MABKpVK9u3b9z+Nx5AhQ5iSksL09HSKosjk5GTOnTuXM2bMYNmyZVm8eHE6\nOzu/Vn5kqZhVYO1ynVAcgADV7+UA3MvPTQeAn3zyCbOysrhw4UKDr2Xm4GjYsCETEhIoimIOVygU\nHDVqlKwcxliqVavGpKQkXa2NQuE4e/Ysf/zxxxzXQBAEVqtWjX369OGDBw909aWqXfZ4qH3Lli2M\niYlhp06dTImLLBwdO3ZkSkoKFy9erPP/LFiwgFlZWVy0aJHZ49GoUSNGRUXxn3/+4dmzZ3n+/Hlu\n3ryZ3377LYcOHcrOnTsb6n+XjUMQBHbu3Jnh4eHcvHmz3gflyJEj2bFjR7Nx+Pj4UKFQMDg42KT7\nxFwcVlZWXLhwIUVRZHR0NJcvX862bduybNmyJt27xjy/85jvAvhcEITBkJr/J/JzEFdXV8ycORNZ\nWVmYMWMGlEploXK0adMGdnZ2mr/T0tLw8OFDuLi4ICwsrNA4AKBPnz6IjY3FrVu3AADDhw+Hvb09\nVq9eXSgcwcHBcHJywogRI1CrVi1UqlQJ1apVQ5kyZVC9enVcvXoVFy9eNDtHbrt69Sq6deumd5aM\n3BwuLi5YuHAhVq1ahcWLF7/2+aBBg+Dn54eXL19iw4YNZuNQ21dffQU7Ozts2bIFd+/eBQBUqlQJ\nLi4uGDduHFxdXZGSkoJdu3Zh7ty5SEtLMwtHiRIlMHLkSNSrVw99+/ZFVFSUzv1u376NQYMG4dSp\nU2bhsLa2hpWVFeLi4gBIM4eqVq2KHj16IDg4GHfu3EF6erqph8s3B0ns2LEDfn5+uH37NubPn683\nJvkyIy3lagBeQZrnRwAJAEYAaA4gFkA6gDQAe/LaGhIEgadPn2Z2drahloe2m4WjdevWXLJkCSdO\nnEh3d3daW1szISGBHTp0kJXDEIudnR0PHTrElStX0sHBgUuWLGF0dDSzsrIMPYFl5ahSpQrDwsKo\nVCp58OBBPnr0iKIoUqlUUqFQMCYmhi1bttTHIms8tH3BggWMjY3lO++8Y0oZKTBHyZIlee3aNe7f\nv5916tTRbLexsWHz5s1569YtTd+yOTnUPmnSJIOv7G+99Ra//vprvnr1iuvWrWOxYsW0P8/S4tkF\nwAPAKUjTwjIBvABQ0hSOcePG8eXLl8bGgVi2bNkccZObo2XLlnz58iWTkpL44MEDpqamMjU1lbGx\nsRRFkatWrTI0cC4bh9qdnZ15/vx5hoeHs169ernjr9NNaTEbq5grAGgAaTTzBoB/ADSGapqJap8A\nAPF5venq1KnDf/75h3fu3GHNmjVNuenMwpHb69Wrx4yMDPbo0UNWDkMsLi4uvHbtGmvVqsVhw4Yx\nKiqK/fr14/Pnzzlw4MBC4RgwYACzsrKoVCoZHx/P5ORkpqWlce/evfT39+exY8c4e/ZsfSyyxkPb\n+/Tpw5cvX7Jt27amXL8Cc9jZ2TEoKIgKhYK3bt3iokWLOH78eAYGBvL69esURZGXL182VmbNFg9d\nLggCvby8+OWXX7JBgwban3UBcA2AU24WAJUhPdx/NIVj4sSJerv3tL1u3bqsXLly7u2ycdjY2NDH\nx4d79+7loUOHGBAQwH79+tHHx4dZWVl88uSJoa4d2Ti0vVGjRjx37hwfPnxoUgOiwBWzFpib6oRC\nIHWgP8K/00ymAkjJ68kEBgZSoVAwNDTUpMJnLg5td3V15YULFxgfH6+3IsgvhyGWkiVL8vbt2wTA\n+fPnc/HixaxQoQLj4+N1TT0yC4erqyvPnDlDpVLJpKQkfvzxxzkGLfr27cvvv/9eX+xkjYe2q6eL\nNWnSxJRrWGAOOzs7/vjjj8zIyHht7EEURaakpLBatWpm58irlyhRgkeOHGFkZORrHKpjhwAYDNUU\nMQDjAByCCeMypUuX5o8//mgSR9WqVfXGo6AcuT33oFpmZiafPXvG2rVrG7wucnMA0nS5kSNH8vDh\nw0b3LXDFjNe7MpQAPlP9zII0qpkEIC0vJ1OqVClGR0czMTGRnp6ephY+2TnUAa1bty4/+ugj/v33\n3xRFkdu3b6ezs7OsHIZYnJ2deenSJdra2rJJkyb09PSkn58f09PTDU2dk53D0dGRXl5eOgd2ypcv\nzyNHjuhqDRHSa6Co+n2viiFKxZek4uqanwLv7e3NmJgYU7syZOOoUaMGu3fvzgkTJtDHx4d//PEH\nRVHkr7/+Wigcb7/9Nnft2sXRo0cbm6tMqCqplStXUqFQ6OJQQOpD3aH6W81xHUCqsXgsWLCAx48f\nNzi33tXVlbNnz+b48eN13TuycBhyKysrZmZmMiwsjOXLlzd2XfLN0bJlSzZt2lQzb1n7MycnJwYG\nBrJNmzYGWeWomNVdGU4AwiHN+WsM6cafoLVfUl6COmnSJGZnZxtqgely2TgcHR3Zrl07zpo1i5cu\nXeKjR4+Ynp5OhULBoKAguru7vxb0gnIYiomtrS1DQkJyvB7//vvv/OyzzwzNyZSdw5BXq1aNN27c\n0FfoWgK4BMAX0itiCoBv1CwF4XBycmJMTAz79etnCqdZOFq3bs2nT58yOzubH3/8caFw1KlTh4cO\nHeKrV6/4+++/c82aNRw+fDiHDx/OJk2a0MnJiY6OjixWrBjr1KnDHj16cOTIkbn5ZLlnli1bxsOH\nD+ttJAwcOJDbt2/niRMnWLduXV33jux1SG5v06YNlUol586da6ift8Ac9erV46ZNm3jq1Cn+/PPP\nnDt3Lvv160cvLy+2bt2aCxYsMPp2YUrFbHBWBsmXgiDEQWribwbQFlKm/zTVCUIQhHKQWm8m26JF\ni/Dq1Sts27YtL1+7U1CO9u3b45dffkGZMmXg6OgIKyspVYhCocDTp0+xaNEiU2ZBFJgjt2VnZ+PK\nlSs4fPgwfH19sWLFCmRmZmLDhg3qgmE2DkEQ4OrqimLFiuHhw4cQRVHnfvb29rC3t0dWVpauj+cB\n2EpyhyAI/SGlTnQEkJKfeGhbSkoKrly5gs6dO2P37t3GdjcLR/Xq1VGqVCk8fvwYJ0+eNOUrBea4\nc+cOxo8fj86dO6N79+7w8fHBu+++C5JwcnKCjY0NRFFEXFwcSMLe3h6vXr3C119/neMwkKGMlClT\nBp6enjh+/DhWrlyJ2NhYuLu7o1SpUhgyZAhq1KiB/fv3Y8iQIXjx4oXO05GDw5C5uLgAAMLCwgzN\n7iowx82bNxEYGIh58+ahdevWKFOmDFxcXPDq1SsUL14ccXFx6N69e0FORTIjLWYBwC8AlkLqn4mE\nVMguAogBcAtSy2B1Xp52wcHBnDdvnr7J+fq8wBy1atXipk2bNP2F6enpnD9/Pj/77DPWr1+fDg4O\nZuMwFhNnZ2f6+/tz8ODBfO+999imTRtDrWXZOGxtbXny5Ek+fPiQ06dP1/u66unpyX/++YedO3fW\n9flS1XHVLKsAHAXwAMBLALcBlM5vi2jJkiXctGmTKfuahePzzz+nKIocM2aMqWVVdo7KlSuzfv36\nrFu3Lps0acIePXqwZ8+eHDRoEGvUqMEmTZroeoWX5d7t1asXL168SFEUGRISwgcPHjAwMJAbNmxg\ncHAwhw8fTicnJ0PlVfY6JLePHz+eoihy6dKlhpZky8rh7OxMd3d3vvfee6xRowbr1q1LV1dXo6ym\ntJiNVcztIPXBXIXUJ/MAQFdI00x+U22/D2CnHK/LRlw2DkEQNF5YHGaIiSwcVlZWXLZsGZVKJZVK\nJb/44gseOHCANWvWpIODA9etW8e+ffty9OjRDA8P18cSAWn1VCqA2QBKAzit4jgGYCGALfmNR9Om\nTQ2tOiwUjjyWFbPGw9xlRNexmjdvzvnz5/Odd95hTEwMp0yZYupqTFk59PkHH3xAURT57Nkzli5d\n+j/jMMULXDGroGwA/ApgvJ7PKwO4UwiF7I3mMANLUeF446+NhePN57CxseHPP//MUaNGGepjLhLx\nKHDFDK2ujFzby0N62lyDNCn7eiFc3CLNofrZFVJe6CQAU8zMUlQ4ivy1sXBYOIoShxwVs7orQ519\n6QqAbgC2Qpp6chfSEygCuSS/zRDUosyxGdKrUBaklUTVoUMG/X+Uo6hfGwuHhaNIcZhSMRublREG\nHUragiCkAihB8j3V319Bkvy+ovXdfCU3yIsVFQ4ARwVB8AIwWYtFLYNemCxFhaPIXBsLh4XjTeDI\nbflNYlQVwBMd6tTzZOJ60zjULF6CIFzFf6u2a+GwcFg43jyOHJbfiplaP70hrUH31t6hkJRliwqH\nNos3JbVdX3OyFBUOAywWDguHhcN0jhxmVIxVjz2FtFwbkAYIqwF4ov5QEISu+TyuXhME4YrKtY9d\nVDjULNYqDmizCILQVcgpIvs/w6HF8sZxqFny8j8mT56M9PR0uLq6/qccptj/Ioe1tTVmzpyJgIAA\njBgxQrNIrLA5CmIG7t1/zZSOaB2DgvaQErNEQlremAZgoeozOwAPoafju2LFinzvvffYtGlTent7\ns1ixYqxYsSIbNmxoaP6hzg7zgnBoe/fu3dmiRYsCddzjXxn0a5AG4CIBNNPiqKLvmOXKlWPr1q0Z\nHh7OJ0+e8JNPPskhRVNYHLndzc2NzZs3z1dM5OCoVq0aR40aRV9fX6anp1OpVNLHx0ev+GheOPJa\nRgCwWbNmjI+PpyiK/Oabb2SJR344dPngwYO5fv36QuFwcHBgu3bt2KRJE/r7+9Pf358fffSRTgku\nuTkGDhzI58+fc/jw4bx7966pmSkL/bosXbqUw4cPz9O9q+1GHzeCIAQJuWS/IS0vjYOUS6M2gJUA\nOguC4APAE1LKw9ds5MiRCA0NxdatW9GzZ09s374dv/32G3x9fbFr1y5UrVq1UDi0zdraGjNmzMD8\n+fNzJM13d3dH+fLlTeIQ/pVBfw5pVZEDpKdwaTUHyWe6/n+9evVw5MgRNG7cGNu2bcOMGTNQvnx5\neHl5GeSWmyO3ubq6ol+/fpgxY4bRfc3BYWtri127diEwMBClS5fGhAkTsG7dOjRo0ACVK1eWgwMw\nsYwIgoAvvvgCPj4+KFGiBABpGb2B/c3CYcj8/f1x4MABs3PY2tpi2bJlCAkJQc+ePbFmzRqsXr0a\na9euxZAhQ+Dt7f3ad+Tk6NOnD06cOIFdu3bh119/zZO4hrmuS69evVCuXDnN323atMGgQYPw4MED\nk9lymynvARsgzfPTttkAfiFpD2AmAFtIafRaQjUgp72zra0tBg0ahKVLl8LNzQ2pqalo2bIlKlSo\nAG9vb3h7e6Nt27a4evWqIY5OkJZMFssvhy5r3rw56tati+LFi6N0ael61K1bF3PmzEH//v3zwnGY\npCuArwEcAbDCFA4vLy/cvXsXe/fuxZIlSxAREQEvLy9TFDtk5chtVatWhbe3t0YNomTJkmjbti1W\nrVqFgICA3A8tWTlq1KiBoKAguLu7Y9WqVQgMDMSmTZtw6tQptG3b1lBs8sIBU1gAwNfXF3PnzoWP\njw8OHDiA6OhoVKlSxdBrtKwcLi4u8PPzQ5UqVXR+XqZMGURHR+PChQtm5xgzZgz8/f1hZ2eHxo0b\nIywsDNOnT8dPP/2Ed999F76+vrC2fm3oSjaOLl264MqVK0hPT8fYsWPx6NEjfbi6TPbyUbx4ccyf\nPx99+vTRbJsyZQqio6M1akS5TRCEW4IgbFE9GHSbiV0Xbnhd9rsqpBZrWdXfZwD0gpTj9GdoNd09\nPT35/PlzxsTEcMyYMWzRogUvX75MURR5//59vQKguVwAsAxaScbzyqHLg4KCePfuXXp4eGi2ffvt\nt8zKyuKBAwd0rSLKFwf1zIfUfhWzsrLid999R4VCoS8nhdk4cru/vz8jIiLo5OTE999/n/v27WNo\naCivXr3KqKio3CoVsnE4ODhw7dq1TEtL48CBA2ltbc0qVapw3bp1/Ouvv/jrr78a6vIymUP1udEy\n4ujoqEmQf/ToUZYrV44+Pj6cOHGioZSssnJ07tyZqampenNALFy4kCEhIbS3tzcrh7e3t0YTc968\nefT09KSLiwsBKU3qvXv3GB4erivfimwccXFxnDBhgk4+Ozs7du3alf369WOXLl10qZfLXj4+//xz\nxsfHs1WrVgSknCaJiYlctGiRoRWIAqSHwmvL8jVsJlTKQdAt+/0C/0rlaNRlIak3H9IGGTZsGLOy\nsnj27Fna2dmxZcuWFEWRqampeclBEARJnkfML4eugpadnc2NGzdqtgmCoFFA1qH2m28OUyrEoUOH\nMi0tjTt37jRbPEytmPfs2cMTJ05oEvhkZmZyzZo1dHJy0lVByMbRoUMHxsfH55Ab69Gjhybx1KBB\ngwxxm8xhahmZM2cORVHk48ePWbJkSVPLqmwcVlZWXLVqld48Jc7Ozvzzzz/Zs2dPs8ejY8eOmuvw\nzz//0M/PjwBobW3NgwcPakRSdTywZOOIjY3VWTE7OztrlO5FUWRWVpYu+S/Zy8f9+/d55MgRzQPK\n39+foigakqaj6th6UyaYWjG3h27Zb505TPHvgJwGpEKFCty1axcVCgUvXLjAU6dOURRFZmdnm1rQ\nqeL4GYAyvxza7uTkxNDQUD558kSjTF2nTh1ev36daWlpfP/99+Xm0DnYVbJkSU6cOJGhoaFUKBRM\nT0/n2LFj2bx5c2MPLVk5cjNdu3aN2dnZjImJ4Zo1a+jt7W0oYbtsHBMmTKAoiprE+JUrV2ZISAiv\nX7/OO3fu8Ny5c4YUREzmMKWMdOvWjUqlkrdu3TJVpVt2jsaNG/PSpUt6MzEOHDiQDx8+1JcZUdZ4\nAFKyIHXCq/T0dB47dowXL15kRkYGd+3apa+MyMYRGxvLhQsX5thmb2/PH3/8kc+ePeOHH35IFxcX\n9u7dm5MmTWKlSpXMFo82bdqQJD/66CMNR1BQEK9du2awfKiOPQ56tB9NqphVB8mT7DekpY4aEFtb\nW/br149paWmvSfWsWbOGs2bNYp8+fQyphhBSWr4LBeHQ9k8++YQKhYIrV66knZ0dS5UqxW3btlEU\nRR4+fNjQ63J+Oa7rOl7Dhg2pVCoZHR3NsLAwHjp0iE+ePOGTJ0/4wQcfmCMeOjm03dvbm1FRUbx/\n/z7btWtnKI2i2mXjGDhwILOysvjgwQOeP3+eN2/e5L1799iyZUsOHz6c2dnZnDlzpiwchsqIi4sL\ng4ODmZ2dzcGDBxvqtjArx9GjRzl37ly9/2v58uX88ssvzc6h9pYtW2oqZm3fsWOHIeUQ2Tji4uJe\nk2+qU6cOX7x4wZ9++kmTpN/JyYn79+/n/PnzzRaPL774gqIoauS0XF1deevWLVMEQG4BCAVQJV8V\nM6Q5fWch9b2IkJb6AlInulrCKBHABh3ffQ2oadOm/P3333VqqYmiyBcvXhh6VZWNo0KFCjx37hwj\nIyPp5ubGSpUqcdSoURql3YkTJxrqH8oXhz4WAGzbtm2OloadnR13795NpVLJKlWqFBoHILWWw8PD\nKYoiDx48aGpFJBuHnZ0dZ82axQsXLvDChQvcvXs369WrR0DqZjp+/DgvXLhgdg53d3feu3ePDx48\n0GyrUaMGV6xYwQ8//NBYI6LAHLVr1+bVq1cZFxfHxYsXc+zYsfz+++/5/fffc+zYsezcuTMbNWrE\nmzdvsl27dvo4IlQcdwBMhpR7OBaSokoapIGtPKlCa1fM2dnZmrc8IzqIsnFs376dZ86cybGtQYMG\njI6Opru7u2abra0tt27dmqNLTO54TJkyhaIoslOnTqxevTpHjx5Nkrx3757Bbi9Dda6pFXMFSCOV\nL/GvNlYApCxNdyDN+4sB8I+pJ/P+++9rKmJ1n1RMTAyzs7MpiiKTkpI4atQoXfI0snG0adOGqamp\njI6O5uXLl/nXX38xOTmZSqWSISEh9PT0NNSNkC8OYwU+tzdo0IBJSUkcN25coXKsX7+e9+/f582b\nN7lhwwZTec0eD7XPmzePDx480DXQJStHkyZNmJGRwcGDBxP4t1GhUCioVCo5efJkQ63oAnEIgsBT\np04xODiYo0aN4siRI3P4uHHjuG3bNt68eZMZGRlcsWKFPo4YFcdTSJqD7wF4DGl62H1I+SDypApd\nrVo1BgYGMjAwkAEBAfzrr7+Ympqqd2653BzDhg1jYmJijnUHnTt35pMnT17jvHr1KmfNmmW2eEyZ\nMoUkeefOHd68eZOxsbGMjo7WlBl9XuCKWQvMDTlVf+/jX9Xf+gCyTD0ZdUJrURR57949TUHs1q2b\npsW6du3a1wq9nBytWrVicnIyk5KSePjwYd6+fVujzmAooAXhyGtF5OrqyoSEBM6bN6/QOOzs7Pji\nxQt269aNy5Yty0vFbPZ4qH306NFMSUnR12KVjaNZs2aMioqio6MjrayseObMmRxvd9evX2f16tXN\nFg8dMwpe84MHD3L9+vV6F3ZAazZVbhZIg0/3kE9VaEAacDtw4ADT09MNxUJWjrp16/Lly5c8cuSI\nZtsHH3zAly9f5tivRYsWnDJlSu4+b1njUbZsWZ4/f57nz59nSkoKSZqkJi53xXwb0qoYFwDJWp+N\nA5Bt6slYWVkxJCREU8DVr6mANO1HoVAwJiaGHTt21FcRFZhDEAQ6ODjQzs6Obdq0YWRkJJ8/f862\nbduaFNQ0qelXAAAgAElEQVT8cOS1Ivruu++oVCr1rrwzB0enTp2oUChob2/PpUuX8vfffzeVt8Ac\npUqVMtR9REAaXAkNDTXUlSFbPGbPns3Hjx8TkGYjxMTEaAasd+/ezefPnxtaLWr28lGhQgWmp6ez\nd+/exq7LNfwrpeQO1QCXimMPCiCC2rt3byYmJvL58+emlA9ZOKytrTlr1iwqFAqOGTOGdnZ29Pb2\nZmxsLDt16sTy5ctzxIgRfPnyJceOHVso8bCxseGWLVuYmJjIHj16GI1bgStmSH3MryC9khGSJIsf\npGkl6j6zJABpeTmZPn36MCsri6Io8sqVK2zYsCEBSVssKSmJmZmZ/PDDD3N/T3YOQFLsFkWRhw4d\nMloxFIRDH0utWrXYqlWrHF0n1apVY3R0NPfu3VtoHAA4duxYKhQKAtKS0vPnz5taUWSqfioA7FIx\nROFfWXglgK76OARB4I4dOzh9+nSD/+fjjz9mZmamoeXQBeLQ9vnz52sq5nr16jE0NJRZWVlct24d\ny5Urx8jISLZv397sHPq8b9++jImJMdayzoT06k4A5yDl6xa1OK4DSDWFY/To0dy4cSOPHj1KX19f\nDhs2jC9evKAoiqa0EmXjAMASJUowODiYcXFxXL16NevWrcs9e/bw5cuXvHnzJtPS0jh16lRd86ll\n5VB7o0aN+OTJE16+fJnlypUzeu3kqJgrAGgCKYH0FEhS7I0hjWZ+rdpH32imQbiZM2cyIyODoigy\nKiqKmzZtYlhYGJVKJY8cOcK33nor93dk5yhZsqSmG6NNmzam3hT54tDFYm1tzZCQECYnJ7Nnz56s\nUaMGv/jiC6anp/PevXua0V5zc6i9d+/eVCgUnDBhAi9fvsxt27aZOhvhHIDxkNSG/4E0iLIIwART\nOZo0acIDBw7wypUr/Oabb9i4cWM2btyYTZo0Yffu3fnbb78xISGBP/30k6FX9wJzqH3q1KmMi4tj\ngwYN6ODgwPLly7N9+/b87LPPqFAoGBcXx/r165udQ5fb29tz48aNHD9+vFnKqq5j7dq1SzNHODMz\nUzMm8+TJE2MDoWa5d+3t7blkyRLeunWL8fHxTE5OZkJCAiMiIjhy5MhC4wDAfv36MTU1latXrzbp\n+plSMRtL+/kKwHcAbpJcJAhCS0jzT+8CaK7aZwikgag8WWBgIDw8PNC9e3fcvHkTQ4cOBQCcPn0a\nVatWRWxsbO6vTJCbo2vXrnj+/DlsbW1x/vx5U78mG4coiggODsZbb72F4cOHo2HDhnBycsKyZcsQ\nFhaGZ88MppOQPR5nz55FaGgovvvuO4iiiGXLlsHa2hoKhcLYV/8kuRQAVHltbQE0gpTX1iSO69ev\nY9OmTWjfvj1GjhyJdu3aoUOHDgCAo0ePIioqCv7+/jh8+LBmmbg5ONT2yy+/IDY2Fs7OznB0dESF\nChUQHx+PzMxMfPbZZ0hISMD9+/fNzqHLSpYsiRo1asDf39/YrrKVkaSkJADS/dmhQwdYW1tj//79\n2Lt3L5KTkwuNQ20ZGRmYNm0afvjhB7i7u6N69epISEjA33//bei+kZ0DAOrXrw8HBwfs2LEjr1/V\nb0ZazNrSUjcgvZL1gaTymwbplfk5ALf8Pv1dXV3p6+vLtLQ0XrlyhUOHDs293FftsnMMHTqUM2fO\nZNeuXU1iLQiHIRZ1N4aQN+Vu2TkAafZBVFSUqarUalfL9dyANCOhOqRBlUxIU5F2Aiht5njIzlEA\nNzuHiXGR7Z5p1KgRo6OjGRAQQKVSyXPnzunqKjA7RwHdLBx5LaemtJiN7qACc4KkHfe+6u+ykNZ7\n613zLXdQ33QOuVmKCsf/wrWxcFg4CpujwBUziojk95vOYQaWosLxxl8bC4eFozA5ClwxQ3qKFAnJ\n76LOofrZFdLrUBKAKWZmKSocRf7aWDgsHEWJQ46KWbuPOU+S33L6G8CxGdKqriwApyD1Kf5lLpai\nwvGGXBsLh4WjyHCY6gZnZZAMg45k+oIJkt9yWlHnAHBUEAQvSLkR1Cw7zcVSVDgMsRSVa2PhsHAU\nJQ5TLb8q2VUBPBEE4RGk12VnAMUBzJOJ603jULMUBRl0C4eFw8Lx5nHksPyqZFPrpzeAaZCWMwLQ\nqCBTZtelLFtUOLRZvEk2hSR1pc1x7X+Ug28qh5nLiIXDwmGIw6BKdn5bzE8hLdcGpAFCbWl6O0gJ\nqWU1VdCKKoea5TUZdC2Odqp9/qc4DLAUaQ6gYGVk6NChqFy5Ms6dO4ewsLD/jMOQ/X/haNOmDUqX\nLo1Dhw79pxymmoF7N8dOxjrNgyBNktfW/KsESY4lC6qcDAAWqj7zghE5Fm0vW7Ys3dzcNDLojRo1\n4oABA1ijRo3c+5qNw9nZmSNGjDCU+9gYR2kAJ1SfJ0Nacx8JoJmaQ7WfzmMKgsDy5cuzdu3amkn7\nzs7OdHV1ZYkSJdi2bVsOGjQohy6hOTh0uY+PD0VRZK9evXLku83lZuEYPnw4//nnH44bN447d+7U\nJ5+UL478lFVAWkY/cuRIZmRkMCAgIIcsmbk5BEFgq1atWKdOHQ4fPpz+/v709fU1pCxj9njkdldX\nV/r5+eUWmjALh/pajBgxghUrVjSFr9Dj8dZbb2kUTtRuyuBfflWyp0OaenIfUmV4HUBnQRB8YKLy\nsJeXF77//nucPHkSAwYMwJo1a7BmzRr07t0bmzZtwqeffpr7K7pUoQvMAQDLly/H2rVr0atXL1hb\nW6N8+fLo2rUrbGxsdO2uT536ICTxxhRISz3VMuhGOWxtbeHt7Y3Q0FCcPHkSw4YNw4kTJ3D8+HEM\nGzYM27dvxzvvvIPExESzcuQ2R0dHTJ8+HQDQqFEj7N+/P7c6ttpk52jRogWWLl2KmjVrolSpUujf\nvz/at29v7Gt54YCpLGqzsbHB7NmzsWLFClhZWeH27duYOXOmrl3NwmFlZYVp06bBw8MDjRo1QoMG\nDbB48WLUqFFD31fMGg9dtmvXLqxduxYDBgyAo6OjWTk6duyIadOm4cCBA4iKijIFz2zxsLa2Rps2\nbdC06b+NYRsbG3z33XdYv359DuVwwcwq2er8smUh5TGdpnK9yrKOjo6cOnUqo6OjeeLECU3qzxMn\nTlChUPDFixcMCgriqlWrdCUx0qcKnWcObffw8OC9e/e4fft2rlu3jjVr1uTkyZN55MgRNmvWTNd3\n8sVhqIXo6enJffv2cc+ePdyzZw+/+uorzps3j/7+/mzWrJm+pD2yc6jdysqK5cuX58aNGymKItPT\n07lv3z4qFIocqt5aLjvHpk2bNEoZJ0+epFKpZOvWrY21UEzmUG0zqYxA1Vr18fFhYmIinz17xgED\nBhjKRmg2Dm2BAHt7e+7bt8+Q8KfsHOq3u9xCFra2tpw1axaPHz/Ozz77LLeCh1nisXXrVr2K2YV5\nXapVq8b9+/dzw4YNmrSf5cuX548//sgTJ07w008/1XXvFkwlW0/FnARJ8ttR62+1PL1eZdlGjRox\nOTlZUyEnJydz9+7dXLRoEf38/NiqVSs6OzvT2tr6tQuv+j+tAGQWlEPbP/30U06bNo1ubm48duwY\nr127xuTkZH777bc6XxHzy6GvIipZsiTv3LnDq1ev0t7enoJg2pp7uTm0vV69ejx27BhFUWRiYiJ9\nfX3Zr18/Pnv2TCOSmstl5ahbty7j4uKYnZ3N7du3awQU/vjjD0OZ5fLEofrbpDICSOrdSUlJTEtL\nM0WY1Wwc2j569Gjev3+ftWrVKjSODz/8kGfPnn2tq3HEiBGMiYnh/v37c3e5mYVDEATevHlTVwOu\n0K9Lr1692KJFC1auXJk2NjZ0cnLiL7/8wqysLJ49e1Yj9qx21bELrJIdBCAaOUUMDcnT61WWrVCh\nAs+fP8+rV68yNTXVUD5bXR4E6XVDWVAObV+xYgXr16/PNWvWUKFQMDMzk4sXLzaU7jK/HDpVoX/6\n6SdmZmZywIABebop5ebQ9sDAQCoUCmZkZGie9mXLlmV4eDj/+usvXWkeZeVYsmQJlUoljx07xtKl\nS2sS1SuVSi5evNgQu8kceSkj7u7u/OeffxgbG2tUNsicHNresmVLKhQKfvvtt4Ye5rJy1K1bl8+e\nPaNCochR2bi4uDAhIYHPnj3Tl4BM9nj4+/vz4cOHmje4QYMG8dGjR8Za0LJzCILAffv2sXLlypq/\nT58+TaVSyfDwcJ0SaKpjF0wlG9JTozteV5fVm8MUBpRlHR0d2bt3b6ampnLixIl877339HUZ5PZH\nAC7LxaEO4t69e3nu3DkqlUpeu3bNkLBlQTleU4Vu1aoVExMTuXLlSn3y84XCofZ69eoxODiYqamp\nfPz4MV1dXXMoZO/du5d79uzRJbwpG4ezszMPHjxIpVLJrVu30s7Ojvb29ty+fTuVSiU3bNhg6KGZ\nJw5Tykjt2rX5xx9/MCMjg1OmTDH1jUZ2Dm0vXbo09+3bx/v37+saJDcLR8WKFfnHH38wNTWVixcv\npouLCwFJAmv48OEURZFz5swptHhERkZy//79dHJyIgB26dKFo0aN4vLlyw0NBMrOIQiSyIOLiwtL\nlSrFuXPnkiQPHDhg6O2uYCrZWnDtcp3QRQD7VL+PB/CTju/ohHJwcOCjR48oiiLT0tKYmJjIW7du\n8dtvvzWY/V9uDnVQjx49SlEUGRQUZNJrUX45dLFcvHiRmZmZDAkJ4ebNm3O4sbcJOTnUrlZz+fvv\nv/n222/nqISKFy/Os2fPcsiQIbqEN2XjqFWrFiMjI3NUzNbW1lywYAGVSiVv3bpFNzc3fXGRNR4l\nS5bk5cuXmZ6ezgkTJhia/WBWjtw+evRoRkdHm1JeZePo06cPs7Oz+csvv2hmDllZWXHQoEGMjo6m\nQqHgiBEjCi0ekZGRDAwMzHFNBEHgihUrDNUjsnMIgsClS5eyYsWKPHHiBNPS0hgZGcl3331Xl6C0\n5t41WucaqZBzS0slABgBqRNdCWnteQaARqaeTMOGDTUK2a9evWJ0dLSmz/n8+fOGZNBl5QDAqlWr\nMj4+nqIo6hvUko0jN4ubmxsjIyMZGxvLJ0+eMDw8nEePHuVvv/3GW7duMSYmhpcvX2b9+vX1XWBZ\nONRepUoVhoWF8fTp0zrPu0WLFnzy5Ak/+OADXZ/LxlGjRg3euXOHoihy/vz5mgE2tYjvkydPDPWp\nysYBgJ988glFUeS6detoZ2dHDw8PjhgxgkuWLGHr1q1zvE2YkwOQGjRVq1Zl9+7djamna3uWFs8u\n/Jt7WKnadgZASWMcxYoV4759+yiKIhs0aMBatWrR19eX58+f19y7O3fuNKSULQuHth84cIBjxox5\nrZIMCgpi2bJlC41DEAReu3aNWVlZmoFqfRWy2uWomCsAaABp8O8G/pVjWQvgS0iji6EAbpt6Mp6e\nnszKyuKpU6fYsWNHdu7cmdu2baMoiszKyuKMGTP0nZCsHADYtWtX3rlzhzExMfoqHNk4dLHUrFmT\nPj4+bNSokWYU28rKihUqVGCXLl0YEhLCS5cu6ZPukY0DkF4Fo6Oj6ePjo7PwHT16lEqlUt8DTDYO\na2trbty4MUeL2crKipMnT6ZSqeTjx48NVcyycQDgRx99RFEUuXz5cnbs2JH37t3TyCs9ffqUixcv\n1teKlpWjVatW3LVrF8+fP8/k5GT++eefhhow2t4FUtY0tcRVBwDLVSyzIU0f+9EYR+XKlZmZmUlR\nFHn58mU+evSIe/fu1cQiPT2dXl5eZufQ9unTp3PBggU5tlWvXp0bNmzQ2a9rLg5XV1c+ffqUJHnr\n1i02adLE6HUpcMWsBeaGPMqxGwKrW7dujuk09vb2HDNmDJVKJS9fvqz3ZOTm2LZtG+fNm8cjR47w\nxo0brFSpkklBzQ+HMRZdLggCHzx4oPOhITfHxo0bOXPmTJ0c1atXZ1RUFFevXq3pW8zlssZDPfin\nq485IiLCkBaibBwVK1ZkWFgYR4wYwRYtWvDhw4caPUonJyeuWrWKV65c0dc6kjUe9erV49dff81Z\ns2YxKyuLQ4YMMbUMuUE1myo3C6RZAfdggsZd1apVmZ6ermkdb9u2jaVLl9bMllm3bl2hcGh77orZ\nxcWFUVFRhvq5ZeUQBIGenp7MyMggST59+pSurq4mXZcCV8yQujLOQpJizwQQD0mOPRPSUsYrkCZg\nK0w5mT59+uit/IoXL87s7GyGhYXpOyHZONQeFhbGkSNHsmXLlnzx4oWpBT5fHPmpmAFwy5YtXL9+\nvdk5Ll68yEOHDuXYVrZsWQYGBrJbt26GhEcJqa8uA9Lr4NeQVlHNUrE8Ue1jsip0586dqVQqefbs\nWZYrV44eHh48f/48lUolf/7550LhaNmyJcPDwwmAvr6+DA4O5ttvv52jQeHn58cyZcqYPR6A9CZx\n/vx5btq0KS/lR81xX1VG3LXKyBNIXS0mqUKXKlWK7dq1o6OjI4sVK0Y/Pz+KosjNmzcb6tKRnUPt\nM2bM4Nq1a2ljY0NBEDhs2DA+e/aM5cuXLxSOmjVr8sGDB1QoFDx27BgfPHhgtAtD7aZUzMZW/mVB\nmmJSAlL2fxdIneTFIL2W2UN6ZdOrjqm2UqVKYcWKFejVq1eO7VZWVhgxYgSOHj2KYsWK4fDhw/oO\nIQtH7v/t4eGBy5cvY9u2bejZs6cpX5OVw9nZOceqoNxWp04dZGZmmp0DgGbVUocOHTB27Fjs2LED\nTk5OuHjxIm7cuGHoq+6QBEcTAYxR/f/RKrYbAFJIhprKkZWVBaVSiVatWmHLli3YuXMnWrVqBQC4\nevVqoXAUK1ZMs9Lyzp07mDNnDi5cuIDExEQ4OjrC3t4emzdvRlxcnFk51NajRw9UrlwZP/zwQ16+\nVgNSojJ1PpmfVAxqjvqQ+leNWnx8PMLCwpCWloZKlSph3LhxUCqVuH79OrKzswuNQ9vc3d3h4uIC\nNzc3fPXVV5g7dy5evXpVKBylS5dGuXLl0KNHD/j6+uLly5do3LhxXk9BvxltUmvJseDf5n8cgADV\n5yZJfn/11VcURZHZ2dmMjIzk1q1buXXrVh45coQKhYKiKPL58+eGZiPIwqHt/fv356tXr9ivXz9+\n+eWXvH37tilPvHxx6GN55513eOjQIbZr145VqlTRtD6sra05aNAgxsXF6Wutysrh5+fH7OxsJiQk\nMDs7mwqFgo8fP+avv/5qSkw0cj0qlhcAFgGYmFcOtYeHhzM7O1vTj6lUKvno0SND3Riycrz99tvM\nyMjgiBEjWLt2bdavX5+rV6/msmXLuGjRIjZu3LjQ4lGsWDGGhITw3LlzxlqEZr9nAEnEOCMjg1eu\nXDG1r1t2DkEQ+Pz5c/7yyy+8efMmt23bVqgcnp6e3L17t+bvLVu28McffzTpupjSYjZWKWukpSD1\nz0RCyld6EUAMpPl4lwCsNnYyLVq04KtXrzT9VCdPnszxe2pqKnv37m3odUAWDm0vXbo0f/jhB83S\nXyOLFwrEYYhl0KBBXL16Na9cucKgoCCOGTOGa9asYUJCAidNmqRvjrOsHK6urjxz5gxPnjzJM2fO\ncOrUqXRzc9P3qp7bl6qOq2ZZBeAogAeQEsfcRh5VoZs1a8b169czMTGRJ06c4IULF9irV69C46hQ\noQI//vhjdu/enT179mTfvn353nvvsX///qaMRcgaj+bNm/PYsWM8ePCgsZWPZr9nAHDp0qVMSUnR\nOVBcmBxeXl78+OOP+c477xiaiWEWjjp16nDr1q0EpGmVP//8M7t3725SPOSomNVyLFcBpKoKVlcA\nHgB+U22/D2CnKSdTtmxZfvjhh7xy5QoDAgI0I7o+Pj6mZIeSjUPbK1asyMjISD59+tTUp3++OExh\nmTx5Mn/77Td+/vnnTEhI4NixYwuVQz1v2dRl4VoeAeBvFctsSElgTqs4jkGalpQv9eE8MpmN47+M\nR7du3RgQEMA9e/awVKlSeeEwyz0TGhrK1atX/+cc+XDZOFxdXXn9+nV+8cUXvHHjBtevX587P4he\nL3DFrIIqEsqybzqHGViKCscbf20sHBaOwuQocMUMi0q2yRyqnxaV7CJ4bSwcFo6ixCFHxZxvZVkz\nBLUoc5ikTv0/ylHUr42Fw8JRpDhMqZjNppJNUsj9PbmtqHDARHXqQmApKhxF5tpYOCwcbwJHbsuv\nGGvuzP5PVdsK24oKR1FisXBYOCwcbx5HDsuvGCsBQBCER5D6MZ0BFIc0ib4wrahwqFk+FAShLf5b\nGXQLh4XDwvHmceSw/LaY1erUBOANIBDAj+oPC1Hyu6hwqFms8a8M+mr8q7bbVRCEa/+jHPpk4Ys8\nh5nLiIXDwmGIQxfLv2ZKR7SOQUF1Zv/HkDLQ/YV/lWXtADxEIXSYFxUOLZZsSMs6bdQsWhxGlUPe\nRA4j16bIcvxHZdXCYeEwafDPaItZEIQgQRBeCoJwTWuzI6SljFUhTcuqBqCN6jNPSOvODZqtrS1a\ntmyJ9u3bo1mzZrhw4QLi4+MxderUQuXIq+niECS124OqP69CSlrznGS4moPkM33HLF68OKpXr/6f\ncxizHj164Pbt21i8eHFuFrNylCpVCt988w0WL16MevXqwcPDQ+d+eeQA8lhGHBwcsGbNGiQkJODS\npUtwc3P7TzhMtcLgKFOmDE6fPo2tW7fCykp3dfL/KR5ymSldGRsgzfPTttmQ5gRWhLT+/wCAEYIg\n+MBEye/69etj//792L17N7p164ZWrVrBysoKZ86c0feVTtAtP14gDkB6SLRu3Rq+vr4YPdpo97Q+\njsOQWoETVUxVTeX45Zdf0LZtW1NQzcphyCpWrIiffvoJT58+xblz53J/LDuHIAjw8vLCuHHjUKJE\nCYSEhODmzZto1aoVDhw4AHd3d11fywsHTGVRW82aNdG3b1+4uLigWbNm6NChg75dzcJRsmRJTJ8+\nHf369UO3bt1MQTZrPAAp4VWHDh2QlZWlboH+Jxwmmlk4BEFA37590bVrV5w5cwahoaFwcnIytP8t\nQRC2qB4Mus3Ergs35FTJNipPDwNNeVtbW06cOJGPHz/m/v37OW/ePK5YsYINGjQw9AogIA/y46Zw\nlC5dmm+//TYjIiIYGRnJHTt2MDk52VhOhnxxUM98yObNmzM7O5tLlizRbLO2tubcuXP5008/Gcod\nIiuH2v38/Pjuu+/m2CYIAleuXMnU1FSuXLlSV5pH2TgEQWDDhg25fPlypqWlMSUlhUePHmVISAib\nNm3K4sWL8+eff+b9+/d1KXabRZ6+YsWKXLhwIY8fP06lUsm0tDSmp6fz+PHj+vIjyMpRsmRJduzY\nkcePH2dERARnz57N0NBQU16bzRIP7XK6detWkuSKFSvMxrF06VJmZ2dz1apVPHjwIH19fVmlShVW\nrVo1L3JfZomHvb0958yZw7S0tBz5fyZNmkRB0JtGQID0UHhtWb6GzYRKWZ9K9jP8O1k7Fbnk6Q2d\nTI8ePZiZmZkX1RCqOGIBiAXlsLKyYqdOnTQaXXFxcWzatClbtGjBixcv8ocffpCdQ19F1KlTJ4qi\nyN9++02zrXfv3szIyGBWVhYbNWpUKByAlOkuKyuLW7ZsyZE4acSIEUxLS+O3336rkXrK5bJxVKlS\nhX/++ScTEhLo5+fHvn37cuzYsZw8eTInTZpEOzs7AuCcOXN47do1VqlSJV8cqs+NltU2bdrwzJkz\nGgWPtLQ0Dh06lGvWrGF2djZnzZpVoHgY46hQoQJ37tzJmJgYjh8/no6OjvTw8OCff/7JBQsWGJNE\nkz0e2t63b1/GxcWRJPv06WM2jqlTp3L37t1ct24d4+PjmZmZyWfPnvHq1avcvHkzly9fzq+++opD\nhgxh7dq1Wbt27UKJh4ODA3/44QcqFAoqFAoePXqUM2fO5K1btzQK77q+pzq23pQJplbMulSyMwDM\ng5SoJQK65el1Qjk7OzMjI4MRERGmJg1Se3tITy9lQTnKli3L06dPUxRFJicn5xCRXLt2LZctW2YO\njtcGu2xsbLh27drXKuYvv/xS8+SdO3eu2TkA6S1m3bp1FEWR/v7+mu3FixfnixcvePHiRUNZ1WTj\nmDp1KjMzM9mwYUOD5cHV1ZU3b97kzp0788VhSlkdNGgQs7OzNRXylStXeOPGDQJS2scLFy4UOB7G\nOIKCghgbG5vjLc7Dw0MjaPzZZ58ZipOs8cjtwcHBJCVJJSP7ysZRvHhxjhw5kgcPHuTLly+Znp6u\nyQ6pTg+rUCjYu3dvs8dj3LhxFEWR169fZ58+fTQt5MuXLzMyMpIeHh46v6c69jgAe/JdMasOkltd\n1mAOUxiQ/Pb29qYoity0aRM9PDz43nvvsWfPnqxQoYKxi3sLwAU5OEqUKMHAwEDevXuX3t7emu6C\nZs2aMT4+nl9//bU5OK7nPpa9vT1PnjxJhULBTz/9VLPd19dXU9AWLVpkdg4ArF+/PuPi4rh06VJN\nV4UgCJw2bRpFUeTkyZMNxUQWjmrVqjEhIYGBgYFGKwVBENiuXTtOnDgx3xyGykipUqV48OBBiqLI\nixcvsmvXrrSxsdGk3XRycjJ0bWTjiIuL45YtWzTlpVixYuzevTtjYmKYlJRkSDFcVo7cXrlyZV66\ndIlpaWls2rSpsf3NxuHk5MS+ffty1qxZXLhwIQ8dOkSFQsHvvvtOV1eCbBw1a9bk/fv3eenSpRyZ\nMatXr874+HiGhIQYEqe9BUn7sYrcFXO+c6mqlYefP3/OO3fuMDExkUlJSbx69apBOXY5OQRBYKlS\npeju7q55NS9WrBiXL19OpVJpMN9ufjl0sZQrV463bt1ieno6u3btqtnu6OioeXXWd/PLyQGA/v7+\nTE5OzpHXtnLlyrx48SITExMNCaBSLo7du3fz1atXhsQScnjfvn2pVCpl5wDAhQsXMiUlhb/99htd\nXV1f6+uvWrUqjx49atZ4AGBAQACjo6N58OBBnjlzhqGhobx69SpFUeS5c+eMxUg2jty+b98+ZmZm\ncncDlpQAACAASURBVO3ataZcK7Nx5PbFixdTqVRy0qRJusZnZOPo3r07X758mePtsm3btgwPD6co\nigbfuk2qc41UyNUAvMLrcuzNIfXXpEOS/36tSa4PytPTk8nJybx79y7/+OMPrly5kps3b2ZWVhaX\nL1+urw+TcnNYWVlx4MCB3Lp1K/v3789Ro0YxIyODQUFBxi5+vjh0sZQvX57Xrl2jUqnk6dOn+eWX\nX3Ljxo28cOEClUolSb6mBGwOjmLFinHHjh05BiABKRG5KIr09fWls7OzoYGWAnN4eHjw3r17DAsL\n0yf4+hrzkiVLGBMTIysHAL711ltMT09nSEiI3v8/adIkTbeGOeKh9pIlS/LDDz+kn58f/fz82L9/\nf9avX5+xsbGcPn26sThlafHsgpR7+BSkaWGZkLKplcxrhdigQQM+fvyYr169Yrt27YxeK3Nx5Pba\ntWszISGBCoWCzZo1MyvH+++/z/T0dKakpHD79u18/vw54+PjmZCQQFEUDYrCylExVwDQAK/LsS8H\n8KVqnwBojXQaC6q9vT3ff//9HP0vLi4uTEhIMCbsKCuHnZ2dph9X7REREXo77AvKoY+lXbt2DA8P\n57NnzzQcJDW/Dxo0yOwcTk5OjI2N5fvvv6/ZVqJECZ44cYJKpZLr1q3jnDlzcg+0aXuBOerWrcuj\nR4+aqiLDhg0bcty4cRwwYICsHIA0+Hr//n3WqVNH7///+uuvmZ6ebrZ4GPIWLVpQFEVTKuYukNJZ\nOuVmgTT49ArAj3nlCAwMpEKhYGRkpLGZVGblyO3bt2+nKIoMDg42O4eLiwvnzp3LixcvcubMmRwz\nZgz79+/PvXv3UqlUGlR3KXDFrAXmhpxy7I/w7zSTqZDEJfMd1Pbt21MURS5YsEDvFBO5OXRVzLt2\n7TLKml8OQyyCINDBwYFVqlRhlSpVOGDAAI0MV8eOHc3O0a1bN165ciXHTIzBgwdr4hIfH29M467A\nHB9//DFFUWSrVq0Mxt/Kyorjxo1jdHQ0Hz9+rJmlIRcHAO7fv58RERF0cnLSyeDq6sqwsDCeOHHC\nbPEw5C1atKBSqTSlYnaDapqrimUwVFPEIA0+HUI+tPZOnz5Nkpw6daqp97jsHLm9cePGFEWRGRkZ\n7NSpU6HGQ/27nZ0dt2/fTqVSmbtcvnbvFqhixutdGUoAn6l+ZkEa1UwCkGbKydjY2NDa2jrHtuLF\ni3PLli3Myspiz549DQVfNg5AmoO5evVqbt68mbNmzWK/fv0YERGRuwUmG0deC9r69espiiIXLlxo\ndo4vvviC8fHx3LNnD0NCQnj58mUmJCQwKyuL27Zt01tBaXkmpFy3BLBXxRCl4ktScXU1xPHRRx8x\nOzubEyZM0Pt/PD09GRQUxOTkZIaEhOh6WBSYw8rKihcvXtRZMRcrVoxubm68efMm79y5w4EDB5ot\nHoa8S5cuFEWR3333nanXRQFpKtgO1d9qjusAUvPC0a5dO5LkgwcPDI4JmZtD221sbDh79myKosjd\nu3cbKq9m5Rg+fDjT09N5+PBhQ12yslTM6q4MJwDhkOb8NYZ040/Q2i/JlJNZs2YNmzdvnmPbhAkT\nmJSUxFWrVhmbLC4bh/YFtbe3pyAItLKyYkBAAKOiogx1p+SbI68V84QJE4zNypCNo3HjxszKynrt\nDeLUqVOmdO0QQEtIgye+kF4RUwB8o2YxhaN169aMiorigwcPOHLkSHbp0oVdunTRCNX++uuvjIqK\nYkREBH18fPRp3xWYo1y5crx27ZpGPd3Kyoq2trZ0dHTk9OnT+eeffzIuLo4DBw40tPinwByG/N13\n39VM0zKyr+z3zKtXr0iSPXr0MLksm4ND293c3Hjjxg2KosghQ4b8ZxwrVqygKIr09vY2uJ8pFbOx\nRPkvBUGIg9TE3wygLaT5p2mqE4QgCOUgtd6Mmq+vLzIzM6FQKODm5oZPP/0UXl5eOHPmjClLoe/I\nxaG27OxsZGdnq88VSUlJKFeuHMqWLYsXL14UGkc+TTaOv//+G3Xq1EGDBg0gCAIWLVqEsmXLolev\nXkhOTjblEPMAbCW5QxCE/pBSJzoCSDGV48KFC5gwYQLmz5+PJUuWwNnZGQCQnJyMtLQ0PHv2DPPn\nz8cvv/yCxMREs3FER0fj4MGDmDp1KoKDg3Hp0iXY29ujXLlyqFChAtLT09GoUSPcv3/frPEwZO++\n+y4AGIqD2mQvq+XKlQMAREVF5eVrZr1npkyZgrp162LPnj3YsmXLf8JRq1YtDB06FCkpKXj8+HF+\nDpHTjLSYNZp/kEHye8aMGUxJSWFmZiaPHz/OR48e8fvvv2flypVNeSKZRQJd23v16kWlUsnWrVvL\nzpHfFvP06dP1vUmYhaNhw4aMj483ZXaKti9VHVfNsgrAUUhKxC8B3AZQ2hSOhg0bsmvXruzWrRv9\n/PzYtWtX1qpVi87OzoXGUa9ePZ45c4aiKOZYZhsaGsr169cXajx0+ahRoyiKIiMjIwv9ntm9ezdv\n3LjB6tWr56V8mO3edXV15cGDB5mQkJBjjKQwOQRB4M8//8wTJ05w48aNRplNaTEbq5jVmn+ySY+r\nc5Kqf8/DxTWrBLp6mbYoiuzfv7/sHHmtmBs1asTk5GT27dtXX8VsNg7ta2SiR0BaPZUKKQdAaQCn\nVRzHACyEjrwAeYlHYXPkLqdFKR4NGzY0tWI2yz2Tx1iY9d5dunQpv/76a3777bf/GYe9vT2vXLnC\nGTNmcPDgwUY5Clwxq6CKhOS3uTlatGjBbt26cfXq1YZW7OSbwwwxKSocZr82Fo6c7uDgwNmzZ5sy\nh/h/Ph5hYWEcNWqUsZwhZuXw9PRkYGAgu3TpYhJHgStmaHVl5Nr+/1Z6XB+H6mdXSHmhkwBMMTNL\nUeEo8tfGwvG/y1G7dm3NMvk3JR5yVMzqroz/XPK7iHNshvQqlAVpJVF1SEoI5mQpKhxF/dpYOCwc\nRYrDlIrZ2KyMMOhIpi8UEcnvosIB4KggCF4AJmux7PwPWIoKR5G5NhYOC8ebwJHb8quSXRXAE+F1\ndep5MnG9aRxqFi9BEK7iv1XbtXBYOCwcbx5HDstvxUytn96Q1qB7a++gGrmVzfQ8tYoKhzaLN8k4\nQRB8zclSVDgMsFg4LBwWDtM5cpgpmn+67Cmk5dqANEBYDbkkv/N5XL0m6Jb8zjfH1KlToVQqERAQ\ngL///lvzez451CzWKg5oswiSBPo1yGhFhUOL5Y3jULNYOCwc/wGHLpZ/zZSOaB2DgurM/pGQljem\nAVio+qywpcfzzFGzZk3++eefVCqVDAgIoCiKVCgUHDx4MEePHk0PDw+9SUiMxCQb0ujuVRVTMy2O\n1xQ76tSpw8GDB9Pf359Nmzal//+xd95hUVzdHz8DLFWKoKgoRowSbKgYjRq7xlgSNYolFuwlxhI0\nGkXBmGASS0zU+NryajQYe4sVxI7lRY1YEBQQVBQU6X1h5vv7Y3bHBXZnB5hFzI/7POcBdmeHz557\n58ydW8530iSMGDECDRs2hIuLi+h6UTk5DFg35eaoV68eOnTogCdPnoDjOHz11Vc6ZYxKw1Gatmpr\na4vPPvsMrVu3xrBhw1CvXj3Z/FEajqZNm+LQoUP46quvcPXqVezbtw/Dhw8XlTAyBIemGRkZITIy\nEnl5eTpzZxiKY+7cuYiMjMTMmTORmJgIPz+/UicPktsfUkxSjJUQhLcSv1tJU4zVnvhAmEd8HoCV\nRHSTiHoRURcqhW5YKUw2Dk9PTxQWFgqB+cCBA9i0aRPat2+PoKAg3LhxA127di0tx2lVpWYSP8P7\nTJMDWmZ3L126hKioKISFhWHq1KkICwtDaGgoxo4di6tXr2L+/PliyVBk45DBDMbh6+sr6KiFhobC\n19cXL1++1LU7UzKH6n1JbdXf3x+ZmZnw8/NDbm4u7ty5IyqmYCiOo0eP4u7du3BycsJHH32EqVOn\n4tixY5gxY0aRhO2G5tA0Ly8v5ObmoqCgQEzgQHaOJk2aICcnBxzHwc/PD3l5eWBZFnZ2dhVWLwzD\nwMTEBIMHD8Zff/0FDw8PuLi4iOVQAZEMqzJUZRvxOUt3aLy2lIh2APiVYZiviMiF+DR6bVVfUqfk\n95QpU2jx4sV04sQJMjExoYsXLxLHcfTJJ5/QmjVr6OrVq7o+2oP4LZMu5eWIiIigwMBAsrW1pXXr\n1lFqaqrw3g8//EDHjh0jPz8/8vX1pStXrkjlOA7gIw2ORH0cBw4coBo1atDq1aspLS2NNm3aJLxn\nYmJCq1evpqdPn1KbNm0oKiqKdu7cSVlZWbJzMAxDxsbGxLIsMQxDCoWCHB0dqVatWtSwYUPq378/\nRUZGEgAqKCigjRs3UnZ2tuYpZOEgInJ1dSVjY2OKiIggIqKwsDCqWbMmtW7dmvLz82nv3r1Uo0YN\ncnNz09ZWSsMRTHrk6e3t7WnhwoU0ffp0evjwIYWFhdHQoUNp/fr19M0339C8efOEXCuG5CAiatKk\nCaWkpNCECRMoKSmJnj9/TkREW7Zsof79+9PIkSPp2LFjxXNYyM6hWSwsLGjo0KFkZmZG6enp9PSp\nzo/KzjF37lwyNzdXB1jq0aMHWVhYUGZmJikUCjI1NSWWZSkvL88gHLVq1aJff/2VatWqRV27dqXC\nwkKqUaMGde/enQ4fPkzz58+n2NhYrewMw0QQ34GcBSBF60GSutUaeUxVf8eooC2Jl/2OodcqyKKS\n3507d8aSJUuwc+dO3Lx5E+np6cjNzQXHcaIpH4kfA9ImP14mDktLS53pATdu3AilUqlrm2eZOLT1\nEOvWrYtdu3bh1KlTWL58eRF1XzMzM0RHRyM9PR07duxA//79YW5uLjuHkZER5s6diy1btuDrr7/G\nunXr8Ndff+Hu3btFMs6lpqYiOzsbBQUFmDBhQnGfyOIPIkJYWBg2bdoES0tLrXWzfPlyFBQU4OHD\nh9oS2UvmUL2vs40oFApBpmjz5s1Fstl16dIF0dHRYmrMsnFomq7HdCsrKyQnJ2sTVTAIh9qmTZuG\nrKwsIY+ISCZC2Tnmz58PjuNw7do1IWWBs7MzJk2ahA0bNuDEiRPYtWuXwTgOHjyIgoICPHnyBMuW\nLYOXlxdGjRqFGTNm4OnTpzh06BAcHBzEYtlS0rItv7RDGUlUVCtLLcOilsrRVEGWLIGuzkGwevVq\n5Ofn60uMspW0y4+Xm6O4DRkyBFlZWQgKCtKWGKVMHGKP7j179sSTJ09QUFCAL774As7Ozjh//jzy\n8/MxYsQIWf1RnKNmzZq4f/9+iZSf2dnZSE1NRWpqKn7++WdYWlpi4sSJKCgowLlz54qzyOKPvn37\nCqrUQ4YM0fq9R44ciby8PBQUFGDcuHFl5tDXRpydnXH79m2EhYUVvyGCYRhERESgZ8+euupGNg4p\n5uXlhdTUVHz88ccVyqG+cefk5KBVq1Zix8rO0aFDB+Tn5+OPP/4AwzAYO3ZskY5EYmKitvqRjSMt\nLQ3Lli3TOg9ka2uL5ORknVvmVefWmTJBamDuTLwKg2Zg1pnDlEopgW5lZYUDBw4gPj5e37GdSbv8\nuCwcmubp6YmsrCz4+vpqGy8qK4foZFfDhg2xbt06pKenIycnB5GRkWjRooUh/FGEo0uXLkIGtYKC\nApw+fRoLFy7Uqr48Y8YMBAcHa7sIZfHHp59+KlxYgwcP1vq9W7ZsiadPnyI4OFjbOLNkDn1tpHXr\n1khPT9facx8xYgTu378vlhdBNg4xMzIywrRp0xAfH4+BAwdWGIe5uTm2bdsm1FV6ero+VoNwTJw4\nEUqlEnfu3BGCckZGBg4fPqwrX7dsHJ06dYKLi4tOtoCAAJ2akapzzyQd2o+SArPqJMXVZaXI00tq\nXK6urnj69KmoeKHKIqiU8uOl4dA0dY9Zx1BGWTnu6fu/8+fPR15eHrKyshAbG6tPlLTcHAzD4Pbt\n28KqlD179uh8HG3UqBFCQ0ORlpamLUm6LP7YuHEjOI7Dy5cvdU7iqGXjdWi7ySZPP2HCBNy8ebNE\nj6hdu3ZITEzEDz/8UEKNxxAcuqxatWrYt28fnj9/Di8vrwrl+OyzzwTR0ZycHG1PLhXCMXr0aGRk\nZBR50ps4caJY7gyD1wsRrwcYExOj86mP+Gv3FBHVlTswy5YHuX379sjNzdXXO4ShOGrWrIk6derA\n1tYWTZs2hYeHBzZs2ICCggL89ddfJTToysohxmJsbIzp06dDqVTizz//RJ06dXD16lXcuHFDZ45Z\nOTgYhkFubi6USiX++ecfncoLCoUCGzZsQGFhISIjI7UNOcnij6tXr4LjODx79kxnfakDM8uyWLZs\nmUE4iAjDhw/HwYMHi7xWt25dXLp0CRzHYcqUKWLtStb2oVlfjo6OGDJkCCIiIhAfH6/zycJQHAqF\nAsePHwfLsmBZVkqHyiAcbm5uSElJEQJyQkICOnXqJCrpJCcHwzCwtbWFu7s7xowZg/nz5+O7777D\nhQsXBL3O/Px8JCUlgWVZZGdn4+uvvxauXb0xV09ALq75J1mOXUJlgYgwffp0vHjxQsqxsnFUr14d\nw4cPh7+/P/bv348bN27g77//RnJyMjiOExrd8+fPsWbNGlk4xHzi4OCAzMxMHDlyRBjP7Nq1Kx49\neoQVK1boSkMqC8c333yD+fPniy7/Gjt2LFJTU8FxnK7hHVn8oQ7Mr1690vUoiu7du+PVq1e6xphl\nq5cWLVrg0aNHgl/s7e1x5MgRsCyLgoICNG7cWKytyto+iPiJv9GjR+PcuXN4+vQpVq1aBQ8PD325\nkZUaPHuJzz18jvilYerxVbvScHTq1AmZmZngOA7Jycno06ePlGtXVo769esjMTFRCMoxMTG4du2a\nFMENWTgYhsGsWbNw7Ngx5ObmorCwsMQcTWZmJu7du4dz587Bz88PEydORK1atUAkT2BWa/41oFLK\nsUuoLBARbty4gc2bN0s5VhaOWbNmITY2Vgi+LMsWCcaavwcHB2tbKVImDjGfDBkyBOnp6SVWibi7\nuyMtLU1Xg5OdQ5u1bNlSCMocx6Ffv37ajpOFQ1OZW9tjIMMwOHr0KFiWxcmTJ9GkSRODcBDxYr2/\n/fYb7t69iwsXLgiP7hzH4X//+58+v8nGYW5ujunTpyMtLQ25ubn49ddfpSh1qK038RsnqhVnIX7y\n6SURrZHaPpo1a1Zk6GDbtm0VzsEwDL777rsiAdDIyAgdO3bUt5ZaNg7NdqruGasnrTmOQ2xsLDp1\n6qTzplnuwKwB1oBKKccuscJQWFiIxYsX6z1ODg4LCwuEhISAZVlER0djwIABSEpKKhKMY2JisGDB\nAgwYMADdunUrMcBfVg4xn5w9exYbNmzQ+l5oaChGjhwpmz9KUzcODg44depUEWklHWoqsnD06dNH\naOD79u0r0ouvX78+1q1bh/z8fBQWFuK7777TxiKrP+zs7DBgwABs3LgR+/fvF1avdO/eXZ/vys1h\naWmJzz//HKGhobh06RIWLVqE5s2b6928oI1Dde79xC//iiEiB+Inn46R9nFVrecbMWKE0BaSk5OF\nHmBFctStWxc3b94Unqx69+4NKysrLFiwQLhZFF9FIzfH//73P+Tn5+PcuXPYsWMHEhMTwbIsHj58\niG+//VafqHT5AzOVHMpgiWi66qeS+FnNDCLKKevFn5eXh7Fjx0o5ttwc7u7uiIuLE4YpTpw4gezs\nbHAch7y8PPz9999499139Y1TlYlDzCcJCQmYPXt2idfbtGmDFy9e6FovKztHcVu0aJHQW46KikLb\ntm11HauWhQcRHVIxJNJrWXiWiPro41AoFMKNsrCwEOfPn0evXr3wxx9/4H//+5/wRPPo0SNdGoCy\ncBQ3U1NT2NnZITIyEg8ePNA5zCInx6hRo/Dq1Sv4+/uXJgDq4igkXk5pt+pvNcc9IsqW4g+FQoG1\na9cKvdRhw4aVRmJKNo5atWrh4sWLwtr68ePHY+zYsXjx4gU4jkNISAgcHR0NyrF8+XJhFZO6h7xo\n0SK4uLiIbglXmxyBWT2UYRDJ7+rVqyM1NVXqOFW5ORwdHbFr1y4UFBQgKSkJKSkpePz4MS5cuIBl\ny5ZJcmpZOcR8Ehsbi/j4eLRt2xbOzs5wdnZGjx49kJSUhPv37+uaZZadQ9Pc3NyQnp4u9JDmzp0r\ntgqhLfGTJyOIf0TMIqIlapbScPTo0QPx8fElxuzUa1PPnDkjdoOQjaO4ffzxx2BZVusN1BAcrVq1\nwuHDh7Ft2zZMnToVjRo1gq2tLWxtbWFnZ6dP/ky2a0Zt5ubm2L17NziOQ0pKCpo2bSrl/8vOQcSv\nd79586Zwo1bfyFNTUzF//nyxG4YsHAzDYPTo0Zg4cSI8PT3FrgutJiUw60uU/4JhmBQykOT33Llz\nKTMzkx4+fCjl8HJLj2dmZtKGDRsoKCiIUlL4nZARERH06NEjKiwslIotuwT6rFmzqE+fPnTx4kWK\njo6m69ev06BBg8jIyIimT59OGRkZFcKhLnZ2duTv7083b96kbt26UWxsLO3YsUPMR/5EtBPAboZh\nPInPaWtJRFml5bhw4QJNmzaNunXrRoMHD6b69evTr7/+SizL0uHDhyk0NJRYljU4h2ZxdHSkxYsX\n07FjxygyMlLKR8rN8fDhQ9q8eTO5urpSp06dqGnTpuTk5ERWVlZ069YtunXrFu3fv1/faWRrIyzL\n0rNnz+j8+fNUo0YNyszMlPIx2TmIiE6ePEkXLlygffv2UevWrenAgQNkampKhw4dovPnz6uDqcE4\nAFBAQIBU3LIVPT1mQfOPZJb8NjY2xvXr13Hnzh29YzIqM5gEeimtTBz6WExMTLBz504kJiZi+PDh\nWLt2LWrXrl3hHESE5s2bY/369Rg4cCCWLVumc3u0hv2iOq+aZSMRnSReifgFEUUSkX1pOdQ7Q0tR\nNwbhaN++PRISErRtRa/s/jDINVNKBoNyVAZ/lNak9Jj1BWa15p/skt9GRkY4c+YMoqOjUbduXSlf\nyGAS6KW0MnEYgKWycIB4nbTbKpalxGftOq/iCCKin0hLXoAqjsrZVqs4KnlgVkEZTHq8QYMGaNy4\nsdS73lstxW4AlsrC8dbXTRVHFUdFcpQ7MJPGUEax1/9VEuhycKh+9iGi58TP8H5jYJbKwlHp66aK\no4qjMnHIEZjVQxmllvyW094Cjj+JfxRSEr+TqD4RXTcUS2XheEvqpoqjiqPScEg1fasyQkiLLqAU\nyW85S2XnIKKTDMN0IaL5Gix7DMVSWTjEWCpL3VRxVHFUJg6ppawq2fWI6CnDMHHEPy5bE5EV8cuE\nKrJUFg41S2WQQa/iqOKo4nj7OIqUsgZmaPzsRvwe9G6aB1Sw9Pib5tBk6YYKkEGvLBwiLFUcVRxV\nHNI5ihRtj8NSSjzx27WJ+AnCNyX5XVk41CxaZdAZhunDMMxdCeem+fPnk5eXF/n7+5NCoXgjHKUt\nbyuHmqWKo4rjDXBoY3ldJAyaa1NjrkN8CkMlqXIyENFPqvfKLPnt6uoKLy8vXcnaDcrx/vvvl8gJ\nrSMZii516jOq9zOJ33P/mIg8NDh0KpgwDIMGDRpgx44dSE1NFeSTRo8eLcYsKwfDMGjevHmR14YN\nG4a7d+/q1EbUMFn9UdyMjY3RunVrDB06FHXq1BHbOi+Zo7xtVS5/vE0c77zzDjp16oQLFy4gLi4O\nPj4+CA8Px7x588QSB/1r/VFWkzL5J6XHvI345SSaxYf4pScxxAfDe0T0EcMwvYjoA+JTHooWe3t7\nateuHVWrVk14zdvbmxISEoTt0hXBQUTUq1cvOnjwIA0cOJBWrFhBP/30E40aNYqCg4Pp66+/lsKx\nlIiOEp+tKov4oGNCfMV/QEThAJ7p+v+NGzemgQMH0qhRo+iXX36hAwcO0IkTJ8jX11cMW1YOAHTv\n3j3hb7VSdtOmTcna2lqMg+TkUBcbGxt67733yNfXlzw9Peno0aO0fft2GjFiBA0cOFAODqJStBFH\nR0eqW7cuHTp0iIKCgmjhwoVkampa4RzFS/Xq1cnd3Z1WrlxJR48epfHjx9PgwYMNwmFubk7du3en\nzp07U/369cnExISaNGlCP/30E3Xs2FEMs8L8oafIzmFqakqenp700UcfkZOTk+g/Zxi9Ixivi8Sl\nJg2opEq2Oo1hDSKKJqKFKhtJehRuu3btikOHDiEkJETopXXo0AExMTGoV6+ers9FEJ+p675cHER8\nast79+6B4zhB+079+9mzZ7Fo0aLi+ZDLxKF6r8T/b9y4MTIyMrBz504MGjRIeN3HxweFhYVimbJk\n5Shujo6OOHPmDFiWFU2irzLZONq3b4+tW7ciODgYHMdBqVTi8OHDuHbtGp4+fYqzZ89qUy4pNYfq\nNdE2wjAMatWqhS1btiAtLQ2bNm1CWloakpOTkZGRgR49elQIh6ZZWFjA0dERbm5u+Oyzz5CdnY3g\n4GDs378fgwYNKt5zlZ1j/vz5ePjwIS5fvozPP/8cixcvxsuXLxEWFibWVg3ijy1btoBlWZw5cwZ7\n9uyRsoNYVg5bW1t4eHhg5MiR6NmzJ9q3b6/1OCMjI9jb22u+H0FEAaRlW77AVsbAnEF8UhZLjb+L\nyNPr+jJ2dnaIiorC3r17i+i67dmzBwEBAWKPqQyVlB8vM4eaZd++fVAqlVAqlYIyg9ru37+Pw4cP\nFxeKLROHtkBkYWGBgIAAXL58GR988IHwupmZGUJDQ5GQkCCWR0Q2Dm02fPhwwQ8SArNsHNeuXRNS\nKe7YsQOzZ89G9+7d0bNnT0RHR0OpVGrTHCw1h+pvnW3EyckJ06ZNE3Iwv3r1Cnv37sWwYcPQq1cv\npKWl4cKFCwbn0DQjIyMsWrQI4eHhePHiBfLy8hAZGQl/f3+0b99eWypU2TksLCzg4uJSJC90ly5d\nkJ2djb59+1aIP8zNzbFs2TJkZWXh4MGDWLt2LdLS0vDPP/+gTZs2srRTKRxdunTBli1b4ODgN6sD\nNAAAIABJREFUoPV9Y2Nj9OzZE5s2bUJGRgbWrl2ree0uJS3b8iUHZuLHMpOoqFaWXnl6XV9m2rRp\n4DiuiICkkZERsrKy4OfnJ+bUrVQK+XF9HA0bNhS0uTiOw8GDB+Hm5oaoqCgEBQWhX79+wlbxYlvG\ny8ShLRAxDIMOHTqU2JLu5OQkphYiO4c2CwwMBMuySExMlKKYIRvHwIEDMWPGDCgUCuE1e3t7BAUF\ngeM4BAcH67wQSsOhr43cuXNHaBtnzpxBzZo1hfesra2Rnp4uFphl49C0CRMmoKCgAKmpqVi+fDnq\n1q2rLwGYQTiKG8MwyMnJwalTpwzOYW5ujhUrVgAA/vjjD5ibm8PIyAheXl6CmIMuIV+5/eHh4YEx\nY8Zofc/Ozg67du0SRDhu3ryJd955B0T8GDOJpEyQGpg7E6/CUFxd1lf1exF1WdIjPb5ixQqwLCvk\n1GUYBt9++y1evXqF1q1bizWAzlRSfrxMHGZmZggICBAuvEePHklNpFQeDkmTXe+88w4eP36My5cv\ni6n9GpTD3t4e9+7dA8uyuH79uhSfGMwfRAQvLy8olUoUFhZi+vTpsnDoaiMmJibw9vYWhlF+++23\nEonx//jjD3Ach6CgIINxFDdzc3OEhobiyJEj+q4Tg3JoM0tLS2RnZ8PHx8fgHK6uroiOjkZYWFiR\nm6WJiQkeP36MtLS0EgLKhvKHqakpzp49KwwfGRsbo02bNhg7diyuXbuGwsJC/Oc//0GrVq2KfE51\n7pmkQ/tRUmBWnUSbuuxh1e/eRLS22PFaJb8tLS2xa9cuRERECCohdnZ2OHnyJA4ePAgnJyfMnTtX\nV3rFCCopP14mDoZh4O/vLwTm1NRUjBo1SmpDLCvHPX3nNjIywm+//Yb8/Hx07NjxjXG0bdsWz58/\nR0FBAZYsWSLFJwbhICIMGDAAUVFR4DgOJ06c0Nd7LxWHtjYyZMgQQdfu77//LtJzJ+IVNJRKJXJy\ncjBw4ECDcRQ3Ly8vZGdnFxnykrtepHAUt2rVqmHWrFm4cOEC3NzcDM6xePFi5OTklJiL6t27N5RK\nJQoKCtClS5cK88fXX38NT09PWFtbY9KkSYiNjYVSqURSUpIgcqxFDiyCiE4RUd0yBWbSrZL9K/Hd\nfo54BQB3LZ8t8SXs7e1x5swZ7N+/X3jN3d0dL1++RHh4OG7evImQkBBdgorl5rC3txdyC1tbWyM4\nOBhhYWHIy8tDenq6Pkn6cnHo8onaLC0tsWDBAiQlJUlVyTAIBxHhiy++QG5uLrKzs+Hp6SmFxSAc\nNWrUEPTdQkJCpKhmlJujd+/eSElJQWxsLN5///0i51coFPjxxx/BcRwuX74sJvkkuz+8vb2Rn59f\novelx4qrQv9Erx/ZC4gfTxVVhTY2Nka7du3g6emJyZMnY+XKlbh48SJ8fX0xfPhwxMTEIDo6Gv37\n9xebHyo3h9oCAgLw8uVL4e+aNWtizJgxwrDkzZs3xdSyZeMg4if/unbtipiYGCQmJiInJwdxcXH4\n4YcfxBYxQCzmSg3MulSytxCvLMsQH/kjpXyZOnXqIDQ0VAjMzZo1w6pVq1BQUIDk5GQsWrRIbPyw\n3BwTJkwoMW7r5OSEyZMn49GjR8jOzsbgwYP1pSEtE4dYBRsbG2Pu3LnIzc3F4sWLpaZBlZ1DbXv2\n7AHHccjKytKqVq3FZOeoX78+tmzZgry8PDx58gTdunWrEA5LS0scPXoU48aNK9FbrlmzJi5dugSO\n47Bhwwax8V3Z/TFjxgwolUqxXro2K64K3ZVeq0IvJT4xvKgqdKtWrXDu3DkcOnQIz58/R0JCgvCk\nmZOTI8g7zZw506Acatu8eTOSk5Mxffp0fPfdd7h06RKioqJw+PBhcByHP//8U2xNtWwc/fr1w6FD\nhwT5tZiYGHh5eZXYC6HNyh2YNcAaUFHVX81lJs2ISCnlyzg4OODs2bNgWRYFBQVCpaakpOgVuJSD\nw8PDA97e3lrP//HHHyM5ORksy+oS+iwXh9iF17p1a8TFxSElJUXyRWcIDrWpA3NcXByaNWsmhUd2\njjNnzggBYOjQoVL9YhB/qG3EiBHIz88vMkdSURwMwyA