Adding Glorot and Bengio parameter initialiser.
This commit is contained in:
parent
302d44371a
commit
18f893d864
@ -63,3 +63,82 @@ class NormalInit(object):
|
||||
|
||||
def __call__(self, shape):
|
||||
return self.rng.normal(loc=self.mean, scale=self.std, size=shape)
|
||||
|
||||
|
||||
class GlorotUniformInit(object):
|
||||
"""Glorot and Bengio (2010) random uniform weights initialiser.
|
||||
|
||||
Initialises an two-dimensional parameter array using the 'normalized
|
||||
initialisation' scheme suggested in [1] which attempts to maintain a
|
||||
roughly constant variance in the activations and backpropagated gradients
|
||||
of a multi-layer model consisting of interleaved affine and logistic
|
||||
sigmoidal transformation layers.
|
||||
|
||||
Weights are sampled from a zero-mean uniform distribution with standard
|
||||
deviation `sqrt(2 / (input_dim * output_dim))` where `input_dim` and
|
||||
`output_dim` are the input and output dimensions of the weight matrix
|
||||
respectively.
|
||||
|
||||
References:
|
||||
[1]: Understanding the difficulty of training deep feedforward neural
|
||||