1NRUrV66U3EZIYzVVcRbiJ5+iSUQVmmEY\njBs3DuPGjUPjxo2xePHiIpOimvbf//63xI1MLg5Ne++99xATEwOO4/Dw4UMsWrQIlpaWGDx4MDiO\nw5o1awzmD7U1atQIHMcBALKyshAeHo4mTZqU6tqVMzBHEr8rxoaIMjXem0lEBVKcamJigvnz5yMk\nJASXLl3Cli1bkJycjEOHDpUmEJWZ49NPP0VKSgo+++yzEue3s7NDYGAgOI4rsp5YLg5dPmnYsCFC\nQ0Nx7do1WFtbw8LCAg0bNsS7776Ldu3aoX///ujfv3+J8Tu5OdTGMAxevXoFjuNw/vx5qaKfsnGY\nmppi2bJlghrzunXrhCcIa2tr/Pjjj9i9eze8vb21PTrL7g+1NWjQALGxscLMv56dbgbhOHDgAA4d\nOiRllUyRQESvpZQakkpsVMVxkETERxmGQcuWLWFkZAQzMzN4eHgIN2315Oi9e/eQmpqKtLQ0zJ49\nW9t4ark5iptCoUCvXr2K/K+xY8eC4zh9k8OycFy7dg3h4eH48ssvYWVlBQcHB3Tq1ElqnZQ/MFPJ\nMeZsIppA/JiMkvjxsgwiypHqVCsrKzg6OqJmzZowMTFBREQEvv/+eylfqNwcVlZW+OmnnxAVFYVP\nPvmkyPlHjRqFFy9egGVZfPzxx7JzaPOJQqHApk2bUFhYiKNHj2Lp0qXYvXs3oqOjER0djefPnyM9\nPR3p6enaekqycWiaeimYhEauafmqn4XEj90piSiRXsvCs0TURwrHRx99hKSkJHAch6VLl8LW1haD\nBw/Gli1bcOvWLVy5cgXt2rXTNYwgG4em2dnZ4cCBA2BZFvn5+ahRo0aF+UPTvL29kZGRARcXl9LU\nC6f6/TLx+bo5DY57RJQthcPb2xtxcXFFhjF++OEHNGjQAO+//z5u3bqFrKwsXTcN2Ti0mbm5ObZu\n3QqWZeHs7Gxwf1y/fh3vvPOO0GH44IMP8OGHH0qtE1kCcy0iakV8Aulv6PWYmegyk9I4dc+ePbh1\n6xZcXV3Rq1cvsQkEWThcXV1x4sQJ5OTk4PLly9i+fTuuXbuGnJwccByHZ8+e6RMfLROHNhZ7e3tE\nRUUhIyMD2dnZUCqVePbsGUJCQhASEoLTp0/ju+++w/jx47Vt8pCNQ9PatWuH/Px8cByH8ePHS21s\nl4mf1VaP3T0louVENKe0HG3bthUCs7+/P1avXo28vDwUFhYiNDRU3wSgbByaNnv2bOTn56OwsBCr\nV6+uUH+Ym5sLK3SmTp0KjuP05VCR9ZqxsrKCmZkZunfvjsjISOTm5iI0NLTErkcPDw88evQIS5cu\nNdi1q8vs7Oxw6tQp5OXl6cqzIytH+/btYWRkhK5du2LJkiW4du0aXF1dpdaJpMCsL+3nSyJaSfw2\nxuUMw7Qlfv1pFBG1UR0zmohO6DmPzrJlyxaaPn06nTt3jnx8fCg/P1/XoXPk4Hj48CF98cUXtHXr\nVurevTvl5+dTu3btCADt37+ffvnlF8rJyRE7hSwcRESZmZk0YcIEsrW1pYyMDHJxcaEHDx7QtWvX\npHxcNg7NkpiYSIWFhaRQKCg1NVXqx0IB/EJEpMpra0pE7sTntS0Vx/379+n06dNUu3ZtWrBgAXEc\nR+fOnaNXr17RrFmzKDk5uUI4NMs333xDCoWCDh06RAcPHpTyEdk4HB0daenSpTRv3jzy8PCgwsJC\nSkxMlPrxcreRNm3aUN26dSk5OZnWr19P4eHh9OjRI4qLiyty3MOHD2nkyJG0Zs0aWrp0KXEcJyuH\nWGEYhmxsbOjBgweUlpYmdqgsHNeuXSMTExNKSkqi69evU2pqamnqRFrR02PWlGMJJ/6R7DN6vcwk\nj3htuQZlvdupTcJKBFk5GIbBpEmTMG/ePHAch5MnT0p5RC0zR1l88qY4yiALr5brCSc+g1d94idV\n8olPDrOHtOQF0HW+Zs2aYeDAgXjw4AH27t0LJycnXWOXBuVQm/rxvXfv3hXuj+rVqyMoKAi+vr5g\nWRb//e9/Dd5GtLUHqf9Tx7EGjSEODg6Ij4+Xsty1QmKZPpPSY9Z7gAqsGvHacYNUf9cgfumPzj3f\nhvgybzOH3CyVhePfUDf6zrt27VqsX78eNjY2Fc6hnoDr27cvhg8fLjbU9/+uXtRmY2OD0NBQ+Pr6\nvjX+KHdgJh2S3/RaWfYhESUZ+stUdg4Nlgjie0aGVqeuLByVvm6qOP7dHAzDwMXFRUpahUrhj3IH\nZuLvItokv+vR62Tns4kolYopyxqgciszhyO9Tqq9mPj0giXUqf+lHJW9bqo4qjgqFYeUwMyo/rHW\nwjBMJyK6SER3VCcl4pPTf0VEHYjoGfHrAUOJXzRvEBHUt4BjpIqjFvEz8hOJTxlobgiWysKhh6Wy\n1E0VRxVHpeGQWkRXZUC35Hd1InoE4AvV3yUEDOUslZ2DiE4yDDOSiDprsMQbiqWycIixVJa6qeKo\n4qhMHFJLuVSyGYaJI35htjURWRHRNHmw3joONcsohmE+pDcrg17FUcVRxfH2cRQp5VXJBvF3l/8Q\n0Rr1myoVZMhsYirZb5pDzWJCvAx6ayLaRMVUof+lHHhbOQzcRqo4qjjEOMqnkq1jUlCdQPoJ8eOZ\n1+kNKMtWFg4NlgLik9Qo1CxUBlXot4lDT91UWo431FarOP6fcCgUCgwaNAiXL18ukRRNSozV22Nm\nGGYrwzAvGIa5q/GyJfFbGesRvyjbmYjUMrmSFW5NTU1JoVAQEa/A27lzZ3J3d6fu3buTra2tQTlM\nTF6P4jAMQ+3bt6dWrVrRsGHDqGXLlqRQKMjIqKR7tHEwDGNPvNouET+5kElEzwH8QxJVoUtbKorD\nxMSE2rdvTx4eHuTi4qKL5Y37owwcRKVUYzYyMqIFCxYQANqzZ0+RNlSRHJrF1dWV7Ozs3jiHWPn/\nxmFlZUW///47tWjRgpydncnV1bXUrFKGMraRdtnvHURUm4jmEtHfRDSeYZhexAfJp6SnNGjQgIKD\ng+nkyZM0cOBAunr1Kh04cIAGDhxIO3fupP79+xf/SA/i86Ual5fD3t6e1q5dS2vWrKEuXbrQBx98\nQKtWraKuXbtS3bp1qWfPntShQwfq16+fto/r4jhOfC9wroqpXmn8oS5ubm7Ut29f2rdvH/38889E\nRGRtbU3Tpk0jMzOzCuMg4m9YM2bMoEOHDtEnn3xCx48fp99++40sLS2LHyoLR8uWLalDhw5aWdq2\nbUtBQUH0wQcfkIWFhS7k0nCQGIu2YmtrS5MnTyYA1KJFC7KysjIoh7u7O9WvX1+U6YsvvqD33nvP\noBzaSps2bWjy5MkUGhpKV65cof79+xPDMBXOUcpSIRz+/v40cuRIysrKoq+++orCw4vGdoZhIhiG\nCVDdGLQXiUMXDaioSraYPL1epd2OHTviyJEjwlbXs2fPoqCgAGlpaQgICECfPn0E6SkN06YKXSaO\n5s2bIyUlBRzHITAwECEhIVi1ahXat29fZGfVrFmztO32KhMHRNZDWllZwcPDA/v27cPTp0+xdu1a\n7Nu3DxcvXoSpqSm2b9+OMWPGFM93KzuHJk+XLl3w5ZdfIi0tDRzH4fTp01AqlQgKCtKW4rDcHNWq\nVUNAQIAgXDlmzBgMHz4c27Ztw4kTJ4Tc3UFBQejevbsudskcqtckqVOrbebMmUKbPXXqFKpVq2Yw\nDisrK2zfvh3+/v46eUxNTZGQkIDhw4dXmD9q166N0aNH459//kFwcDDS09MRHx+PlJQUuLu7G4zD\nwsICtra2cHZ2hrOzM2rWrIkmTZrAw8MDjRs3hoeHh2AiuyMN2j5sbGywY8cO5Obm4t69e3j33Xd1\nHVt+lWwdgVlMnl5UWdbS0hKPHz8Gy7IICQnBw4cPcfz4ccybNw99+/bV+WVU/6cdEeWXl2PChAnI\nzc0VAnP9+vW1Vubdu3cxcuRIWTi0BUQLCwvMmDED+/fvx9WrVzFt2jR8+OGHYBgGdnZ2aNeuHYYM\nGYLs7GzMnTsXDMMYhEPTbG1t8e233wo3LrX9/PPPmDFjBlJTU7F3797inys3h7u7O548eSL8P5Zl\nhWCsaSzLYuHChbr4JXOo/i6VKrSmTxYvXix2bLk5Ro4ciZycHAwYMEDn/3F2dgbLspg3b57B/aHW\ntHvw4AHS0tKwfv16TJs2DQMGDECbNm1w5MgRMd3MMnN8+eWX2LBhA86dO4e7d+8WseTkZK3tw8PD\no8Lbh5GREfz8/JCeno6pU6eiadOmRa5XTVOdu9wq2VuJKImKihiKydOLKsu2a9cOHMchKioKDRs2\nFGYqJXz5rcQngGHLw2FjY4MXL14IFTl58mSd/zMqKgp+fn5ycZSY7FqyZAmePn2KuXPn6pRcf/jw\nIfLy8rQlWJKNg4jf1mplZYXTp08XaehKpRLffPONcNzXX3+tLTDLwqH5FKXLEhMTxUQ/JXNIaaua\nNm/ePOFGce/ePW1PdLJyqHvnYoH5nXfeAcdxYoFZNn+0bNkSr169Qnp6OgYMGFAiH/bnn3+OK1eu\nyM6xefPmEm0gOzsbGRkZOH36NHbv3i3YsWPHwHEctm/fXqHtg2EYbN26FRzHYc+ePXrbkurc5VPJ\nJv6u0Y+KBmZ9st86lWVnz54tyBa99957er+EhsUR0c3yctSqVUu4wNatWwcTE5MS/6tatWpYunQp\nAgMD0bJlS7k4iqhCN2/eHAcOHNAlPAuFQoHJkyfjwYMHunIAyMKhtpUrVwo9QqVSiZiYGDx58gRz\n5swpcpy7uztmzJhR/POycCgUCjg6OqJv376YO3cuOnbsCCcnJ3h4eCAiIgIcx+HIkSOwtbXV1UZK\nxaGvrarN2NgYa9asEQJDz5499bXVcnO0bdsWZ86cgY+Pj86bgITALIs/bGxskJiYiKNHj2rNwGht\nbY2YmBgxYYUyc1SvXh0uLi5o3LgxOnXqBGtra1hZWcHS0rJExsGBAweC4zjs2rWrQtvH+PHjkZOT\ngytXrkhVMimfSrYGXCcqvey3VigXFxdkZmaioKAAwcHBUqWLIBeHqakpoqKikJKSorOX6uXlhZSU\nFGRmZpYQvywrhyaLQqHAvn37MGfOHK03BiJepv3ly5f49ttvtaa8lINDbVOmTBGS4z9//hwzZsyA\np6cnvv322xJ8LVu2xKFDh4qrNcvCocvc3NwEEdADBw6IZXkzCIe1tTVu3LghBOaGDRvqYy43R6tW\nrRAbG4vo6GidTwgSArMs/hg2bBgePHigc4jgu+++A8uyCAgIqNB6KW6HDh3SF5hl5/jss88QGRmJ\nwsJCzJo1S1J6WkkxV09ALi4tJVmOXQxs0qRJwjjzihUr9KkOqE02jh9//LFET1Btzs7OuHnzpqB5\nV79+fVk4NFmcnJwQHh6udbLE3t4e27dvR2FhIUJCQnQGbjk4iAht2rRBfHw8OI5DQUEBvvjiC9F6\n8Pb2Rnp6OhYsWKD5erk5ipuNjQ169eqFNWvW4OXLlygsLBTGEJOSkpCQkICQkBA4OjoalIOIMHr0\naEFuKzw8XJ/en2wcM2bMQHp6OkJCQtCiRYsSyjoNGjTQF5iVGjx76XXuYVb12gUistPH4eDggF27\ndsHNzQ02Njawt7eHiYkJTExMULt2bfz1119gWRbfffedQTnEzM7OTlC60XVty8nBMAwGDBggTI6r\nJ6ZFnuYEkyMw1yKi5lQGOXZ9cD169MDly5eRl5eHkydPonbt2vq+kEE4NK1t27a4c+cOCgoKcOXK\nFTRo0EA2Dk0WY2NjjBgxAoMGDRLusBYWFpgyZQoOHz6MjIwMhISE6NMvKzcHET+kEhgYCKVSie3b\nt4sqhCsUCowZMwYTJ04sPsZYbg5Nc3FxwbFjx4RgqGn5+flISkpCUFAQ/Pz8ikscycqhtoCAAHAc\nh+TkZMyePVtKW5KNY9y4cXj27BlSU1Oxc+dOzJs3D97e3vDx8cFff/2lLzD3Jj6dpVriqisRrVOx\nLCV++dgaKRxxcXG4f/8+jh8/jm3btqF27dqwsLAQpMASExPFlMNl49BlXbt2BcdxePTokdhqCNk4\nmjZtitDQUKGzUFBQgJycHMycOVMva7kDswZYAyqlHLsUZxobG2P79u3gOA5ZWVn44IMPRL+MoTiI\nCPXr1xek2fPz89G+fXtZOYqz9OzZExkZGbh9+zauXbuGpKQkXLt2DR999BGSk5MFnTe5/VGcQ60j\n9+DBA7zzzjui/pk7dy44jtM2+VduDk37/vvvhR685sz7q1ev4OXlBTMzM3Tq1AkjR44sLhsvKwcR\n3zN6/vy5cNFL1HaTlaN169Y4deoUlEql4IuCggLk5eXpC8wNSLWaqjgL8asCokmi1t7EiRMF3UMv\nLy9h6aaPjw9YlsXRo0fFhphk49BmpqamwuTb9u3bdQn1ysoxffp0oS727duHatWq4ffff8cvv/yi\nl7fcgZn4oYyLxEux5xOfq9RG9Xs88fI5T4moUKpTTU1Ni4zD1KhRA4GBgeA4Dr///rvYY6KsHJpm\nYWGBS5cuCY6eNWuW7BzaWFq1aoVly5Zh4cKFwvjdnDlzcOPGDX2z/rJxqAOz2Ow/EQnrrGNjYzF0\n6NDi7/+P+Ef0AiLyJX4H1bcqlqeqYySrQvfq1Qvp6en4448/hFn5jIwMtG7dWp9PZOUg4ief1AEx\nNDRUmyhuhXAQEerUqYOuXbtiwoQJcHNzkzLGrOaIUbWRhhpt5CnxQy2S1KlNTExQr169Ijdva2tr\n7Nq1CyzLYvbs2WKrq2Tj0Gbvv/8+7t69C5Zl9fVYZeM4c+YMOI7D8ePHhQnRefPmITw8XC+vHIG5\nFvHihAnEj4+xRLSEeFn2Z/R6djFTypcxMzPDsmXLiqx0YBgGH3zwAXJzc/H48WM0atRI1xeSjUPT\nTE1NsWrVKmEM89q1a7ok2MvFIYXFyMgI//nPf/D1119LaZCycIwdOxZKpbJET9DR0RFWVlZwcnIC\nEb+aZtKkSejUqVPxjS4gfjklR0SviCiR+ICUSLzeXan9oVAo0KJFC3z44YeIi4sDx3FiE0sG42AY\nBqtXrxZW8QQEBEhd2ikrhy6TEJhfEj+uqiQ+EB1Tcak56hJRRlk5vLy8kJ2djdzcXG1zMRXGERwc\nDJZlERQUJDoUJyfH2rVrkZubK8wTWVpa4vr167h3755e3nIHZhWUIMdCr7v/KUTkp3pfsvR4rVq1\ncOXKFSxevBjOzs6oUaMG3nnnHWzcuBEcx+Hq1atiPRLZODRNvWmC4zi8ePFCyuB9mTikBuatW7di\n2rRpUhqkLBxOTk7Yu3cvIiIi4OXlhSFDhmDVqlWIiYmBt7c3pkyZgh9++AHXrl1Dnz59dLEIcj0q\nlgQiWk78Ntcy+2Py5MlQKpXIzc0V291mMI569eoVGd8eMWKEpEBhKH9oay/Pnj0Te3w2yDVDxPdS\nc3NzwbIsVq5caZC2KoWjZcuWyMnJgVKpxLBhwyqMY8KECUhOTka7du1gamqKI0eOoLCwUFIHotyB\nmTSkpYgfn3lMfL7S/xHfG4ggfsB8k5QvU7NmTVy8eBFKpRJbt27FhQsXcOfOHQQHB4PjOEyZMkVs\nuYlsHGpr0KABdu/eLWxc6Nevn5QLokwcpQnMn376aYVx2NjYYOXKleA4Drm5ucKwEsdxOHr0KMLC\nwtC4cWM4ODiILW38RXVeNctGIjpJRI+I741EUhnUqTdv3gyWZREYGCg1MMvKUa9ePZw9exYcxyE+\nPl7fk5TB/VHcGIbBkydPxFZDyH7NEPHDGtu3b8fZs2fx8uVLsa3pBuUgIqxbtw5nzpzBvn37DHbN\naDtX3bp1MWbMGHTr1g2mpqbw9PREnz590LhxY70ccgTmTsR39e8QUbaqYfUhokZEdFr1egwR7ZHy\nZRiGwXvvvYfr16/Dz89PCABffvklmjVrpu8xUTYOIv4xMCMjA35+fsjNzcWkSZOkXhBl4pDa0BYs\nWABvb29s3LgRBw4cQIcOHSqEw8fHB8uXL0evXr2wfPlyLF++HB07dpS0/Id4SfjbKpalRGRPROdV\nHEHEL0sqtfrwn3/+CY7j4OPjI6U3ZDCOUuxONSiHNq7Dhw+LBQNZrxm19e/fH2lpafD19cX8+fMN\nds1I8cGff/4JX19fjB079o1ylMbKHZhVUDrVmFXva93zLfeXeds5pLI4Ojrigw8+gI+Pj76dkQbl\nqAx106RJE/zyyy/48MMPpfZW3+o28rZwdO/eHRs2bEC/fv3Qpk2bN+oPb29v+Pn5ISgo6K2pl3IH\nZtKtku1IryW/E4joXgU0skrNofrZh/i80BlE9I2BWSoLR6WvmyqOfy+HhYUFPD09ce7cubfGH3IE\nZvVQRhjxS7BuEb93fCfxy0yiiL8DhZHhpccrM8efxD8KKYnoHBHVJ14JwZAslYWjstdNFUcVR6Xi\nkBKYy6qSnU1EtgA+Uf39NRH1V31Z9Wd1Zs2Wq1QWDuLVqbsQ0XwNlj1vgKWycFSauqniqOJ4GziK\nl7KqZNcjoqdMSXVqf5m43jYONUsXhmHu0JtV263iqOKo4nj7OIqUsgZmaPzsRvwe9G6aB6hmsWUr\nOu5alYVDk6UbgBSGYUYYkqWycIiwVHFUcVRxSOcoUqRo/mkr8cRv1ybiJwidqZjkdxnPq7PokPyu\nLBxqFhMVB2myMLwE+l2SsVQWDg0WWTnMzc1p3rx59OrVK/Ly8qKuXbuSsbGx2EdKzaFm0XaumjVr\nkr+/P82ZM4c4jiOWZWnx4sX0xx9/aBXpNRRHecq/mePdd98lX19f8vX1pTZt2pC5ufkb4XBzc6OE\nhATau3cv+fj40I8//iiVQxvL6yJlIFrLpKA6s/9jIvqH+NR5P6nekyz5Xb16dbi6uqJwMqAJAAAg\nAElEQVRBgwbw9PTEpEmT0KxZM8kD5nJx6DIHBwfs2LED+fn5aNq0qejAPb2WQb9L/ATcYyLy0ODQ\nqhyizT7++GNs375dLOVnhXBINTk56tatCx8fHyxevBiFhYVgWVZY875582axRDml4hBrIyYmJoKa\niuZ6e/XvxWW+DMWhzZYuXYopU6bg22+/1ZuR0ZAcamvevDnGjRsnmglRbo73338fixYtEuTHfH19\ncePGDXh7e5dIjWoojkaNGiEuLg5LliyBuqh/T0hIgJeXl87NclJirN4eM8MwW4vLfhOvk5VCfC4N\nVyJaT0QfqdRlRSW/7ezsyN3dnXr37k3BwcF0/Phx+uijj6hXr140evRo+vTTTyuEQ0pZv349ff75\n55qVqJWDeS2D/pz4XUUWxN+F7dUcAJ5J/b8tW7YkhUIheoyhOBwcHOjChQt05coVGjx4MDVq1Egv\nr1wcxsbG9Mcff5Cfnx9lZWWRt7c3zZkzh86fP0+RkZE0adIkatKkiVwcRDraCMdx5OjoSERELMvS\nwYMHadOmTRQeHk55eXm0ZMkS6ty5s8E5ihdLS0vq0aMH1alTh+bPn0+nTp0iU1PTCufQOB+NHTuW\ntmzZQnPmzNH5RCM3x+PHjyk6Opr+/vtv+vvvv4lhGGrdujX9+OOPtGbNmuJq8gbhYFmWCgoKiIgo\nMzOTTp48SWFhYbRhwwaqXbs2rV69mlq0aKHrK+gvEnrHnYmoNRUVY11HRF+pfv+KiNbQaxXkkaRF\nWbZ69epYs2YNnj17hsjISPj6+qJLly5wdXWFQqFAmzZtEBwcLLYtOo54qfH75eGQYg4ODvD29saZ\nM2cwZ86c4ooVZeKAxGU36vzI27ZtE+0xG4Jj8ODBCAoKQmJiIiIiIrBr1y5cvHixeDJ6bSYLR69e\nvZCWloZ79+4VSZTEMAwmTJiAgoICbNy4USyfimQO1Ws628jYsWOxdetW1KpVS3jN2NgYvr6+KCgo\nwPfffy+WPkA2Dk379NNPkZycjMDAQBQUFAAAxo8fL0u9lIZDbTY2Njh9+jRYlsWJEyfEtuwblMPN\nzU3ILpeVlSWm1i0rx6JFi/D555+XeJ1hGFy4cAGBgYHo1q2bts9GEFEAadmWL7BJ6VZTSZXsGOJn\nMy2Jl/2OodcqyCUkv52cnHDu3DkhD0S9evWE9/r164f//Oc/CAgIQO/evbVlLlMbQ9rlxyVzaJq7\nuztmzZqldUfZkiVLkJ2djRcvXmDQoEGycEgNzBMnTgTLstp09QzKYW5ujh07duDVq1fo1q0batWq\nBTc3N+zYsQP79+/XxyILh4WFBfr164f333+/xP9o1KgRcnJycPfuXbHHZskcqvdLJU+v9tPp06dx\n8+ZNXVqMBuEwNTXF9evXAQA//PADLl68CAAICgqCg4PDG/HHzJkzoVQqwbIsDh06JJbZzaAcRkZG\n6NChA1iWRWFhIdavX//G2ofarK2tcffuXdy+fVtbxkyG+K36JbblSw7MVHqV7BKS37a2tpgwYUIR\nuKZNmyIkJASvXr0SE3HUtK1ElExEXFk51Obg4CCkCpw4cWKR97755hsh/+6GDRu05UUuE4eUwGxk\nZIQdO3YgLy8PNWvWNIg/dHHY29sjODi4RD0R8Xk09LAYxB+a1rFjR3Acpy8wS+bQ10bEbMaMGfpS\n1MrKoVAoEBUVBQBIT09Hw4YNsWrVKgDAixcvxFTDDeqPjIwMYZxXJJFShdSLpaWlwLJjx4432j7U\n1qNHD+Tm5pbI86I6t86UCVIDszaV7DwimqPxd4bG7zolv42NjdG1a1f8/fffuHTpEr7//nshN3P9\n+vXh7OwsNqnSmfi7F1tejqFDhyInJwfJyclC8hNjY2P07NkTL168EAKADrHWsnLonXRTKBS4f/8+\nsrKypFS8rBz29vY4cOBAicdzIyMjTJ48GXv27BHLImYQf6jNxMQEM2fOBMdxWL16NczMzMrNoa+N\niJmDgwMyMjLE1LJl42AYBsOHDwcAsCyL0aNHg4gXOJAQmA3mjylTpgiySsnJybpk2CqsXrp16waW\nZaFUKsV0Kyukfaht06ZNAIApU6YUeV117plEdFBX3NW7jhnAJYZhOhV7OYd43SxiGKYm8Qmo1cfn\nMQzzBfGJ3IViZmZGvr6+NGXKFAoKCqLnz59TkyZNyN/fn2rWrEn29vx4+/3798nHx4ciIiKECTdV\n2UxE6cTPoJaZg4jI39+fMjMzacCAAXT79m0iImrYsCFt3ryZatasSU+ePKFJkyZRWlqaNpeUlSNQ\n28k0i0KhIDs7O7p06ZK+Q2XnyM7Opvj4eOI4rsjrn3zyCU2dOpVSUlLEJiRby8Whrbi5udGsWbMI\nAAUEBFB+fn65OYqxlGgjYsXY2JhMTExk8Yc+DhsbGxo9ejQREQUFBVFwcKn2PhjEHw4ODjR8+HDh\n7y1btlBcXFyFcZiZmdGYMWNo8uTJxDAM5ebmko2NDTEMQykpKXTu3LkK4RArTk5O1K1bNzp//jzd\nuHGjyHsMw0QQv/pjos4T6Osxq4KjNtnvUuUw9fT0BMuyyM3NxcOHD3H69GksXrwYM2fOFOyrr77C\nsWPHEB0dDR8fnyK9N7k42rVrh4yMDCxevFh4zcbGBnfv3gXHcUhNTRVNiF5WDm0sxW3KlCnIy8sT\npGrEzBAcCxcuxOjRo2FiYgIjIyM0aNAAbm5uyMnJQWBgIKpXr66LxyD+ICK89957iImJQWFhIfz8\n/PTJwxuMQ9PU6UhFhANk42jSpAlevHgBABg5cqTw+ujRowEAr169QqtWrSrUH0OGDEFmZiY4jsPN\nmzelyKCVm6NatWpo1KgRpkyZgoSEBGE8WVM9nWVZ3Lt3r4hCkqH8YWpqCmdnZ8GK6wzOnTsX+fn5\niI+PL1E/kmKunoDsTPxdpLgcexvix2vUYzMluuTFv8iwYcOwcuVKDB8+HHXr1tV5gZmamqJbt264\ndetWcXFWWThWr16NiIgI4dHL2toaGzduFGZ0586dq6+hlYlDSoN//vw5YmNjxSZADcrh6uqKsLAw\nzJw5E25ubmjXrh3atm2LnJwc/Pbbb2Iilwbxx6BBg3D//n0UFhZi165domtU5eQwMTHB0KFDsWLF\niiL21VdfYcWKFcjIyBBEOHUMZ8jmj6ZNm+Lly5d48uRJkRujo6MjAH54Y9y4cbr8odTg2Ut87uFz\nxGsQqsdX7UpTL6ampti/f78QGBctWiSlrZabY/r06Xj8+DGysrKQmJiIixcvYsqUKVi3bl2RwFxY\nWIibN2+if//+2nQ7ZfHHe++9h507dyI8PFywgIAALFy4ECNHjsTIkSORk5MDANi0aVMJf8gRmGsR\nUXMqKceuuczEjzRmOsvaC9E0c3NzDB8+vPhmE1k4PDw8kJ6ejgMHDmDbtm1YtmwZcnJywHEcLl++\nLIWvTBz6fOLh4QGWZbWO81Ykh6WlJX777Tf0798fRIRx48aB4zh88803Yiyyc3h6egqTsBcvXpSa\nsF8WDmtr6yKSUmKmbbJUTn/s3r0bALB27doir6vHmAGITZ73Jn7jRLXiLMRPPr0kojWlqZdp06YJ\nQfD27duSnu7k4JgyZQrOnDmDK1euCHNRpqam+P3334XA/PLlSyQlJYFlWZw8eVLYFCYnR7NmzRAY\nGAipRZuAcLkDswZYAyoqxx5Hr+XYFxBRlpyBuUOHDrhx40aRwCwXR/v27REbG1viAnv06BE6duyo\nl62sHPp8Mn36dBQWFkqVUDIYh6YpFAr89NNPYFkWLi4u+gKiLBwNGjTA0qVLkZ+fL4jjtmnTBi4u\nLoLpk6cvL0e7du0kB2Z/f3+D+iM8PBwAsHPnThDxnZa+ffsiMjISAPDkyZMSQrrFOVTn3k/88q8Y\nInIgfvLpGJVCa0+hUOD27dtgWRb5+fl6ldXl4mAYBhzHQalUYujQoejSpQsmTJiAuLg45Ofng2VZ\nXL58GfXq1UOXLl1w4cIFFBQU4OrVq7L7Q31DTEpKwsGDB5GWliYamLdt21ZiGWG5AzOVHMpgiWi6\n6qeS+FnNDCLKkSswOzk54Z9//sHs2bOLvycbR8eOHQXxRPUF1qNHD30bOsrFIeYTIyMjrFy5Ekql\nsvjwTYVyFDd3d3fEx8cjMTFRn65bPvG5bkFEh1QManXoDBVXHykc+/fvF4Iyx3FISEhAVFRUEQsK\nCsLRo0dx9OhR/P333+jcubOsHPb29qLBODQ0FLt27cLgwYOLbz6S3R+zZ89GYWEhMjMzcfToUZw5\ncwZJSUnChe/r6yu2SkXNUUi8nNJu1d9qjntElC21fYwdO1YIhMHBwaW5rsvFwTAMUlNThV7xy5cv\nkZOTI/Tcu3btKiyhZBgGtWrVwuPHjxETEyO7P1q2bIn4+HhkZWUhPDwcubm5ooE5Ojq6RKdGjsCs\nHsqoRnwuimfEd/9Fl5mU5uI3MzODnZ0dXF1dMXnyZERERGD06NHals3JxsEwDCZOnCio/G7ZskVq\nUC4zh5hPFAoF9uzZg/z8fLRt2/aNcRS3oUOHguM4eHp66ju2LfGTJyOIf0TMIqIlapbScBw7dgxJ\nSUl49eoVWJZFamoqkpKSStjhw4cxb948zJs3T1OCSzaORYsWISsrSwjGWVlZCAsLg7+/v5ShJtk4\n3NzckJiYCJZlhYud4zhkZ2fj9OnTYk8Psl4zZmZm+P3334W5GJGJT4NwNG3aFH/++Sfi4+MRHx+P\np0+fIjAwEEuWLNH6P+3t7bVtHpPFH9OmTUN8fLxQH7m5uYiLi8Off/4pLByoW7cuZs2ahY8//rgE\nm5TArC9R/guGYVKI7+L/SUQfEr/+VHSZibZibm5O3bt3p1u3bpFCoaAGDRpQ9+7d6d1336UXL15Q\n//796erVqzRixAhhCVux8kAODiKi+vXr04QJE8jMzIw2bNhA69ato8LCQikflZVDXQDQzZs3CQBF\nR0e/MQ7NYmNjQ127diWO4ygkJETf4f5EtBPAboZhPInPaWtJRFml5Vi4cCE5ODhQamoqtW3bluLj\n4ykhIYGqV69ORESpqanC7+q/Hz16JDvH+vXrKSIigpRKJTk5OdGrV6/o5MmTlJeXp75YxYpsHAkJ\nCfTrr7/SnTt3aMWKFZSQkECBgYEUGxtLBw4c0Pdx2dqIhYUF1a1bl86fP085OTl05coVqV9BFo6o\nqChavHixsKw2MzOTYmJidNZFSkqKQTiIiDZu3EhXr16l9u3b0/Pnz8nCwoLCwsLo4cOHwjHPnj2j\ntWvX6juV7qKnxyxo/lE5Jb+tra0RFhYmPH74+fkhKysLR48eRbt27aSoEMsqgc6UXvm4XByl6alW\nBg53d3f4+fkhNDRUCssvqvOqWTYS0UnilYhfEFEkackLILM//vUcZWizsl0zDMPgk08+wcKFCzFn\nzpwKaasGqJdKwSGlx6wvMKs1/9645PfbzmEAFoNydO/eHZ988onWJC1aLIyIbqtYlhKfneu8iiOI\niH4iLXkBDFA3VRz/omvm38pR7sCsgqoUkt9vO4cBWCoLx1tfN1UcVRwVyVHuwEwaQxnFXv9XSaDL\nwaH62Yf43K4ZRPSNgVkqC0elr5sqjiqOysQhR2BWD2WUWvJbTnsLOP4k/lFISfxOovpEdN1QLJWF\n4y2pmyqOKo5KwyHV9K3KCCEtuoCMBMlvOUtl5yCikwzDdCGi+RosewzFUlk4xFgqS91UcVRxVCYO\nqaWsKtn1iOgpwzBxxD8uWxORFfHLhCqyVBYONUtlkEGv4qjiqOJ4+ziKlLIGZmj87Eb8HvRumgcw\nFSs9/qY5NFm6oQJk0CsLhwhLFUcVRxWHdI4iRa8Yq44ST/x2bSJ+grCiJNCLS35XFg41i1YZdIZh\n+jBFRWT/NRwaLG8dh5qliqOK4w1waGN5Xco4kK7O7P+Y+O2NOUT0k+o9vRLoDMNg2rRpSE9Px+7d\nu7Xq7hU3OTmqVauGjz/+GJMmTULr1q0xYMAAMb0ySTOqpEMGXYNDsmIHEZ/FauLEiWjVqpXWPBUV\nxVFWn8jNUadOHYwaNQqDBw/G77//XiSfdlk4pLZVTXN2dsaTJ0+wY8cONGnSRBZ/lIXDEPVSGg4j\nIyO4uLigYcOGGD16NCZNmgRPT09taTb/X/hDm61bt05nkidJMVZCEN5K/G4lTTFWe+IDYR7xeQBW\nEtFNIupFRF1Ij07WqFGjMHXqVAQEBCAhIUEz14GYycbh6emJ1NRUcBwHPz8/ZGZmIjAwUIrOnhjH\naVWlZhI/w/tMk0N1nOSKVeeIXrRoEerXr//GOCSawThq166Nfv36ITw8HHl5eWjTpg3effddXUmV\nJHOo3tfbVjVt/PjxQu6MLVu2iOXtlpXD09MTn332WRERYyJeuPf06dO6JNAM4g8bGxv4+Pjg/v37\nmD9/vpCaNScnR0yx26D1UgqrEA5ra2ukpqbqlLiSEpilDGVsI36dn2ZZSkQ7AJgT0WIiMiU+jV5b\nUk3I6TqZubk5/fjjj5ScnExjxoyh8ePH04IFC6hHjx5kYiI65N2D+C2TxuXlePnyJSkUCsrPz6fm\nzZtTUlIS9ejRg7744gux/6+P4ziAd4jIl3gpmt/0cegqtra2NGHCBGIYhtq3b085OTkG56hevTr9\n/PPPVL9+fXJ1dSVPT09BUkqpVJKvry81bdpU18dl90etWrXo119/pQcPHtAnn3xCR48eJScnJ7p1\n6xbFxMRQVlZWeTlIKouVlRV169aNhgwZIrzWt29fqlOnjq6PyMZhYmJCn376Kc2YMYPGjx9f5L2l\nS5dS9+7dqXfv3gbnUJcxY8bQ999/T3Xq1KGmTZvS2bNnadOmTRQYGEjDhg2jVq1aVQgHERHDMGRp\naUlOTk7UunVr8vDwIHd3dzIzM9P1EYNwFC8LFy4kGxsbevbsmS7uCIZhAhiGsdd5Ekndao08pqq/\n9crTk467yciRIxEXFyeoURgZGaF79+6IjY3FkCFDxHIBMFQK+XExjurVq2Pq1KkYP348Jk2ahO+/\n/x55eXlITk7WmWWudu3a5eKQ2kNUKBT466+/hJ7Z8ePHYWVlJZs/dHH07NkTqampePr0KeLj46FU\nKvHkyRMEBARgyZIl2LRpE44cOaIrMbqs/vjss89w//59XL9+HbNmzYKlpaXUHBEGkaf//vvvkZ6e\nDo7jkJaWhsjISGRmZopJOsnG0b59ezx58gR5eXkYNGiQ8LqVlZWQFH7lypUV5o8lS5bg+PHj6Nu3\nL+rUqSNk2qtVqxbu3LmDEydOGJzDysoKnTt3xrJly7Bnzx48ffoULMsKPXcRRReDtA9NMzExQVRU\nFOLi4tCiRQuxWLaUtGzLL+1QRhIV1crSK0+vy6F79+7Vqqnn5OSEixcviknTb6VSyI+LcRDxY7ix\nsbFChaptzZo1Wp09atSocnFIDczt2rUTHg8zMjK0KiAYguPRo0eCD1JSUjBr1izY2NgI79euXRsR\nEREYMmSINhZZ/bFkyRJwHIeVK1eWJh1rqTiktBGi17mA1fUxdOhQMAyDe/fuiQVm2ThWrVoFjuPg\n4+NT5PW2bduCZVkUFBRg4sSJFeYPtU+Kv9asWTM8fvxYV2CWhcPExASff/65kKxf3V7/r71zj4uq\nzP/453AbBRUFE40KzfCWueZ11cxLad6yqHVpA8nSzFq11lwtN1k1tcxcXVtT895VzS0VLSUhFSxd\nrxh5QRSUJFAEBEFhZs7n98dzZhxw5szAnCHsd76v1/cFzBzOvOc5z/me5zzn+3w/ZrOZFy9e5IgR\nI3jmzBlOnz69RtvD1kePHk1ZlrlhwwaHz86UfTssmeBqYO4NocJgG5hdkae/BSg8PJxpaWkOryTz\n5s3jX//6V0dfujeqID+uxgEIMUvbguwlJSW8fPkyy8vLGRMTUyEg+Pj42KqbVJfDpYddUVFR1gL+\ndhQYtGiPWzhGjBhBo9Foldfq2LHjLTWHW7RowfT0dEeBWdP2MBgMnD9/Po8ePco+ffq4fFJUhcOV\nPtKqVStmZ2ezqKiICQkJ7NOnj7VfLFq0iL169fI4x4IFCyjLslU4ok6dOuzZsyeXL19OWZZZVlam\ndoHQtD3UvGPHjszIyODjjz+uOUdYWBifeOIJxsXF0Ww2s7CwkImJidy0aROnTJliFV/19/dndna2\nWmD2aHuEhIRw7969NJlMqoIXyr4nwIH2o0uBWdlJZXXZfACxyu93oJIcC8RSx1uAwsPD+e233zoE\nHjhwIFNTUx29fxLAfi04ADA4OJgTJkzgsWPH+Oabb3LAgAHs2bMn09PTmZGRUUEvTJIkPvHEE+5y\npDo7sAaDgXv37qUsy8zMzFQ74TTlmDp1KmVZZnx8PENCQux+3pAhQ9QeaGjeHr6+vpwzZw7Pnj3L\nhx9+2NUAUSUOtT7i6+vLWbNmUZZlvv/++2zcuLH1YiVJEnfs2MF33nnH4xyWwLxkyRK+9dZb/O67\n75iTk2NVEikqKlK7ZdaMQ80lSeLXX3/N69evO8rMcIsjKSmJRqORqampfOONN9ilSxcGBQUxICCg\nwuh92LBhLC8v53PPPfebtMecOXNoNBr59ttvOxNUPglgB4DQagVmiJy+vRBzLzLEUl9ATKJbJIyu\nAlhj539vAQoPD+fWrVsdAjdt2pRHjx7lwIED7b2vGYezTvbDDz/w448/voXNHQ5nLF5eXlyyZIl1\nBL927VpnB1czjkaNGnHTpk384x//6JDtxIkTvH79uj2BS3qiPSz95ccff2RmZqarwVkzjoceeohF\nRUU8ceLELfPq3t7eTE5O5oABAzzOYRmJWuqYW5SgjUajK+o7xxSO0wCmQNQevgKRwVQK8WDLJZVs\nPz8/3nnnnWzXrh3btWvHBx54gOHh4QwKCuKjjz7Ky5cv84033vAYh8qUHgGwbt26TElJYVZWFsPD\nwz3eHpW9c+fOlGWZp0+fVsuSISBGzM7cWWAOgXhSmYub2lixEFWaTkPk/eUBSHPly7Rq1Yo7d+5U\nhV61apWj2yHNOJz56NGjeejQIUfvV4vDGcvw4cNZVFRkDcwqqUce5bDnUVFRLCkp4ezZsx3Nm3mM\no1u3bkxKSuLBgwddYdWMY8uWLSwoKLA7Gh01ahTz8/PV7mg045AkiX369OHGjRtZWFjIPXv2cPny\n5dYHf3a0MW09T+H4BUJzcBiACxCVB89C1INwqpLdrl07rlixgocPH2ZBQQELCgpYUlLCixcvcteu\nXTSbzRw/frya9qAmHGo+dOhQlpeXc9WqVWppjB7hqFu3Lnft2sWioiJGR0c7ZXU7MNuANUdF1d+z\nuKn6ez+Acle+THh4uFrAIyASs3v06GH3y2jF4cwjIyNZXFxsdxFBdTnUWAwGAzdv3mwNyjt27HCq\nK+cJDnvet29fms1mFhcXq90ye5Sjffv2TE9Pd2VbzTiWLl3KAwcO2P2cffv2MSUlRe1BtUfaw6Jg\nMnfuXF6/fp3Xrl1jhw4dnLaHsu8KLBAPn9LhRBU6JCSE69atY15eHlesWMGHH36YL730EtPS0iro\nIVqyrDzFoea+vr784IMPKMsyn3322RrnGDNmDMvKyvjFF1+4lD3kSsytypJsX4j8vmSIur9XlNf7\n4+ZyRlUrKCjA1atXMWiQ/ZWIjRs3Rvfu3XH48GGPcjizy5cvo6ysDGFhYTXC0ahRI2uO8NWrVzFz\n5kzIsuzqv3usPYKDg/HGG29AkiSsXr3aVluvRjnKy8tRXl6OkJAQVzbXhMNkMuHAgQMVXvPx8cGA\nAQPQsWNHJCQkICtLNcVV8/YgicDAQIwcORJ+fn6IiorC8ePHnf6fJEnNFZZTAO5QWJ6GGME3Ufvf\nXr164emnn8aqVavw7rvvol69eggKCoIkScjMzERKSgrq1q3r8JzWikPN2rZti+joaGRnZ2PLli01\nyvHwww9j7ty5MJvNmD9/viWQu29ORsp3Q4gTGiGifQmAFyDSSixzZkUASl29ysTGxvLMmTN2HxJY\n8hId/K9mHJ07d+akSZPszuE2bNiQW7Zs4Y0bN3j//fdrxqHWJv369bNmRWRkZDibW/YYh617eXnx\nu+++s47MgoKC1LYvU36aAGxUGHJwUxbeDGCQKxyhoaHs379/hde6du3K3Nxcu2mWnuJ49NFHeeHC\nBbZq1Yr16tWjj48PIyIimJWVRVmW+d5779UIR2UfNWqUNUVM7cm/DYes/L4Pol63bMORCqBEjaNL\nly68ePEiCwoKmJ6ezsLCQhqNRqanp7NLly4MDQ3luHHj+OGHH6rNrbrNoeZLliyh0WjkuHHjPN4e\ntt6hQweeP3+eJpOJ8+bNc4kV0GAqA2KOuSNEAempEFLsf4B4mjld2cbR00y7UA0bNmRSUhJXrFjB\nFi1aMDAwkE2bNmVERAT37NnjKBhSS47WrVszOzub58+f54YNGzh16lT+85//ZEJCAm/cuMGysjKu\nX79eUw61Nvnyyy+tt4Xnzp1zNXdXcw6L16lThxMmTKDJZOKpU6dc4dkH4G8QasNpEA9R5gGYVFWO\ne+65h7t37+bOnTs5cOBA9ujRg7m5udy+fTubN29eYxzBwcHcunUrZVnmpUuXmJKSYj1GWVlZDrNX\ntOaw11dIUpZlhw9r3e0jlffzl7/8hfv37+f+/fs5Z84cDh48mH5+ftb3/f39efLkSY4YMcLj5669\n41RWVsaEhASPnTP29tWsWTPu2LGDsixz/fr1LtfaAbQJzBWkpXBzXuYAgM3Ka38DsLgqjdqgQQOO\nGzeOO3fuZFxcHGfPns2lS5eyU6dOanM0mnEYDAauXbuWsiwzMTHResJZft+2bZujFW7V5lBrk6NH\njzIxMZFms5n/+c9/XF3lpjmHxaOjo1lQUMCtW7dy8ODBrrAstNn3JgBbIVShX68OxwMPPMChQ4cy\nLi6OaWlpnDVrFtu3b1/jHH369OGCBQuYk5NDWZa5bNkyzpw5k4888kiNcth6UgAm9tUAABb0SURB\nVFISExMTWVxczLCwMI/0EVc4Kvvf/vY3fvbZZxw5cuQtNT08yTF27FjGx8fztdde89g5U3k/derU\n4ebNm2k0GvnVV19Z86hddS0Cs60cy88Qt2QRECq/pRC3zNkAmlenUasox64pR+/evXn8+HHGxsZa\nA/NLL73EWbNmVVjxphWHGktYWBgnTpzImJgYR8V5aoQDEFMY169fpyzL7Nixo6ujd4tcz88QGQn3\nQDxUKYNIRdoAIKiqfaSK/eN3zwGIwBwbG8vPP/+8xs8ZNW/fvj1fe+01rlq1yl6f8QhHUFAQjx07\nxkmTJrFbt2412h7V6BNWdzsw24DVg9COe1L5uzHEaNrhmu/qADv7Mrczh9YsnuLw8vJiTk4O58+f\n73LHu92Pze3EMWXKFA4bNowjR478f98ebdu2ZUZGBl955RXbdQa3RXu4HZjhQPIbN5Vl0wBc9vSX\nqe0cNiwnIUZGnlan9hhHmzZtnKU/3VbHRuf4fXIYDAZu3bqV/fv3V8uhrnXt4XZgRqU5ZpvX78LN\nYuevAihAJWVZDxzc2szRBDeLar8F4GvYUaf+nXLU9mOjc+gctYrDlcAsKR9s1yRJeghi6e9xZacA\nMA3AawB6QBSVPg/gfxBJ8x4RQb0NOJ5VOEIgnsiPhigZWMcTLLWFwwlLbTk2OofOUWs4XDXVyvR0\nLPndCMA5ki8rf98iYKil1XYOAN9KkvQsgN42LL94iqW2cKix1JZjo3PoHLWJw1VzSyVbkqRMiMTs\n+gACAIzTBuu247CwREmS1Au/rQy6zqFz6By3H0cFc1clmxBXlw8B/NvypqKCTI1dTSX7t+awsPhA\nyKA/CGA5KqlC/045eLtyeLiP6Bw6hxqHR1WyL0DMZx7Eb6dw+5tz2LAYIYrU+FpY4CF16trC4eTY\n1FqO36ivVoujV69ejI6OZnx8POPj4xkdHc3Y2Finq81+r+3xe+So7E5HzJIkrZYkKVeSpJ9sXvaH\nWMp4F0RS9t0AeirvdYdI4NbUPMlhMBjQo0cPdOjQAWPGjEFwcHCVOCQhqhin/HkcQnE3m+QRCwdJ\n+8qMdqxBgwaIjo7GmDFj0LJlS7Rt2/Y34bC1Rx99FLm5uXbf8zSHt7c3evTogWnTpiEmJgb5+flY\ns2YN7r77bnc4ABf7SKtWrfD444+jXbt2GDFihJooreYcEydOxPr16yFJEn755RecPHkSZWVleOWV\nV3DixAl06tSpRjjcsZriiIyMxMGDB9GoUaMa5zAYDGjWrBm+/PJLlJaWYtw4N2dTXRgd9wbwICqK\nsX4A8TSzifLzIwCHIeTpn4ULAoatWrVifHw8v/nmGzZp0sSVK00mgO0ATmjJERAQwJUrVzInJ4fT\np0+nLMvcuXOn2mikWhx0Me0mKCiIo0aNsipUTJ06lenp6faKf3uUw9YffPBBvv7667x06ZKjbTzG\n4eXlxY4dOzI7O5tms5mTJk1ibGws+/fvb68QlsscyvsO+0hAQACjoqL4/PPPMz09nUVFRZw2bRpL\nS0t58OBBjh49mpLkcAGOZhxnzpzhsGHDWKdOHWtxKx8fH3bp0oXFxcVcuHChWolYzTicuZ+fH5s3\nb87FixfzzTffrHGOevXqsbi4mFeuXFErp6AZR926dXnfffdZv/vkyZM5ZswYvvrqqxw1ahRXrVql\ndlxOAvgUdlZ/Wtzpwz+SSZIok2drQwB0I3lFkqRPISRbVkGU0stU258kSXj++ecxaNAgmM1mNG3a\nFP/+97+xZMkSJCcnq/1rCwALcXNE7DZHdHQ0+vXrh1GjRqG0tBTt2rWzlpc0GAwoLi72OIetNWjQ\nAO+//z7CwsLg4yMOzcCBA3HhwgV06tQJGRkZMJlMHuewtaCgIPz9739Ho0aN8NZbbzna7IwnOAwG\nA8aOHYuIiAgEBwdj7969+Oqrr5CZ6XAXVeHYBXGS3GL+/v7YuHEjBg8ejF27dsFgMODChQsICgpC\nZmYmGjZsiNjYWCQnJ+P06dMe4wCA+Ph4xMfHo7y83PqayWTCoUOHcPr0afTt2xdBQUHIy8vzKEdl\n8/LyQr169dCoUSOMHDkSo0aNwvnz51FWVobU1NQa47BY7969ERAQgMTERJSUlDjaTDMOo9FoLfva\nunVrTJw4Ef369cPZs2fh7++PjIwMtdK97QDMALAYQLTdLVyZ74BNgWnl7yKIaQR/m78t8vRO1akL\nCwv54osv0mAw8M477+SuXbt46dIltSsdlc/pBqBMC446deqwsLCQZrOZu3fvZmRkJNu0acP4+Hh+\n//33Dlmqy+FshNisWTNrYRRZlnnlyhVOnDiRc+fOZUlJCffs2VOhhoenOCr7P/7xD5rNZq5bt06t\njodHOIYOHcq8vDyWl5dz0aJFDlWHq8Nhczd4Sx8ZNGgQTSYTc3JyGB0dzW7dujE4OJgGg4F33HEH\nw8LCmJKSwsWLF3uUw5l/9913PHDggNpyZI9weHl58aWXXuKyZcs4ZcoUms1mpqWlcc6cOYyIiLDH\n4/H2ePnllynLMmfPnu3x/lHZ77zzTp46dYrDhw93iVXZt9sq2asBXEZFEUM1eXqHyrI+Pj5csmRJ\nhRJ93t7eXLp0KWVZ5rp169RqEa+GKABjdpcDAO+9916WlpZyxowZbNiwIf38/BgREcH8/Hxn8jDV\n5XD4sMvHx4crV66soOs2e/Zsent7s2vXriwoKGBubi5btmzpUY7KXq9ePa5bt46yLPPJJ59U21Zz\nDkmSePDgQcqyzO+//97VE9RlDmd95LHHHlOtv7B06VIuW7bM4xyO3MvLi9nZ2Vy9erVaoSmPcEyY\nMIFGo5EbN25k06ZN2bJlS7VpHY+3R2hoKI8cOUJZlp2dux7h8PX1ZXJyMj/77DOXeJV9u6eSDXHV\nGIJb1WUd1jCFA2XZ0NBQHj58mI899pj1teDgYGu5zTlz5qjpdWVCzP+4zQGIeaGQkBDef//9jIyM\n5NGjR2kymWg2m9XEHN3hcKgK3atXLxYUFNBkMjE+Pr5ClbmuXbsyLi6Or732GgMDAz3KYeve3t6c\nMWMGL1++zIkTJzqTutKcw3Ly5+fnq9XodovDWR9RcyeB2eMcMTExNJlMdmXYPMVRt25dxsTE8Ndf\nf+Unn3xSlXoqHm2P7t27WzUInVRn9AiHJEl85513eOjQId5111186qmnOGTIEAYEBDj6H/dUsm3g\nHqr0hapVSzU0NJQ//PBDhSLbMTExLC4uptlsVi0+riUHIK5y8+fPZ2ZmJq9du0ZZlpmZmUlZlrlg\nwYIKjFpwOGJp3bo1z58/T1mWmZKScsuD0KFDh7K0tJRJSUkVArPWHLYeGBjIDz/8kEajkT///LMr\nJ4fmHJYayO+//76rJ79HOOx53bp1uXv3bk6bNu034QgMDOS2bduYnJzsTO1GU45Bgwbxxo0bLCoq\n4ieffMLOnTvXiuPy8ccfs7i4mL179/7NOJ555hlev36dP/30E69du8bdu3c7TGpwKeY6CciVpaUK\nATwPYBHEsF+GqGPawdXAvH379gqj4tjYWJrNZmZkZDgblWnGYelkJSUlLCwsZFxcHJ944gmGhITw\nwIED3L59u9p8d7U47LF4e3tz6tSplGWZOTk5DA4OrvB+/fr1+b///Y9ms5mrVq2qnIWgGUdlb9u2\nLU+ePElZlrlnzx5XTg5NOSIiIijLMo1GI0tLS/niiy+6Mr+sOUdl9/HxYdu2ba0X0jFjxvAPf/gD\nBwwYULmQv+YcDRs2ZPPmzdm8eXMOHz6ceXl5airdFi+34dmIm7WHzcprewA0dJVDkiRGRUVx0KBB\nXLBgAY8cOcIhQ4a40naacth68+bNWVBQwK+//vo34ahfvz5jYmKYmppKkjSbzTx79izffPNN1cGd\nu4E5BEB7iId/P+OmHMsKiPQSCWJIfsqVLxMYGMjNmzdz2rRpbNiwIZ9++mnu3buX58+fZ1JSkrNG\n1YwDEA///vSnP/Gpp56qMJfYtGlTJicnc+DAgZpy2GMJCwvjxYsXaTKZOGPGjFv4Pv/8c964cYPr\n16+3d4umGUdl79y5M8+dO8esrCwOGjTIlQ6vKYflYvXjjz8yLi6OhYWFfOGFF2qUQ5Ik+vv7c/jw\n4Rw9ejQXL17MlStXMj093SqsUFZWxri4OE6bNo1//vOfPdYeHTt25M6dO5mWlsa0tDRevHiRa9eu\ndaqkDmAgRDlLi8RVH9xMEZsJ4BCAf6txOPoMSZLYq1cvrl692pXj4jaHPQ8LC+POnTuZm5vLvn37\n1jjHfffdxy+//JIlJSW8ceMGc3Nzee3aNadz7m4HZhuw5qiiHLsjqIiICJpMJubn57OoqIgvvPAC\n161bx23btqk2qtYcjnzYsGHMzc1l165dNeWozOLt7c1PP/2Usizz119/rTBCDwgI4Pr16ynLMgsK\nCuxJ9WjGYc//9a9/sby8vCoCk5pyWALz1KlTKUkS9+3bx4KCAlfmNDXhaNy4MSdPnsz8/HxrEK7s\neXl5vHbtGvfs2cOePXuyUaNGHmmPli1b8sSJE/zggw/4yiuvMCEhgbIsc82aNS4fF2XfFVggsgLS\noaJxJ0kSjx8/zrffftvu/gMCAvjRRx+5orrjFocjt5wjLraF5hyvv/66Vaeze/fu7NSpE69cueKU\nw+3ADDGVsRdC5rsMolZpA+X3XyDkc7IAmKrSqOHh4Rw/fjxbt25NHx8frlu3jvv373f2hTTjUOtI\nW7Zs4cmTJ9X01KrFUZmlSZMm1gyMzZs3W1+/6667+N///pdms5lXr15lbGyso1siTTjsHZsLFy7Q\naDRWftio5gcgbtGNAKZDrKCaobBkKdu4rAptCcwTJkwgcDMVygUxVrc5WrRowcOHD/PSpUuMi4vj\nqVOnrMH46tWr3LRpE1944QWGhISwWbNmHm+PxMREbtq0iZIksXPnzszMzOS5c+eYnZ3NmJgYBgQE\n0MvL6xavxHFW6SP32vSRLIipFlVV6PHjx/PkyZM8cOAA3333XU6aNMnqmzZt4qFDh6rSP6rNUdkl\nSWJpaSllWWZUVFRV+6kmHJMnT2Zqaqp1Ljk0NJTJyclqauGERoE5BMA3ECklMsRczD8hZNkv4ubT\nxeKqXu0s7u3tzZUrV7oSmN3m8PPz4+LFi9mnTx+7nzF48GBevXqVK1asUAve1eJQC8yWA9u9e3fu\n27ePRqOReXl57Nevn9ooUROOyr5o0SLKssy4uDhXOzsh0illAHkAciACUg6E3l2VOR577DHm5+dz\n+fLl9PX15axZs1wNzG5zDBw4kPn5+bxy5QqPHj3KoqIi6wi5S5curqoha9YeRqORH374ISMjI5mS\nksIzZ86wTZs2/Prrr3njxg0eO3aMBw8erOA259IliHnVcohAtE3hsnCEAihS4/Dx8WGLFi04YcIE\nZmVlVbhrKCoqsl48nbjbHJV98uTJlGWZP/zwgzONTo9xTJ48md9//701XbFBgwbctm0bx48fr8rh\ndmBWoKxyLLg5/M8HEKu8X23pcYtPnz6dx48fZ4MGDdTmzdzmMBgMXL58OV9++eUKqSz+/v4cO3Ys\ns7KyrHNEKrzV4qjM4u/vb00TnDlzJuPj4ynLMk0mE9PT09mvXz9n7aYJh623bduW5eXl/PXXX6uS\nokbYyPUoLL8CmAehCl1lDgBcuHAhS0pKeOrUKZrNZmZmZroyleE2R5s2bbhlyxaWlpby8uXLPHbs\nGOfPn+8sLc1j7bFr1y5mZmYyPT2d33zzDVu1akVAZIaMHTuWU6ZM4ZQpU/jMM8+wZ8+erFevnm07\naXruSpJEb29v60NIldRWzc9dWw8LC2N5eTmLi4v53HPPVeW4aMpxzz33MDMzk3PnzuWIESM4ZswY\npqam8qGHHlLlcDsww0ZaCmJ+5jxEvdIDEKOBkxAT5svdCcz9+/enyWRibGysWvqP2xySJHHIkCEs\nKiriF198wUmTJjEqKoqffvopr169yg0bNvDzzz93+DTVHY7KLPXr12dpaSnNZjNlWWZCQgJNJhPX\nrFnDe+65x5V204TD4r6+vly2bBkTExN55MgRhoaGVqXDWyThLSzLAHwL4BzEaOQUqqgK3aBBA8bG\nxjInJ4eLFy92tsBFM47AwEA++eSTjIyMZN++fauiWu6R9qhfvz7btGnDkJAQVzNTND1nNHJNOSzT\nffPmzauqNqXm7XHfffdx5syZPHfuHL/66isuXLjQKYcWgfkhiKH+cQAlSscaBOA+AN8pr58FsMGd\ng3vvvfdSlmW+9957attpwmEwGHjhwgXr7VhsbCxlWeZPP/3k6i1RtTjssTz55JPWYkWRkZGu3Kp7\nhMPilifJTlZx2fNjAFIUlpkAggDsVjjiIdKSqqU+XEUWj3HUlvaoonv83NU5qt5P3Q7MCpRDNWbl\nfbtrvqvSYH5+fvzoo4/4yCOPqG3ncQ4XvVocHmCpLRy3/bHROXSOmuRwJTCr1mOWJEmCqLZ0guRC\nm9eb2Gz2NNys4VpeXo6xY8ciISFBbTOPc7hoOkftZdE5dI7bgcOpVVcl+1kAHQD4QczVjGalwufK\n0F5L4+3M4QGW2sJRbRadQ+f4/8hBUnK2jWpg1k033XTTreatumKsuummm266ecj0wKybbrrpVsvM\nqbRUdUyR5Z4PwBsiNaUTxGqbUxDCqQRQF2IpZAjEirVGEOksMkTSdwnE8kl/ZdtLyu7fJLlD59A5\n3OWoxHIXgECIJbo6h85RmcMbQEuIwawJoui+DOAKRB50J4isDy/ltXrKz8YQyijHIUolREOsDFVn\ncSV1oyqOivL0PhCJ25egiCBCFN7/AkLVOgQip3M/gNkQxd//AJGQf0n5/VsAe3UOnUNLDjssfSEu\nDud0Dp3DQV8tBzAaokCVRaQ6D8BbENUevwWQDJEP/RRE5bopEJXs3lM4J7ny2Z6YyrDK05M0QaSo\n+FneJJkEIYhYSDIXwPsAwiHWrh9SGmGA8iVCIa406nrxOofOUT2zZdkNMcqqp3PoHHY4TBDFqB60\n4SiAWD24lGSq8lltIEbGNyCWfK9SXj+icDrNyAA8M5VxF0SlJov9AnEb0EKSpOMQEuFBEMN7kMyT\nJCkAwKsAmkEU5GmisCVBKNYGSZJ0EkIaZiLJfJ1D53CTwx6LSdmXzqFzOOL4CwB/SZLGQxRB8iF5\nRXm/VGF7QuG4AyJwd4UQTFgL4K+SJI1xxuKJEbO9/LudELVOH1EAvSu9b4S49RgBcRsQAOBVksUA\nlkDM57RT3lusc+gcGnDYY/kXgKs6h87hgGM6RBW6DIWjV6X31yr/MwJiPrwOgC9tWIwQ89ROWTwR\nmH+BqONssbshvghIXoao6lQGpXElSWqm/P4ZgO0QtykyxFwNIIb+lygmfZZDXH10Dp3DXQ57LPUB\nGHUOncMBRyDE3LZZ4egAwCRJUmNJknwBrAGQT3IzxBSGD4AtJDdLknQHgFwq5ozFE4H5IID2kiSF\nKrDPAPgRAJRbjkEQ8y0NlSXfWyGuHouUL0OIFTjRyv7GQdQeBqq2ZFLn0DmqwtIAwOMAinUOncMB\nxzMQxagkheMMxLxztPLZdQB8oXBtgphuuabsKxrA9zb7VmXxyMo/SZIGQ6SYWAJ/OMRVzQxR9tAb\n4omqGeKqUgiR1uIH4DpEw4ZCpJsYlJ8+UFlmrHPoHFXlqMQSpnyGpHPoHHY4DBBzzj6KGyEeSgZA\nXAz8IOagTRD92g/AaYjCSL4ATkAE8rZwUjIB0Jdk66abbrrVOtNX/ummm2661TLTA7NuuummWy0z\nPTDrpptuutUy0wOzbrrpplstMz0w66abbrrVMtMDs2666aZbLTM9MOumm2661TLTA7NuuummWy2z\n/wP4vY1OxyCmaQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# An example for a single MNIST image\n", - "mnist_dp = MNISTDataProvider(dset='valid', batch_size=100, max_num_batches=5, randomize=False)\n", - "\n", - "for batch in mnist_dp:\n", - " features, targets = batch\n", - " #show_mnist_image(features.reshape(28, 28))\n", - " show_mnist_images(batch)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Exercise 2\n", - "\n", - "`MNISTDataProvider` as `targets` currently returns a vector of integers, each element in this vector represents an id of the category `features` data-point represent. Later in the course we are going to need 1-of-K representation of targets, for instance, given the minibatch of size 3 and the corresponding targets vector $[2, 2, 0]$ (and assuming there are only 3 different classes to discriminate between), one needs to convert it into matrix $\\left[ \\begin{array}{ccc}\n", - "0 & 0 & 1 \\\\\n", - "0 & 0 & 1 \\\\\n", - "1 & 0 & 0 \\end{array} \\right]$. \n", - "\n", - "Implement `__to_one_of_k` method of `MNISTDataProvider` class. Then modify (uncomment) an appropriate line in its `next` method, so the raw targets get converted to `1 of K` coding. Test the code in the cell below." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "# %load -r 150:160 mlp/dataset.py\n", - " return rval_x, self.__to_one_of_k(rval_t) #here we convert the targets to 1-of-K\n", - "\n", - " def num_examples(self):\n", - " return self.x.shape[0]\n", - " \n", - " #and here is the function which does it\n", - " def __to_one_of_k(self, y):\n", - " rval = numpy.zeros((y.shape[0], self.num_classes), dtype=numpy.float32)\n", - " for i in xrange(y.shape[0]):\n", - " rval[i, y[i]] = 1\n", - " return rval" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "### Exercise 3\n", - "\n", - "Write your own data provider `MetOfficeDataProvider` that wraps the weather data for south Scotland (could be obtained from: http://www.metoffice.gov.uk/hadobs/hadukp/data/daily/HadSSP_daily_qc.txt). The file was also downloaded and stored in `data` directory for your convenience. The provider should return a tuple `(x,t)` of the estimates over an arbitrary time windows (i.e. last N-1 days) for `x` and the N-th day as the one which model should be able to predict, `t`. For now, skip missing data-points (denoted by -99.9) and simply use the next correct value. Make sure the provider works for arbitrary `batch_size` settings, including the case where single mini-batch is equal to all datapoints in the dataset. Test the dataset in the cell below.\n", - "\n", - "Tip: To follow with this exercise, copy MNISTDataProvider in dataset.py, rename it to `MetOfficeDataProvider` and reimplement necesarry parts (including the arguments you pass to the constructor)." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "# %load -s MetOfficeDataProvider mlp/dataset.py\n", - "class MetOfficeDataProvider(DataProvider):\n", - " \"\"\"\n", - " The class iterates over South Scotland Weather, in possibly\n", - " random order.\n", - " \"\"\"\n", - " def __init__(self, window_size,\n", - " batch_size=10,\n", - " max_num_batches=-1,\n", - " max_num_examples=-1,\n", - " randomize=True):\n", - "\n", - " super(MetOfficeDataProvider, self).\\\n", - " __init__(batch_size, randomize)\n", - "\n", - " dset_path = './data/HadSSP_daily_qc.txt'\n", - " assert os.path.isfile(dset_path), (\n", - " \"File %s was expected to exist!.\" % dset_path\n", - " )\n", - "\n", - " if max_num_batches > 0 and max_num_examples > 0:\n", - " logger.warning(\"You have specified both 'max_num_batches' and \" \\\n", - " \"a deprecead 'max_num_examples' arguments. We will \" \\\n", - " \"use the former over the latter.\")\n", - " \n", - " raw = numpy.loadtxt(dset_path, skiprows=3, usecols=range(2, 32))\n", - " \n", - " self.window_size = window_size\n", - " self._max_num_batches = max_num_batches\n", - " #max_num_examples arg was provided for backward compatibility\n", - " #but it maps us to the max_num_batches anyway\n", - " if max_num_examples > 0 and max_num_batches < 0:\n", - " self._max_num_batches = max_num_examples / self.batch_size \n", - " \n", - " #filter out all missing datapoints and\n", - " #flatten a matrix to a vector, so we will get\n", - " #a time preserving representation of measurments\n", - " #with self.x[0] being the first day and self.x[-1] the last\n", - " self.x = raw[raw >= 0].flatten()\n", - " \n", - " #normalise data to zero mean, unit variance\n", - " mean = numpy.mean(self.x)\n", - " var = numpy.var(self.x)\n", - " assert var >= 0.01, (\n", - " \"Variance too small %f \" % var\n", - " )\n", - " self.x = (self.x-mean)/var\n", - " \n", - " self._rand_idx = None\n", - " if self.randomize:\n", - " self._rand_idx = self.__randomize()\n", - "\n", - " def reset(self):\n", - " super(MetOfficeDataProvider, self).reset()\n", - " if self.randomize:\n", - " self._rand_idx = self.__randomize()\n", - "\n", - " def __randomize(self):\n", - " assert isinstance(self.x, numpy.ndarray)\n", - " # we generate random indexes starting from window_size, i.e. 10th absolute element\n", - " # in the self.x vector, as we later during mini-batch preparation slice\n", - " # the self.x container backwards, i.e. given we want to get a training \n", - " # data-point for 11th day, we look at 10 preeceding days. \n", - " # Note, we cannot do this, for example, for the 5th day as\n", - " # we do not have enough observations to make an input (10 days) to the model\n", - " return numpy.random.permutation(numpy.arange(self.window_size, self.x.shape[0]))\n", - "\n", - " def next(self):\n", - "\n", - " has_enough = (self.window_size + self._curr_idx + self.batch_size) <= self.x.shape[0]\n", - " presented_max = (0 < self._max_num_batches <= (self._curr_idx / self.batch_size))\n", - "\n", - " if not has_enough or presented_max:\n", - " raise StopIteration()\n", - "\n", - " if self._rand_idx is not None:\n", - " range_idx = \\\n", - " self._rand_idx[self._curr_idx:self._curr_idx + self.batch_size]\n", - " else:\n", - " range_idx = \\\n", - " numpy.arange(self.window_size + self._curr_idx, \n", - " self.window_size + self._curr_idx + self.batch_size)\n", - "\n", - " #build slicing matrix of size minibatch, which will contain batch_size\n", - " #rows, each keeping indexes that selects windows_size+1 [for (x,t)] elements\n", - " #from data vector (self.x) that itself stays always sorted w.r.t time\n", - " range_slices = numpy.zeros((self.batch_size, self.window_size + 1), dtype=numpy.int32)\n", - " \n", - " for i in xrange(0, self.batch_size):\n", - " range_slices[i, :] = \\\n", - " numpy.arange(range_idx[i], \n", - " range_idx[i] - self.window_size - 1, \n", - " -1,\n", - " dtype=numpy.int32)[::-1]\n", - "\n", - " #here we use advanced indexing to select slices from observation vector\n", - " #last column of rval_x makes our targets t (as we splice window_size + 1\n", - " tmp_x = self.x[range_slices]\n", - " rval_x = tmp_x[:,:-1]\n", - " rval_t = tmp_x[:,-1].reshape(self.batch_size, -1)\n", - " \n", - " self._curr_idx += self.batch_size\n", - "\n", - " return rval_x, rval_t\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.9" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/notebooks/00_Introduction.ipynb b/notebooks/01_Introduction.ipynb similarity index 100% rename from notebooks/00_Introduction.ipynb rename to notebooks/01_Introduction.ipynb diff --git a/notebooks/01_Linear_Models_solution.ipynb b/notebooks/01_Linear_Models_solution.ipynb deleted file mode 100644 index b5f7a4a..0000000 --- a/notebooks/01_Linear_Models_solution.ipynb +++ /dev/null @@ -1,896 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Introduction\n", - "\n", - "This tutorial is about linear transforms - a basic building block of neural networks, including deep learning models.\n", - "\n", - "# Virtual environments and syncing repositories\n", - "\n", - "Before you proceed onwards, remember to activate you virtual environments so you can use the software you installed last week as well as run the notebooks in interactive mode, not through the github.com website.\n", - "\n", - "## Virtual environments\n", - "\n", - "To activate the virtual environment:\n", - " * If you were in last week's Tuesday or Wednesday group type `activate_mlp` or `source ~/mlpractical/venv/bin/activate`\n", - " * If you were in the Monday group:\n", - " + and if you have chosen the **comfy** way type: `workon mlpractical`\n", - " + and if you have chosen the **generic** way, `source` your virutal environment using `source` and specyfing the path to the activate script (you need to localise it yourself, there were not any general recommendations w.r.t dir structure and people have installed it in different places, usually somewhere in the home directories. If you cannot easily find it by yourself, use something like: `find . -iname activate` ):\n", - "\n", - "## On Synchronising repositories\n", - "\n", - "Enter the git mlp repository you set up last week (i.e. `~/mlpractical/repo-mlp`) and once you sync the repository (in one of the two below ways, or look at our short Git FAQ here), start the notebook session by typing:\n", - "\n", - "```\n", - "ipython notebook\n", - "```\n", - "\n", - "### Default way\n", - "\n", - "To avoid potential conflicts between the changes you have made since last week and our additions, we recommend `stash` your changes and `pull` the new code from the mlpractical repository by typing:\n", - "\n", - "1. `git stash save \"Lab1 work\"`\n", - "2. `git pull`\n", - "\n", - "Then, if you need to, you can always (temporaily) restore a desired state of the repository (look here).\n", - "\n", - "**Otherwise** you may also create a branch for each lab separately (again, look here and git tutorials we linked there), this will allow you to keep `master` branch clean, and pull changes into it every week from the central repository. At the same time branching gives you much more flexibility with changes you introduce to the code as potential conflicts will not occur until you try to make an explicit merge.\n", - "\n", - "### For advanced github users\n", - "\n", - "It is OK if you want to keep your changes and merge the new code with whatever you already have, but you need to know what you are doing and how to resolve conflicts.\n", - " \n", - " " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Single Layer Models\n", - "\n", - "***\n", - "### Note on storing matrices in computer memory\n", - "\n", - "Consider you want to store the following array in memory: $\\left[ \\begin{array}{ccc}\n", - "1 & 2 & 3 \\\\\n", - "4 & 5 & 6 \\\\\n", - "7 & 8 & 9 \\end{array} \\right]$ \n", - "\n", - "In computer memory the above matrix would be organised as a vector in either (assume you allocate the memory at once for the whole matrix):\n", - "\n", - "* Row-wise layout where the order would look like: $\\left [ \\begin{array}{ccccccccc}\n", - "1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\end{array} \\right ]$\n", - "* Column-wise layout where the order would look like: $\\left [ \\begin{array}{ccccccccc}\n", - "1 & 4 & 7 & 2 & 5 & 8 & 3 & 6 & 9 \\end{array} \\right ]$\n", - "\n", - "Although `numpy` can easily handle both formats (possibly with some computational overhead), in our code we will stick with modern (and default) `c`-like approach and use row-wise format (contrary to Fortran that used column-wise approach). \n", - "\n", - "This means, that in this tutorial:\n", - "* vectors are kept row-wise $\\mathbf{x} = (x_1, x_1, \\ldots, x_D) $ (rather than $\\mathbf{x} = (x_1, x_1, \\ldots, x_D)^T$)\n", - "* similarly, in case of matrices we will stick to: $\\left[ \\begin{array}{cccc}\n", - "x_{11} & x_{12} & \\ldots & x_{1D} \\\\\n", - "x_{21} & x_{22} & \\ldots & x_{2D} \\\\\n", - "x_{31} & x_{32} & \\ldots & x_{3D} \\\\ \\end{array} \\right]$ and each row (i.e. $\\left[ \\begin{array}{cccc} x_{11} & x_{12} & \\ldots & x_{1D} \\end{array} \\right]$) represents a single data-point (like one MNIST image or one window of observations)\n", - "\n", - "In lecture slides you will find the equations following the conventional mathematical column-wise approach, but you can easily map them one way or the other using using matrix transpose.\n", - "\n", - "***\n", - "\n", - "## Linear and Affine Transforms\n", - "\n", - "The basis of all linear models is so called affine transform, that is a transform that implements some linear transformation and translation of input features. The transforms we are going to use are parameterised by:\n", - "\n", - " * Weight matrix $\\mathbf{W} \\in \\mathbb{R}^{D\\times K}$: where element $w_{ik}$ is the weight from input $x_i$ to output $y_k$\n", - " * Bias vector $\\mathbf{b}\\in R^{K}$ : where element $b_{k}$ is the bias for output $k$\n", - "\n", - "Note, the bias is simply some additve term, and can be easily incorporated into an additional row in weight matrix and an additinal input in the inputs which is set to $1.0$ (as in the below picture taken from the lecture slides). However, here (and in the code) we will keep them separate.\n", - "\n", - "![Making Predictions](res/singleLayerNetWts-1.png)\n", - "\n", - "For instance, for the above example of 5-dimensional input vector by $\\mathbf{x} = (x_1, x_2, x_3, x_4, x_5)$, weight matrix $\\mathbf{W}=\\left[ \\begin{array}{ccc}\n", - "w_{11} & w_{12} & w_{13} \\\\\n", - "w_{21} & w_{22} & w_{23} \\\\\n", - "w_{31} & w_{32} & w_{33} \\\\\n", - "w_{41} & w_{42} & w_{43} \\\\\n", - "w_{51} & w_{52} & w_{53} \\\\ \\end{array} \\right]$, bias vector $\\mathbf{b} = (b_1, b_2, b_3)$ and outputs $\\mathbf{y} = (y_1, y_2, y_3)$, one can write the transformation as follows:\n", - "\n", - "(for the $i$-th output)\n", - "\n", - "(1) $\n", - "\\begin{equation}\n", - " y_i = b_i + \\sum_j x_jw_{ji}\n", - "\\end{equation}\n", - "$\n", - "\n", - "or the equivalent vector form (where $\\mathbf w_i$ is the $i$-th column of $\\mathbf W$, but note, when we **slice** the $i$th column we will get a **vector** $\\mathbf w_i = (w_{1i}, w_{2i}, w_{3i}, w_{4i}, w_{5i})$, hence the transpose for $\\mathbf w_i$ in the below equation):\n", - "\n", - "(2) $\n", - "\\begin{equation}\n", - " y_i = b_i + \\mathbf x \\mathbf w_i^T\n", - "\\end{equation}\n", - "$\n", - "\n", - "The same operation can be also written in matrix form, to compute all the outputs $\\mathbf{y}$ at the same time:\n", - "\n", - "(3) $\n", - "\\begin{equation}\n", - " \\mathbf y=\\mathbf x\\mathbf W + \\mathbf b\n", - "\\end{equation}\n", - "$\n", - "\n", - "This is equivalent to slides 12/13 in lecture 1, except we are using row vectors.\n", - "\n", - "When $\\mathbf{x}$ is a mini-batch (contains $B$ data-points of dimension $D$ each), i.e. $\\left[ \\begin{array}{cccc}\n", - "x_{11} & x_{12} & \\ldots & x_{1D} \\\\\n", - "x_{21} & x_{22} & \\ldots & x_{2D} \\\\\n", - "\\cdots \\\\\n", - "x_{B1} & x_{B2} & \\ldots & x_{BD} \\\\ \\end{array} \\right]$ equation (3) effectively becomes to be\n", - "\n", - "(4) $\n", - "\\begin{equation}\n", - " \\mathbf Y=\\mathbf X\\mathbf W + \\mathbf b\n", - "\\end{equation}\n", - "$\n", - "\n", - "where $\\mathbf{W} \\in \\mathbb{R}^{D\\times K}$ and both $\\mathbf{X}\\in\\mathbb{R}^{B\\times D}$ and $\\mathbf{Y}\\in\\mathbb{R}^{B\\times K}$ are matrices, and $\\mathbf{b}\\in\\mathbb{R}^{1\\times K}$ needs to be broadcasted $B$ times (numpy will do this by default). However, we will not make an explicit distinction between a special case for $B=1$ and $B>1$ and simply use equation (3) instead, although $\\mathbf{x}$ and hence $\\mathbf{y}$ could be matrices. From an implementation point of view, it does not matter.\n", - "\n", - "The desired functionality for matrix multiplication in numpy is provided by numpy.dot function. If you haven't use it so far, get familiar with it as we will use it extensively." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### A general note on random number generators\n", - "\n", - "It is generally a good practice (for machine learning applications **not** for cryptography!) to seed a pseudo-random number generator once at the beginning of the experiment, and use it later through the code where necesarry. This makes it easier to reproduce results since random initialisations can be replicated. As such, within this course we are going use a single random generator object, similar to the below:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "import numpy\n", - "import sys\n", - "\n", - "#initialise the random generator to be used later\n", - "seed=[2015, 10, 1]\n", - "random_generator = numpy.random.RandomState(seed)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exercise 1 \n", - "\n", - "Using `numpy.dot`, implement **forward** propagation through the linear transform defined by equations (3) and (4) for $B=1$ and $B>1$ i.e. use parameters $\\mathbf{W}$ and $\\mathbf{b}$ with data $\\mathbf{X}$ to determine $\\mathbf{Y}$. Use `MNISTDataProvider` (introduced last week) to generate $\\mathbf{X}$. We are going to write a function for each equation:\n", - "1. `y1_equation_1`: Return the value of the $1^{st}$ dimension of $\\mathbf{y}$ (the output of the first output node) given a single training data point $\\mathbf{x}$ using a sum\n", - "1. `y1_equation_2`: Repeat above using vector multiplication (use `numpy.dot()`)\n", - "1. `y_equation_3`: Return the value of $\\mathbf{y}$ (the whole output layer) given a single training data point $\\mathbf{x}$\n", - "1. `Y_equation_4`: Return the value of $\\mathbf{Y}$ given $\\mathbf{X}$\n", - "\n", - "We have initialised $\\mathbf{b}$ to zeros and randomly generated $\\mathbf{W}$ for you. The constants introduced above are:\n", - "* The number of data points $B = 3$\n", - "* The dimensionality of the input $D = 10$\n", - "* The dimensionality of the output $K = 10$" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "from mlp.dataset import MNISTDataProvider\n", - "\n", - "mnist_dp = MNISTDataProvider(dset='valid', batch_size=3, max_num_batches=1, randomize=False)\n", - "B = 3\n", - "D = 784\n", - "K = 10\n", - "irange = 0.1\n", - "W = random_generator.uniform(-irange, irange, (D, K)) \n", - "b = numpy.zeros((10,))\n" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "y1e1 0.55861474982\n", - "y1e2 0.55861474982\n", - "ye3 [ 0.55861475 0.79450077 0.17439693 0.00265688 0.66272539 -0.09985686\n", - " 0.56468591 0.58105588 -0.18613727 0.08151257]\n", - "Ye4 [[ 0.55861475 0.79450077 0.17439693 0.00265688 0.66272539 -0.09985686\n", - " 0.56468591 0.58105588 -0.18613727 0.08151257]\n", - " [-0.43965864 0.59573972 -0.22691119 0.26767124 -0.31343979 0.07224664\n", - " -0.19616183 0.0851733 -0.24088286 -0.19305162]\n", - " [-0.20176359 0.42394166 -1.03984446 0.15492101 0.15694745 -0.53741022\n", - " 0.05887668 -0.21124527 -0.07870156 -0.00506471]]\n" - ] - } - ], - "source": [ - "mnist_dp.reset()\n", - "\n", - "#implement following functions, then run the cell\n", - "def y1_equation_1(x, W, b):\n", - " k = 0\n", - " s = 0\n", - " for j in xrange(len(x)):\n", - " s += x[j] * W[j,k]\n", - " return b[k] + s\n", - " \n", - "def y1_equation_2(x, W, b):\n", - " k = 0\n", - " return numpy.dot(x, W[:,k]) + b[k]\n", - "\n", - "def y_equation_3(x, W, b):\n", - " return numpy.dot(x, W) + b\n", - "\n", - "def y_equation_4(x, W, b):\n", - " return numpy.dot(x, W) + b\n", - "\n", - "for X, t in mnist_dp:\n", - " n = 0\n", - " y1e1 = y1_equation_1(X[n], W, b)\n", - " y1e2 = y1_equation_2(X[n], W, b)\n", - " ye3 = y_equation_3(X[n], W, b)\n", - " Ye4 = y_equation_4(X, W, b)\n", - "\n", - "print 'y1e1', y1e1\n", - "print 'y1e2', y1e2\n", - "print 'ye3', ye3\n", - "print 'Ye4', Ye4" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exercise 2\n", - "\n", - "Modify (if necessary) examples from Exercise 1 to perform **backward** propagation, that is, given $\\mathbf{y}$ (obtained in previous step) and weight matrix $\\mathbf{W}$, project $\\mathbf{y}$ onto the input space $\\mathbf{x}$ (ignore or set to zero the biases towards $\\mathbf{x}$ in backward pass). Mathematically, we are interested in the following transformation: $\\mathbf{z}=\\mathbf{y}\\mathbf{W}^T$" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[[-0.00683757 -0.13638553 0.00203203 ..., 0.02690207 -0.07364245\n", - " 0.04403087]\n", - " [-0.00447621 -0.06409652 0.01211384 ..., 0.0402248 -0.04490571\n", - " -0.05013801]\n", - " [ 0.03981022 -0.13705957 0.05882239 ..., 0.04491902 -0.08644539\n", - " -0.07106441]]\n" - ] - } - ], - "source": [ - "y = y_equation_3(x, W, b)\n", - "z = numpy.dot(y, W.T)\n", - "\n", - "print z\n", - "assert z.shape == x.shape" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "***\n", - "## Exercise 3 (optional)\n", - "\n", - "In case you do not fully understand how matrix-vector and/or matrix-matrix products work, consider implementing `my_dot_mat_mat` function (you have been given `my_dot_vec_mat` code to look at as an example) which takes as the input the following arguments:\n", - "\n", - "* D-dimensional input vector $\\mathbf{x} = (x_1, x_2, \\ldots, x_D) $.\n", - "* Weight matrix $\\mathbf{W}\\in\\mathbb{R}^{D\\times K}$:\n", - "\n", - "and returns:\n", - "\n", - "* K-dimensional output vector $\\mathbf{y} = (y_1, \\ldots, y_K) $\n", - "\n", - "Your job is to write a variant that works in a mini-batch mode where both $\\mathbf{x}\\in\\mathbb{R}^{B\\times D}$ and $\\mathbf{y}\\in\\mathbb{R}^{B\\times K}$ are matrices in which each rows contain one of $B$ data-points from mini-batch (rather than $\\mathbf{x}\\in\\mathbb{R}^{D}$ and $\\mathbf{y}\\in\\mathbb{R}^{K}$)." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "def my_dot_vec_mat(x, W):\n", - " J = x.shape[0]\n", - " K = W.shape[1]\n", - " assert (J == W.shape[0]), (\n", - " \"Number of columns of x expected to \"\n", - " \" to be equal to the number of rows in \"\n", - " \"W, bot got shapes %s, %s\" % (x.shape, W.shape)\n", - " )\n", - " y = numpy.zeros((K,))\n", - " for k in xrange(0, K):\n", - " for j in xrange(0, J):\n", - " y[k] += x[j] * W[j,k]\n", - " \n", - " return y" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Well done!\n" - ] - } - ], - "source": [ - "irange = 0.1 #+-range from which we draw the random numbers\n", - "\n", - "x = random_generator.uniform(-irange, irange, (5,)) \n", - "W = random_generator.uniform(-irange, irange, (5,3)) \n", - "\n", - "y_my = my_dot_vec_mat(x, W)\n", - "y_np = numpy.dot(x, W)\n", - "\n", - "same = numpy.allclose(y_my, y_np)\n", - "\n", - "if same:\n", - " print 'Well done!'\n", - "else:\n", - " print 'Matrices are different:'\n", - " print 'y_my is: ', y_my\n", - " print 'y_np is: ', y_np" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "def my_dot_mat_mat(x, W):\n", - " I = x.shape[0]\n", - " J = x.shape[1]\n", - " K = W.shape[1]\n", - " assert (J == W.shape[0]), (\n", - " \"Number of columns in of x expected to \"\n", - " \" to be the same as rows in W, got\"\n", - " )\n", - " #allocate the output container\n", - " y = numpy.zeros((I, K))\n", - " \n", - " #implement here matrix-matrix inner product here\n", - " for i in xrange(0, I):\n", - " for k in xrange(0, K):\n", - " for j in xrange(0, J):\n", - " y[i, k] += x[i, j] * W[j,k]\n", - " \n", - " return y" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Test whether you get comparable numbers to what numpy is producing:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Well done!\n" - ] - } - ], - "source": [ - "irange = 0.1 #+-range from which we draw the random numbers\n", - "\n", - "x = random_generator.uniform(-irange, irange, (2,5)) \n", - "W = random_generator.uniform(-irange, irange, (5,3)) \n", - "\n", - "y_my = my_dot_mat_mat(x, W)\n", - "y_np = numpy.dot(x, W)\n", - "\n", - "same = numpy.allclose(y_my, y_np)\n", - "\n", - "if same:\n", - " print 'Well done!'\n", - "else:\n", - " print 'Matrices are different:'\n", - " print 'y_my is: ', y_my\n", - " print 'y_np is: ', y_np" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we benchmark each approach (we do it in separate cells, as timeit currently can measure whole cell execuiton only)." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "#generate bit bigger matrices, to better evaluate timings\n", - "x = random_generator.uniform(-irange, irange, (10, 1000))\n", - "W = random_generator.uniform(-irange, irange, (1000, 100))" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "my_dot timings:\n", - "10 loops, best of 3: 726 ms per loop\n" - ] - } - ], - "source": [ - "print 'my_dot timings:'\n", - "%timeit -n10 my_dot_mat_mat(x, W)" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "numpy.dot timings:\n", - "10 loops, best of 3: 1.17 ms per loop\n" - ] - } - ], - "source": [ - "print 'numpy.dot timings:'\n", - "%timeit -n10 numpy.dot(x, W)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Optional section ends here**\n", - "***" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Iterative learning of linear models\n", - "\n", - "We will learn the model with stochastic gradient descent on N data-points using mean square error (MSE) loss function, which is defined as follows:\n", - "\n", - "(5) $\n", - "E = \\frac{1}{2} \\sum_{n=1}^N ||\\mathbf{y}^n - \\mathbf{t}^n||^2 = \\sum_{n=1}^N E^n \\\\\n", - " E^n = \\frac{1}{2} ||\\mathbf{y}^n - \\mathbf{t}^n||^2\n", - "$\n", - "\n", - "(6) $ E^n = \\frac{1}{2} \\sum_{k=1}^K (y_k^n - t_k^n)^2 $\n", - " \n", - "Hence, the gradient w.r.t (with respect to) the $r$ output y of the model is defined as, so called delta function, $\\delta_r$: \n", - "\n", - "(8) $\\frac{\\partial{E^n}}{\\partial{y_{r}}} = (y^n_r - t^n_r) = \\delta^n_r \\quad ; \\quad\n", - " \\delta^n_r = y^n_r - t^n_r \\\\\n", - " \\frac{\\partial{E}}{\\partial{y_{r}}} = \\sum_{n=1}^N \\frac{\\partial{E^n}}{\\partial{y_{r}}} = \\sum_{n=1}^N \\delta^n_r\n", - "$\n", - "\n", - "Similarly, using the above $\\delta^n_r$ one can express the gradient of the weight $w_{sr}$ (from the s-th input to the r-th output) for linear model and MSE cost as follows:\n", - "\n", - "(9) $\n", - " \\frac{\\partial{E^n}}{\\partial{w_{sr}}} = (y^n_r - t^n_r)x_s^n = \\delta^n_r x_s^n \\quad\\\\\n", - " \\frac{\\partial{E}}{\\partial{w_{sr}}} = \\sum_{n=1}^N \\frac{\\partial{E^n}}{\\partial{w_{rs}}} = \\sum_{n=1}^N \\delta^n_r x_s^n\n", - "$\n", - "\n", - "and the gradient for bias parameter at the $r$-th output is:\n", - "\n", - "(10) $\n", - " \\frac{\\partial{E}}{\\partial{b_{r}}} = \\sum_{n=1}^N \\frac{\\partial{E^n}}{\\partial{b_{r}}} = \\sum_{n=1}^N \\delta^n_r\n", - "$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "![Making Predictions](res/singleLayerNetPredict.png)\n", - " \n", - " * Input vector $\\mathbf{x} = (x_1, x_2, \\ldots, x_D) $\n", - " * Output scalar $y_1$\n", - " * Weight matrix $\\mathbf{W}$: $w_{ik}$ is the weight from input $x_i$ to output $y_k$. Note, here this is really a vector since a single scalar output, y_1.\n", - " * Scalar bias $b$ for the only output in our model \n", - " * Scalar target $t$ for the only output in out model\n", - " \n", - "First, ensure you can make use of data provider (note, for training data has been normalised to zero mean and unit variance, hence different effective range than one can find in file):" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Observations: [[-0.12 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13]\n", - " [-0.11 -0.1 0.09 -0.06 -0.09 -0. 0.28 -0.12 -0.12 -0.08]\n", - " [-0.13 0.05 -0.13 -0.01 -0.11 -0.13 -0.13 -0.13 -0.13 -0.13]\n", - " [ 0.2 0.12 0.25 0.16 0.03 -0. 0.15 0.08 -0.08 -0.11]\n", - " [-0.13 -0.12 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13]\n", - " [-0.1 0.51 1.52 0.14 -0.02 0.77 0.11 0.79 -0.02 0.08]\n", - " [ 0.24 0.15 -0.01 0.08 -0.1 0.45 -0.12 -0.1 -0.13 0.48]\n", - " [ 0.13 -0.06 -0.07 -0.11 -0.11 -0.11 -0.13 -0.11 -0.02 -0.12]\n", - " [-0.06 0.28 -0.13 0.06 0.09 0.09 0.01 -0.07 0.14 -0.11]\n", - " [-0.13 -0.13 -0.1 -0.06 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13]]\n", - "To predict: [[-0.12]\n", - " [-0.12]\n", - " [-0.13]\n", - " [-0.1 ]\n", - " [-0.13]\n", - " [-0.08]\n", - " [ 0.24]\n", - " [-0.13]\n", - " [-0.02]\n", - " [-0.13]]\n", - "Observations: [[-0.09 -0.13 -0.13 -0.03 -0.05 -0.11 -0.13 -0.13 -0.13 -0.13]\n", - " [-0.03 0.32 0.28 0.09 -0.04 0.19 0.31 -0.13 0.37 0.34]\n", - " [ 0.12 0.13 0.06 -0.1 -0.1 0.94 0.24 0.12 0.28 -0.04]\n", - " [ 0.26 0.17 -0.04 -0.13 -0.12 -0.09 -0.12 -0.13 -0.1 -0.13]\n", - " [-0.1 -0.1 -0.01 -0.03 -0.07 0.05 -0.03 -0.12 -0.05 -0.13]\n", - " [-0.13 -0.13 -0.13 -0.13 -0.13 -0.13 0.1 -0.13 -0.13 -0.13]\n", - " [-0.01 -0.1 -0.13 -0.13 -0.12 -0.13 -0.13 -0.13 -0.13 -0.11]\n", - " [-0.11 -0.06 -0.11 0.02 -0.03 -0.02 -0.05 -0.11 -0.13 -0.13]\n", - " [-0.01 0.25 -0.08 0.04 -0.1 -0.12 0.06 -0.1 0.08 -0.06]\n", - " [-0.09 -0.09 -0.09 -0.13 -0.11 -0.12 -0. -0.02 0.19 -0.11]]\n", - "To predict: [[-0.13]\n", - " [-0.11]\n", - " [-0.09]\n", - " [-0.08]\n", - " [ 0.19]\n", - " [-0.13]\n", - " [-0.13]\n", - " [-0.03]\n", - " [-0.13]\n", - " [-0.11]]\n", - "Observations: [[-0.08 -0.11 -0.11 0.32 0.05 -0.11 -0.13 0.07 0.08 0.63]\n", - " [-0.07 -0.1 -0.09 -0.08 0.26 -0.05 -0.1 -0. 0.36 -0.12]\n", - " [-0.03 -0.1 0.19 -0.02 0.35 0.38 -0.1 0.44 -0.02 0.21]\n", - " [-0.12 -0. -0.02 0.19 -0.11 -0.11 -0.13 -0.11 -0.02 -0.13]\n", - " [ 0.09 0.1 -0.03 -0.05 0. -0.12 -0.12 -0.13 -0.13 -0.13]\n", - " [ 0.21 0.05 -0.12 -0.05 -0.08 -0.1 -0.13 -0.13 -0.13 -0.13]\n", - " [-0.04 -0.11 0.19 0.16 -0.01 -0.07 -0. -0.06 -0.03 0.16]\n", - " [ 0.09 0.05 0.51 0.34 0.16 0.51 0.56 0.21 -0.06 -0. ]\n", - " [-0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.09 0.49]\n", - " [-0.06 -0.11 -0.13 0.06 -0.01 -0.12 0.54 0.2 -0.1 -0.11]]\n", - "To predict: [[ 0.1 ]\n", - " [ 0.09]\n", - " [ 0.16]\n", - " [-0.13]\n", - " [-0.13]\n", - " [ 0.04]\n", - " [-0.1 ]\n", - " [ 0.05]\n", - " [-0.1 ]\n", - " [-0.11]]\n" - ] - } - ], - "source": [ - "from mlp.dataset import MetOfficeDataProvider\n", - "\n", - "modp = MetOfficeDataProvider(10, batch_size=10, max_num_batches=3, randomize=True)\n", - "\n", - "%precision 2\n", - "for x, t in modp:\n", - " print 'Observations: ', x\n", - " print 'To predict: ', t" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exercise 4\n", - "\n", - "The below code implements a very simple variant of stochastic gradient descent for the weather regression example. Your task is to implement 5 functions in the next cell and then run two next cells that 1) build sgd functions and 2) run the actual training." - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "\n", - "#When implementing those, take into account the mini-batch case, for which one is\n", - "#expected to sum the errors for each example\n", - "\n", - "def fprop(x, W, b):\n", - " #code implementing eq. (3)\n", - " return numpy.dot(x, W) + b\n", - "\n", - "def cost(y, t):\n", - " #Mean Square Error cost, equation (5)\n", - " return numpy.mean(0.5*numpy.sum((y - t)**2, axis=1))\n", - "\n", - "def cost_grad(y, t):\n", - " #Gradient of the cost w.r.t y equation (8)\n", - " return y - t\n", - "\n", - "def cost_wrt_W(cost_grad, x):\n", - " #Gradient of the cost w.r.t W, equation (9)\n", - " return numpy.dot(x.T, cost_grad)\n", - " \n", - "def cost_wrt_b(cost_grad):\n", - " #Gradient of the cost w.r.t to b, equation (10)\n", - " return numpy.sum(cost_grad, axis = 0)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "\n", - "def sgd_epoch(data_provider, W, b, learning_rate):\n", - " mse_stats = []\n", - " \n", - " #get the minibatch of data\n", - " for x, t in data_provider:\n", - "\n", - " #1. get the estimate of y\n", - " y = fprop(x, W, b)\n", - "\n", - " #2. compute the loss function\n", - " tmp = cost(y, t)\n", - " mse_stats.append(tmp)\n", - " \n", - " #3. compute the grad of the cost w.r.t the output layer activation y\n", - " #i.e. how the cost changes when output y changes\n", - " cost_grad_deltas = cost_grad(y, t)\n", - "\n", - " #4. compute the gradients w.r.t model's parameters\n", - " grad_W = cost_wrt_W(cost_grad_deltas, x)\n", - " grad_b = cost_wrt_b(cost_grad_deltas)\n", - "\n", - " #4. Update the model, we update with the mean gradient\n", - " # over the minibatch, rather than sum of particular gradients\n", - " # in a minibatch, to do so we scale the learning rate by batch_size\n", - " batch_size = x.shape[0]\n", - " effect_learn_rate = learning_rate / batch_size\n", - "\n", - " W = W - effect_learn_rate * grad_W\n", - " b = b - effect_learn_rate * grad_b\n", - " \n", - " return W, b, numpy.mean(mse_stats)\n", - "\n", - "def sgd(data_provider, W, b, learning_rate=0.1, max_epochs=10):\n", - " \n", - " for epoch in xrange(0, max_epochs):\n", - " #reset the data provider\n", - " data_provider.reset()\n", - " \n", - " #train for one epoch\n", - " W, b, mean_cost = \\\n", - " sgd_epoch(data_provider, W, b, learning_rate)\n", - " \n", - " print \"MSE training cost after %d-th epoch is %f\" % (epoch + 1, mean_cost)\n", - " \n", - " return W, b\n", - " \n", - " " - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MSE training cost after 1-th epoch is 0.017213\n", - "MSE training cost after 2-th epoch is 0.016103\n", - "MSE training cost after 3-th epoch is 0.015705\n", - "MSE training cost after 4-th epoch is 0.015437\n", - "MSE training cost after 5-th epoch is 0.015255\n", - "MSE training cost after 6-th epoch is 0.015128\n", - "MSE training cost after 7-th epoch is 0.015041\n", - "MSE training cost after 8-th epoch is 0.014981\n", - "MSE training cost after 9-th epoch is 0.014936\n", - "MSE training cost after 10-th epoch is 0.014903\n", - "MSE training cost after 11-th epoch is 0.014879\n", - "MSE training cost after 12-th epoch is 0.014862\n", - "MSE training cost after 13-th epoch is 0.014849\n", - "MSE training cost after 14-th epoch is 0.014839\n", - "MSE training cost after 15-th epoch is 0.014830\n", - "MSE training cost after 16-th epoch is 0.014825\n", - "MSE training cost after 17-th epoch is 0.014820\n", - "MSE training cost after 18-th epoch is 0.014813\n", - "MSE training cost after 19-th epoch is 0.014813\n", - "MSE training cost after 20-th epoch is 0.014810\n", - "MSE training cost after 21-th epoch is 0.014808\n", - "MSE training cost after 22-th epoch is 0.014805\n", - "MSE training cost after 23-th epoch is 0.014806\n", - "MSE training cost after 24-th epoch is 0.014804\n", - "MSE training cost after 25-th epoch is 0.014796\n", - "MSE training cost after 26-th epoch is 0.014798\n", - "MSE training cost after 27-th epoch is 0.014801\n", - "MSE training cost after 28-th epoch is 0.014802\n", - "MSE training cost after 29-th epoch is 0.014801\n", - "MSE training cost after 30-th epoch is 0.014799\n", - "MSE training cost after 31-th epoch is 0.014799\n", - "MSE training cost after 32-th epoch is 0.014793\n", - "MSE training cost after 33-th epoch is 0.014800\n", - "MSE training cost after 34-th epoch is 0.014796\n", - "MSE training cost after 35-th epoch is 0.014799\n", - "MSE training cost after 36-th epoch is 0.014800\n", - "MSE training cost after 37-th epoch is 0.014798\n", - "MSE training cost after 38-th epoch is 0.014799\n", - "MSE training cost after 39-th epoch is 0.014799\n", - "MSE training cost after 40-th epoch is 0.014794\n" - ] - }, - { - "data": { - "text/plain": [ - "(array([[ 0.01],\n", - " [ 0.03],\n", - " [ 0.03],\n", - " [ 0.04],\n", - " [ 0.06],\n", - " [ 0.07],\n", - " [ 0.26]]), array([-0.]))" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "\n", - "#some hyper-parameters\n", - "window_size = 7\n", - "irange = 0.1\n", - "learning_rate = 0.001\n", - "max_epochs=40\n", - "\n", - "# note, while developing you can set max_num_batches to some positive number to limit\n", - "# the number of training data-points (you will get feedback faster)\n", - "mdp = MetOfficeDataProvider(window_size, batch_size=10, max_num_batches=-100, randomize=True)\n", - "\n", - "#initialise the parameters\n", - "W = random_generator.uniform(-irange, irange, (window_size, 1))\n", - "b = random_generator.uniform(-irange, irange, (1, ))\n", - "\n", - "#train the model\n", - "sgd(mdp, W, b, learning_rate=learning_rate, max_epochs=max_epochs)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Exercise 5\n", - "\n", - "Modify the above regression problem so the model makes binary classification whether the the weather is going to be one of those \\{rainy, sunny} (look at slide 12 of the 2nd lecture)\n", - "\n", - "Tip: You need to introduce the following changes:\n", - "1. Modify `MetOfficeDataProvider` (for example, inherit from MetOfficeDataProvider to create a new class MetOfficeDataProviderBin) and modify `next()` function so it returns as `targets` either 0 (sunny - if the the amount of rain [before mean/variance normalisation] is equal to 0 or 1 (rainy -- otherwise).\n", - "2. Modify the functions from previous exercise so the fprop implements `sigmoid` on top of affine transform.\n", - "3. Modify cost function to binary cross-entropy\n", - "4. Make sure you compute the gradients correctly (as you have changed both the output and the cost)\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "#sorry, this one will be added later..." - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.10" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/notebooks/01_Linear_Models.ipynb b/notebooks/02_Linear_models.ipynb similarity index 100% rename from notebooks/01_Linear_Models.ipynb rename to notebooks/02_Linear_models.ipynb diff --git a/notebooks/02_MNIST_SLN_solution.ipynb b/notebooks/02_MNIST_SLN_solution.ipynb deleted file mode 100644 index 1538366..0000000 --- a/notebooks/02_MNIST_SLN_solution.ipynb +++ /dev/null @@ -1,341 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Introduction\n", - "\n", - "This tutorial is an introduction to the first coursework about multi-layer networks (also known as Multi-Layer Perceptrons - MLPs - or Deep Neural Networks - DNNs). Here, we will show how to build a single layer linear model (similar to the one from the previous lab) for MNIST digit classification using the provided code-base. \n", - "\n", - "The principal purpose of this introduction is to get you familiar with how to connect the code blocks (and what operations each of them implements) in order to set up an experiment that includes 1) building the model structure 2) optimising the model's parameters (weights) and 3) evaluating the model on test data. \n", - "\n", - "## For those affected by notebook kernel issues\n", - "\n", - "In case you are still having issues with running notebook kernels, have a look at [this note](https://github.com/CSTR-Edinburgh/mlpractical/blob/master/kernel_issue_fix.md) on the GitHub.\n", - "\n", - "## Virtual environments\n", - "\n", - "Before you proceed onwards, remember to activate your virtual environment:\n", - " * If you were in last week's Tuesday or Wednesday group type `activate_mlp` or `source ~/mlpractical/venv/bin/activate`\n", - " * If you were in the Monday group:\n", - " + and if you have chosen the **comfy** way type: `workon mlpractical`\n", - " + and if you have chosen the **generic** way, `source` your virutal environment using `source` and specyfing the path to the activate script (you need to localise it yourself, there were not any general recommendations w.r.t dir structure and people have installed it in different places, usually somewhere in the home directories. If you cannot easily find it by yourself, use something like: `find . -iname activate` ):\n", - "\n", - "## Syncing the git repository\n", - "\n", - "Look here for more details. But in short, we recommend to create a separate branch for the coursework, as follows:\n", - "\n", - "1. Enter the mlpractical directory `cd ~/mlpractical/repo-mlp`\n", - "2. List the branches and check which is currently active by typing: `git checkout`\n", - "3. If you are not in `master` branch, switch to it by typing: \n", - "```\n", - "git checkout master\n", - " ```\n", - "4. Then update the repository (note, assuming master does not have any conflicts), if there are some, have a look here\n", - "```\n", - "git pull\n", - "```\n", - "5. And now, create the new branch & swith to it by typing:\n", - "```\n", - "git checkout -b coursework1\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Multi Layer Models\n", - "\n", - "Today, we shall build models which can have an arbitrary number of hidden layers. Please have a look at the diagram below, and the corresponding computations (which have an *exact* matrix form as expected by numpy, and row-wise orientation; note that $\\circ$ denotes an element-wise product). In the diagram, we briefly describe how each comptation relates to the code we have provided.\n", - "\n", - "![Making Predictions](res/code_scheme.svg)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "1. Structuring the model\n", - " * The model (for now) is allowed to have a sequence of layers, mapping inputs $\\mathbf{x}$ to outputs $\\mathbf{y}$. \n", - " * This operation is implemented as a special type of a layer in `mlp.layers.MLP` class. It keeps a sequence of other layers (of various typyes like Linear, Sigmoid, Softmax, etc.) as well as the internal state of a model for a mini-batch, that is, the intermediate data produced in *forward* and *backward* passes.\n", - "2. Forward computation\n", - " * `mlp.layers.MLP` provides an `fprop()` method that iterates over defined layers propagates $\\mathbf{x}$ to $\\mathbf{y}$. \n", - " * Each layer (look at `mlp.layers.Linear` attached below) also implements an `fprop()` method, which performs an atomic, for the given layer, operation. Most often, for the $i$-th layer, we want to obtain a linear transform $\\mathbf a^i$ of the inputs, and apply some non-linear transfer function $f^i(\\mathbf a^i)$ to produce the output $\\mathbf h^i$. Note, in general each layer may implement different activation functions $f^i()$, however for now we will use only `sigmoid` and `softmax`\n", - "3. Backward computation\n", - " * Similarly, `mlp.layers.MLP` also implements a `bprop()` function, to back-propagate the errors from the top to the bottom layer. This class also keeps the back-propagated statistics ($\\delta$) to be used later when computing the gradients with respect to the parameters.\n", - " * This functionality is also re-implemented by particular layers (again, have a look at the `bprop` function of `mlp.layers.Linear`). `bprop()` returns both $\\delta$ (needed to update the parameters) but also back-progapates the gradient down to the inputs. Also note, that depending on whether the layer is the top or not (i.e. if it deals directly with the cost function or not) some simplifications may apply ( as with cross-entropy and softmax). That's why when implementing a new type of layer that may be used as an output layer one also need to specify the implementation of `bprop_cost()`.\n", - "4. Learning the model\n", - " * The actual evaluation of the cost as well as the *forward* and *backward* passes may be found in the `train_epoch()` method of `mlp.optimisers.SGDOptimiser`\n", - " * This function also calls the `pgrads()` method on each layer, that given activations and deltas, returns the list of the gradients of the cost with respect to the model parameters, i.e. $\\frac{\\partial{\\mathbf{E}}}{\\partial{\\mathbf{W^i}}}$ and $\\frac{\\partial{\\mathbf{E}}}{\\partial{\\mathbf{b}^i}}$ at the above diagram (look at an example implementation in `mlp.layers.Linear`)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "# %load -s Linear mlp/layers.py\n", - "# DO NOT RUN THIS CELL (AS YOU WILL GET ERRORS), IT WAS JUST LOADED TO VISUALISE ABOVE COMMENTS\n", - "class Linear(Layer):\n", - "\n", - " def __init__(self, idim, odim,\n", - " rng=None,\n", - " irange=0.1):\n", - "\n", - " super(Linear, self).__init__(rng=rng)\n", - "\n", - " self.idim = idim\n", - " self.odim = odim\n", - "\n", - " self.W = self.rng.uniform(\n", - " -irange, irange,\n", - " (self.idim, self.odim))\n", - "\n", - " self.b = numpy.zeros((self.odim,), dtype=numpy.float32)\n", - "\n", - " def fprop(self, inputs):\n", - " \"\"\"\n", - " Implements a forward propagation through the i-th layer, that is\n", - " some form of:\n", - " a^i = xW^i + b^i\n", - " h^i = f^i(a^i)\n", - " with f^i, W^i, b^i denoting a non-linearity, weight matrix and\n", - " biases of this (i-th) layer, respectively and x denoting inputs.\n", - "\n", - " :param inputs: matrix of features (x) or the output of the previous layer h^{i-1}\n", - " :return: h^i, matrix of transformed by layer features\n", - " \"\"\"\n", - " a = numpy.dot(inputs, self.W) + self.b\n", - " # here f() is an identity function, so just return a linear transformation\n", - " return a\n", - "\n", - " def bprop(self, h, igrads):\n", - " \"\"\"\n", - " Implements a backward propagation through the layer, that is, given\n", - " h^i denotes the output of the layer and x^i the input, we compute:\n", - " dh^i/dx^i which by chain rule is dh^i/da^i da^i/dx^i\n", - " x^i could be either features (x) or the output of the lower layer h^{i-1}\n", - " :param h: it's an activation produced in forward pass\n", - " :param igrads, error signal (or gradient) flowing to the layer, note,\n", - " this in general case does not corresponds to 'deltas' used to update\n", - " the layer's parameters, to get deltas ones need to multiply it with\n", - " the dh^i/da^i derivative\n", - " :return: a tuple (deltas, ograds) where:\n", - " deltas = igrads * dh^i/da^i\n", - " ograds = deltas \\times da^i/dx^i\n", - " \"\"\"\n", - "\n", - " # since df^i/da^i = 1 (f is assumed identity function),\n", - " # deltas are in fact the same as igrads\n", - " ograds = numpy.dot(igrads, self.W.T)\n", - " return igrads, ograds\n", - "\n", - " def bprop_cost(self, h, igrads, cost):\n", - " \"\"\"\n", - " Implements a backward propagation in case the layer directly\n", - " deals with the optimised cost (i.e. the top layer)\n", - " By default, method should implement a bprop for default cost, that is\n", - " the one that is natural to the layer's output, i.e.:\n", - " here we implement linear -> mse scenario\n", - " :param h: it's an activation produced in forward pass\n", - " :param igrads, error signal (or gradient) flowing to the layer, note,\n", - " this in general case does not corresponds to 'deltas' used to update\n", - " the layer's parameters, to get deltas ones need to multiply it with\n", - " the dh^i/da^i derivative\n", - " :param cost, mlp.costs.Cost instance defining the used cost\n", - " :return: a tuple (deltas, ograds) where:\n", - " deltas = igrads * dh^i/da^i\n", - " ograds = deltas \\times da^i/dx^i\n", - " \"\"\"\n", - "\n", - " if cost is None or cost.get_name() == 'mse':\n", - " # for linear layer and mean square error cost,\n", - " # cost back-prop is the same as standard back-prop\n", - " return self.bprop(h, igrads)\n", - " else:\n", - " raise NotImplementedError('Linear.bprop_cost method not implemented '\n", - " 'for the %s cost' % cost.get_name())\n", - "\n", - " def pgrads(self, inputs, deltas):\n", - " \"\"\"\n", - " Return gradients w.r.t parameters\n", - "\n", - " :param inputs, input to the i-th layer\n", - " :param deltas, deltas computed in bprop stage up to -ith layer\n", - " :return list of grads w.r.t parameters dE/dW and dE/db in *exactly*\n", - " the same order as the params are returned by get_params()\n", - "\n", - " Note: deltas here contain the whole chain rule leading\n", - " from the cost up to the the i-th layer, i.e.\n", - " dE/dy^L dy^L/da^L da^L/dh^{L-1} dh^{L-1}/da^{L-1} ... dh^{i}/da^{i}\n", - " and here we are just asking about\n", - " 1) da^i/dW^i and 2) da^i/db^i\n", - " since W and b are only layer's parameters\n", - " \"\"\"\n", - "\n", - " grad_W = numpy.dot(inputs.T, deltas)\n", - " grad_b = numpy.sum(deltas, axis=0)\n", - "\n", - " return [grad_W, grad_b]\n", - "\n", - " def get_params(self):\n", - " return [self.W, self.b]\n", - "\n", - " def set_params(self, params):\n", - " #we do not make checks here, but the order on the list\n", - " #is assumed to be exactly the same as get_params() returns\n", - " self.W = params[0]\n", - " self.b = params[1]\n", - "\n", - " def get_name(self):\n", - " return 'linear'\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 1: Experiment with linear models and MNIST\n", - "\n", - "The below snippet demonstrates how to use the code we have provided for the coursework 1. Get familiar with it, as from now on we will use till the end of the course, including the 2nd coursework.\n", - "\n", - "It should be straightforward to extend the following code to more complex models, like stack more layers, change the cost, the optimiser, learning rate schedules, etc.. But **ask** in case something is not clear.\n", - "\n", - "In this particular example, we use the following components:\n", - " * One layer mapping data-points ($\\mathbf x$) straight to 10 digits classes represented as 10 (linear) outputs ($\\mathbf y$). This operation is implemented as a linear layer in `mlp.layers.Linear`. Get familiar with this class (read the comments, etc.) as it is going to be a building block for the coursework.\n", - " * One can stack as many different layers as required through the container `mlp.layers.MLP`\n", - " * As an objective here we use the Mean Square Error cost defined in `mlp.costs.MSECost`\n", - " * Our *Stochastic Gradient Descent* optimiser can be found in `mlp.optimisers.SGDOptimiser`. Its parent `mlp.optimisers.Optimiser` implements validation functionality (and an interface in case one need to implement a different optimiser)." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "import numpy\n", - "import logging\n", - "\n", - "logger = logging.getLogger()\n", - "logger.setLevel(logging.INFO)\n", - "\n", - "from mlp.layers import MLP, Linear #import required layer types\n", - "from mlp.optimisers import SGDOptimiser #import the optimiser\n", - "from mlp.dataset import MNISTDataProvider #import data provider\n", - "from mlp.costs import MSECost #import the cost we want to use for optimisation\n", - "from mlp.schedulers import LearningRateFixed\n", - "\n", - "rng = numpy.random.RandomState([2015,10,10])\n", - "\n", - "# define the model structure, here just one linear layer\n", - "# and mean square error cost\n", - "cost = MSECost()\n", - "model = MLP(cost=cost)\n", - "model.add_layer(Linear(idim=784, odim=10, rng=rng))\n", - "#one can stack more layers here\n", - "\n", - "# define the optimiser, here stochasitc gradient descent\n", - "# with fixed learning rate and max_epochs as stopping criterion\n", - "lr_scheduler = LearningRateFixed(learning_rate=0.01, max_epochs=20)\n", - "optimiser = SGDOptimiser(lr_scheduler=lr_scheduler)\n", - "\n", - "logger.info('Initialising data providers...')\n", - "train_dp = MNISTDataProvider(dset='train', batch_size=100, max_num_batches=-10, randomize=True)\n", - "valid_dp = MNISTDataProvider(dset='valid', batch_size=100, max_num_batches=-10, randomize=False)\n", - "\n", - "logger.info('Training started...')\n", - "optimiser.train(model, train_dp, valid_dp)\n", - "\n", - "logger.info('Testing the model on test set:')\n", - "test_dp = MNISTDataProvider(dset='eval', batch_size=100, max_num_batches=-10, randomize=False)\n", - "cost, accuracy = optimiser.validate(model, test_dp)\n", - "logger.info('MNIST test set accuracy is %.2f %% (cost is %.3f)'%(accuracy*100., cost))\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exercise\n", - "\n", - "Modify the above code by adding an intemediate linear layer of size 200 hidden units between input and output layers." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "import numpy\n", - "import logging\n", - "\n", - "logger = logging.getLogger()\n", - "logger.setLevel(logging.INFO)\n", - "\n", - "from mlp.layers import MLP, Linear #import required layer types\n", - "from mlp.optimisers import SGDOptimiser #import the optimiser\n", - "from mlp.dataset import MNISTDataProvider #import data provider\n", - "from mlp.costs import MSECost #import the cost we want to use for optimisation\n", - "from mlp.schedulers import LearningRateFixed\n", - "\n", - "rng = numpy.random.RandomState([2015,10,10])\n", - "\n", - "# define the model structure, here just one linear layer\n", - "# and mean square error cost\n", - "cost = MSECost()\n", - "model = MLP(cost=cost)\n", - "model.add_layer(Linear(idim=784, odim=200, rng=rng))\n", - "model.add_layer(Linear(idim=200, odim=10, rng=rng))\n", - "\n", - "# define the optimiser, here stochasitc gradient descent\n", - "# with fixed learning rate and max_epochs as stopping criterion\n", - "lr_scheduler = LearningRateFixed(learning_rate=0.01, max_epochs=20)\n", - "optimiser = SGDOptimiser(lr_scheduler=lr_scheduler)\n", - "\n", - "logger.info('Initialising data providers...')\n", - "train_dp = MNISTDataProvider(dset='train', batch_size=100, max_num_batches=-10, randomize=True)\n", - "valid_dp = MNISTDataProvider(dset='valid', batch_size=100, max_num_batches=-10, randomize=False)\n", - "\n", - "logger.info('Training started...')\n", - "optimiser.train(model, train_dp, valid_dp)\n", - "\n", - "logger.info('Testing the model on test set:')\n", - "test_dp = MNISTDataProvider(dset='eval', batch_size=100, max_num_batches=-10, randomize=False)\n", - "cost, accuracy = optimiser.validate(model, test_dp)\n", - "logger.info('MNIST test set accuracy is %.2f %% (cost is %.3f)'%(accuracy*100., cost))" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.9" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/notebooks/03_MLP_Coursework1.ipynb b/notebooks/03_MLP_Coursework1.ipynb deleted file mode 100644 index 28be3a1..0000000 --- a/notebooks/03_MLP_Coursework1.ipynb +++ /dev/null @@ -1,336 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Coursework #1\n", - "\n", - "## Introduction\n", - "\n", - "This coursework is concerned with building multi-layer networks to address the MNIST digit classification problem. It builds on the previous labs, in particular [02_MNIST_SLN.ipynb](02_MNIST_SLN.ipynb) in which single layer networks were trained for MNIST digit classification. The course will involve extending that code to use Sigmoid and Softmax layers, combining these into multi-layer networks, and carrying out a number of MNIST digit classification experiments, to investigate the effect of learning rate, the number of hidden units, and the number of hidden layers.\n", - "\n", - "The coursework is divided into 4 tasks:\n", - "* **Task 1**: *Implementing a sigmoid layer* - 15 marks. \n", - "This task involves extending the `Linear` class in file `mlp/layers.py` to `Sigmoid`, with code for forward prop, backprop computation of the gradient, and weight update.\n", - "* **Task 2**: *Implementing a softmax layer* - 15 marks. \n", - "This task involves extending the `Linear` class in file `mlp/layers.py` to `Softmax`, with code for forward prop, backprop computation of the gradient, and weight update.\n", - "* **Task 3**: *Constructing a multi-layer network* - 40 marks. \n", - "This task involves putting together a Sigmoid and a Softmax layer to create a multi-layer network, with one hidden layer (100 units) and one output layer, that is trained to classify MNIST digits. This task will include reporting classification results, exploring the effect of learning rates, and plotting Hinton Diagrams for the hidden units and output units.\n", - "* **Task 4**: *Experiments with different architectures* - 30 marks. \n", - "This task involves further MNIST classification experiments, primarily looking at the effect of using different numbers of hidden layers.\n", - "The coursework will be marked out of 100, and will contribute 30% of the total mark in the MLP course.\n", - "\n", - "## Previous Tutorials\n", - "\n", - "Before starting this coursework make sure that you have completed the first three labs:\n", - "\n", - "* [00_Introduction.ipynb](00_Introduction.ipynb) - setting up your environment; *Solutions*: [00_Introduction_solution.ipynb](00_Introduction_solution.ipynb)\n", - "* [01_Linear_Models.ipynb](01_Linear_Models.ipynb) - training single layer networks; *Solutions*: [01_Linear_Models_solution.ipynb](01_Linear_Models_solution.ipynb)\n", - "* [02_MNIST_SLN.ipynb](02_MNIST_SLN.ipynb) - training a single layer network for MNIST digit classification\n", - "\n", - "To ensure that your virtual environment is correct, please see [this note](https://github.com/CSTR-Edinburgh/mlpractical/blob/master/kernel_issue_fix.md) on the GitHub.\n", - "## Submission\n", - "**Submission Deadline: Thursday 29 October, 16:00** \n", - "\n", - "Submit the coursework as an ipython notebook file, using the `submit` command in the terminal on a DICE machine. If your file is `03_MLP_Coursework1.ipynb` then you would enter:\n", - "\n", - "`submit mlp 1 03_MLP_Coursework1.ipynb` \n", - "\n", - "where `mlp 1` indicates this is the first coursework of MLP.\n", - "\n", - "After submitting, you should receive an email of acknowledgment from the system confirming that your submission has been received successfully. Keep the email as evidence of your coursework submission.\n", - "\n", - "**Please make sure you submit a single `ipynb` file (and nothing else)!**\n", - "\n", - "**Submission Deadline: Thursday 29 October, 16:00** \n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Getting Started\n", - "Please enter your exam number and the date in the next code cell." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "#MLP Coursework 1\n", - "#Exam number: \n", - "#Date: \n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Please run the next code cell, which imports `numpy` and seeds the random number generator. Please **do not** modify the random number generator seed!" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "import numpy\n", - "\n", - "#Seed a random number generator running the below cell, but do **not** modify the seed.\n", - "rng = numpy.random.RandomState([2015,10,10])\n", - "rng_state = rng.get_state()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Task 1 - Sigmoid Layer (15%)\n", - "\n", - "In this task you need to create a class `Sigmoid` which encapsulates a layer of sigmoid units. You should do this by extending the `mlp.layers.Linear` class (in file `mlp/layers.py`), which implements a a layer of linear units (i.e. weighted sum plus bias). The `Sigmoid` class extends this by applying the sigmoid transfer function to the weighted sum in the forward propagation, and applying the derivative of the sigmoid in the gradient descent back propagation and computing the gradients with respect to layer's parameters. Do **not** copy the implementation provided in `Linear` class but rather, **reuse** it through inheritance.\n", - "\n", - "When you have implemented `Sigmoid` (in the `mlp.layers` module), then please test it by running the below code cell.\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "from mlp.layers import Sigmoid\n", - "\n", - "a = numpy.asarray([-20.1, 52.4, 0, 0.05, 0.05, 49])\n", - "b = numpy.asarray([-20.1, 52.4, 0, 0.05, 0.05, 49, 20, 20])\n", - "\n", - "rng.set_state(rng_state)\n", - "sigm = Sigmoid(idim=a.shape[0], odim=b.shape[0], rng=rng)\n", - "\n", - "fp = sigm.fprop(a)\n", - "deltas, ograds = sigm.bprop(h=fp, igrads=b)\n", - "\n", - "print fp.sum()\n", - "print deltas.sum()\n", - "print ograds.sum()\n", - "%precision 3\n", - "print fp\n", - "print deltas\n", - "print ograds\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "***\n", - "To include the `Sigmoid` code in the notebook please run the below code cell. (The `%load` notebook command is used to load the source of the `Sigmoid` class from `mlp/layers.py`.)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "%load -s Sigmoid mlp/layers.py" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Task 2 - Softmax (15%)\n", - "\n", - "In this task you need to create a class `Softmax` which encapsulates a layer of softmax units. As in the previous task, you should do this by extending the `mlp.layers.Linear` class (in file `mlp/layers.py`).\n", - "\n", - "When you have implemented `Softmax` (in the `mlp.layers` module), then please test it by running the below code cell.\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "from mlp.layers import Softmax\n", - "\n", - "a = numpy.asarray([-20.1, 52.4, 0, 0.05, 0.05, 49])\n", - "b = numpy.asarray([0, 0, 0, 0, 0, 0, 0, 1])\n", - "\n", - "rng.set_state(rng_state)\n", - "softmax = Softmax(idim=a.shape[0], odim=b.shape[0], rng=rng)\n", - "\n", - "fp = softmax.fprop(a)\n", - "deltas, ograds = softmax.bprop_cost(h=None, igrads=fp-b, cost=None)\n", - "\n", - "print fp.sum()\n", - "print deltas.sum()\n", - "print ograds.sum()\n", - "%precision 3\n", - "print fp\n", - "print deltas\n", - "print ograds\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "***\n", - "To include the `Softmax` code in the notebook please run the below code cell. (The notebook `%load` command is used to load the source of the `Softmax` class from `mlp/layers.py`.)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "%load -s Softmax mlp/layers.py" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Task 3 - Multi-layer network for MNIST classification (40%)\n", - "\n", - "**(a)** (20%) Building on the single layer linear network for MNIST classification used in lab [02_MNIST_SLN.ipynb](02_MNIST_SLN.ipynb), and using the `Sigmoid` and `Softmax` classes that you implemented in tasks 1 and 2, construct and learn a model that classifies MNIST images and:\n", - " * Has one hidden layer with a sigmoid transfer function and 100 units\n", - " * Uses a softmax output layer to discriminate between the 10 digit classes (use the `mlp.costs.CECost()` cost)\n", - "\n", - "Your code should print the final values of the error function and the classification accuracy for train, validation, and test sets (please keep also the log information printed by default by the optimiser). Limit the number of training epochs to 30. You can, of course, split your code across as many cells as you think is necessary." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "# include here the complete code that constructs the model, performs training,\n", - "# and prints the error and accuracy for train/valid/test" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**(b)** (10%) Investigate the impact of different learning rates $\\eta \\in \\{0.5, 0.2, 0.1, 0.05, 0.01, 0.005\\}$ on the convergence of the network training as well as the final accuracy:\n", - " * Plot (on a single graph) the error rate curves for each learning rate as a function of training epochs for training set\n", - " * Plot (on another single graph) the error rate curves as a function of training epochs for validation set\n", - " * Include a table of the corresponding error rates for test set\n", - "\n", - "The notebook command `%matplotlib inline` ensures that your graphs will be added to the notebook, rather than opened as additional windows." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "%matplotlib inline" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**(c)** (10%) Plot the following graphs:\n", - " * Display the 784-element weight vector of each of the 100 hidden units as 10x10 grid plot of 28x28 images, in order to visualise what features of the input they are encoding. To do this, take the weight vector of each hidden unit, reshape to 28x28, and plot using the `imshow` function).\n", - " * Plot a Hinton Diagram of the output layer weight matrix for digits 0 and 1" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "%matplotlib inline" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## Task 4 - Experiments with 1-5 hidden layers (30%)\n", - "\n", - "In this task use the learning rate which resulted in the best accuracy in your experiments in Task 3 (b). Perform the following experiments:\n", - "\n", - " * Train a similar model to Task 3, with one hidden layer, but with 800 hidden units. \n", - " * Train 4 additional models with 2, 3, 4 and 5 hidden layers. Set the number of hidden units for each model, such that all the models have similar number of trainable weights ($\\pm$2%). For simplicity, for a given model, keep the number of units in each hidden layer the same.\n", - " * Plot value of the error function for training and validation sets as a function of training epochs for each model\n", - " * Plot the test set classification accuracy as a function of the number of hidden layers\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "This is the end of coursework 1.\n", - "\n", - "Please remember to save your notebook, and submit your notebook following the instructions at the top. Please make sure that you have executed all the code cells when you submit the notebook.\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.9" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/notebooks/02_MNIST_SLN.ipynb b/notebooks/03_Multi_layer_models.ipynb similarity index 100% rename from notebooks/02_MNIST_SLN.ipynb rename to notebooks/03_Multi_layer_models.ipynb diff --git a/notebooks/04_Regularisation_solution.ipynb b/notebooks/04_Regularisation_solution.ipynb deleted file mode 100644 index 37095a3..0000000 --- a/notebooks/04_Regularisation_solution.ipynb +++ /dev/null @@ -1,1056 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Introduction\n", - "\n", - "This tutorial focuses on implementation of three reqularisaion techniques, two of them are norm based approaches which are added to optimised objective and the third technique, called *droput*, is a form of noise injection by random corruption of information carried by hidden units during training.\n", - "\n", - "\n", - "## Virtual environments\n", - "\n", - "Before you proceed onwards, remember to activate your virtual environment:\n", - " * If you were in last week's Tuesday or Wednesday group type `activate_mlp` or `source ~/mlpractical/venv/bin/activate`\n", - " * If you were in the Monday group:\n", - " + and if you have chosen the **comfy** way type: `workon mlpractical`\n", - " + and if you have chosen the **generic** way, `source` your virutal environment using `source` and specyfing the path to the activate script (you need to localise it yourself, there were not any general recommendations w.r.t dir structure and people have installed it in different places, usually somewhere in the home directories. If you cannot easily find it by yourself, use something like: `find . -iname activate` ):\n", - "\n", - "## Syncing the git repository\n", - "\n", - "Look here for more details. But in short, we recommend to create a separate branch for this lab, as follows:\n", - "\n", - "1. Enter the mlpractical directory `cd ~/mlpractical/repo-mlp`\n", - "2. List the branches and check which is currently active by typing: `git branch`\n", - "3. If you have followed our recommendations, you should be in the `coursework1` branch, please commit your local changed to the repo index by typing:\n", - "```\n", - "git commit -am \"finished coursework\"\n", - "```\n", - "4. Now you can switch to `master` branch by typing: \n", - "```\n", - "git checkout master\n", - " ```\n", - "5. To update the repository (note, assuming master does not have any conflicts), if there are some, have a look here\n", - "```\n", - "git pull\n", - "```\n", - "6. And now, create the new branch & swith to it by typing:\n", - "```\n", - "git checkout -b lab4\n", - "```" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Regularisation\n", - "\n", - "Regularisation add some *complexity term* to the cost function. It's purpose is to put some prior on the model's parameters. The most common prior is perhaps the one which assumes smoother solutions (the one which are not able to fit training data too well) are better as they are more likely to better generalise to unseen data. \n", - "\n", - "A way to incorporate such prior in the model is to add some term that penalise certain configurations of the parameters -- either from growing too large ($L_2$) or the one that prefers solution that could be modelled with less parameters ($L_1$), hence encouraging some parameters to become 0. One can, of course, combine many such priors when optimising the model, however, in the lab we shall use $L_1$ and/or $L_2$ priors.\n", - "\n", - "They can be easily incorporated into the training objective by adding some additive terms, as follows:\n", - "\n", - "(1) $\n", - " \\begin{align*}\n", - " E^n &= \\underbrace{E^n_{\\text{train}}}_{\\text{data term}} + \n", - " \\underbrace{\\beta_{L_1} E^n_{L_1}}_{\\text{prior term}} + \\underbrace{\\beta_{L_2} E^n_{L_2}}_{\\text{prior term}}\n", - "\\end{align*}\n", - "$\n", - "\n", - "where $ E^n_{\\text{train}} = - \\sum_{k=1}^K t^n_k \\ln y^n_k $, $\\beta_{L_1}$ and $\\beta_{L_2}$ some non-negative constants specified a priori (hyper-parameters) and $E^n_{L_1}$ and $E^n_{L_2}$ norm metric specifying certain properties of parameters:\n", - "\n", - "(2) $\n", - " \\begin{align*}\n", - " E^n_{L_p}(\\mathbf{W}) = \\left ( \\sum_{i,j \\in \\mathbf{W}} |w_{i,j}|^p \\right )^{\\frac{1}{p}}\n", - "\\end{align*}\n", - "$\n", - "\n", - "where $p$ denotes the norm-order (for regularisation either 1 or 2). (TODO: explain here why we usualy skip square root for p=2)\n", - "\n", - "## $L_{p=2}$ (Weight Decay)\n", - "\n", - "(3) $\n", - " \\begin{align*}\n", - " E^n &= \\underbrace{E^n_{\\text{train}}}_{\\text{data term}} + \n", - " \\underbrace{\\beta E^n_{L_2}}_{\\text{prior term}} = E^n_{\\text{train}} + \\beta_{L_2} \\frac{1}{2}|w_i|^2\n", - "\\end{align*}\n", - "$\n", - "\n", - "(4) $\n", - "\\begin{align*}\\frac{\\partial E^n}{\\partial w_i} &= \\frac{\\partial (E^n_{\\text{train}} + \\beta_{L_2} E_{L_2}) }{\\partial w_i} \n", - " = \\left( \\frac{\\partial E^n_{\\text{train}}}{\\partial w_i} + \\beta_{L_2} \\frac{\\partial\n", - " E_{L_2}}{\\partial w_i} \\right) \n", - " = \\left( \\frac{\\partial E^n_{\\text{train}}}{\\partial w_i} + \\beta_{L_2} w_i \\right)\n", - "\\end{align*}\n", - "$\n", - "\n", - "(5) $\n", - "\\begin{align*}\n", - " \\Delta w_i &= -\\eta \\left( \\frac{\\partial E^n_{\\text{train}}}{\\partial w_i} + \\beta_{L_2} w_i \\right) \n", - "\\end{align*}\n", - "$\n", - "\n", - "where $\\eta$ is learning rate.\n", - "\n", - "## $L_{p=1}$ (Sparsity)\n", - "\n", - "(6) $\n", - " \\begin{align*}\n", - " E^n &= \\underbrace{E^n_{\\text{train}}}_{\\text{data term}} + \n", - " \\underbrace{\\beta E^n_{L_1}}_{\\text{prior term}} \n", - " = E^n_{\\text{train}} + \\beta_{L_1} |w_i|\n", - "\\end{align*}\n", - "$\n", - "\n", - "(7) $\\begin{align*}\n", - " \\frac{\\partial E^n}{\\partial w_i} = \\frac{\\partial E^n_{\\text{train}}}{\\partial w_i} + \\beta_{L_1} \\frac{\\partial E_{L_1}}{\\partial w_i} = \\frac{\\partial E^n_{\\text{train}}}{\\partial w_i} + \\beta_{L_1} \\mbox{sgn}(w_i)\n", - "\\end{align*}\n", - "$\n", - "\n", - "(8) $\\begin{align*}\n", - " \\Delta w_i &= -\\eta \\left( \\frac{\\partial E^n_{\\text{train}}}{\\partial w_i} + \\beta_{L_1} \\mbox{sgn}(w_i) \\right) \n", - "\\end{align*}$\n", - "\n", - "Where $\\mbox{sgn}(w_i)$ is the sign of $w_i$: $\\mbox{sgn}(w_i) = 1$ if $w_i>0$ and $\\mbox{sgn}(w_i) = -1$ if $w_i<0$\n", - "\n", - "One can also apply those penalty terms for biases, however, this is usually not necessary as biases have secondary impact on smoothnes of the given solution.\n", - "\n", - "## Dropout\n", - "\n", - "Dropout, for a given layer's output $\\mathbf{h}^i \\in \\mathbb{R}^{BxH^l}$ (where $B$ is batch size and $H^l$ is the $l$-th layer output dimensionality) implements the following transformation:\n", - "\n", - "(9) $\\mathbf{\\hat h}^l = \\mathbf{d}^l\\circ\\mathbf{h}^l$\n", - "\n", - "where $\\circ$ denotes an elementwise product and $\\mathbf{d}^l \\in \\{0,1\\}^{BxH^i}$ is a matrix in which $d^l_{ij}$ element is sampled from the Bernoulli distribution:\n", - "\n", - "(10) $d^l_{ij} \\sim \\mbox{Bernoulli}(p^l_d)$\n", - "\n", - "with $0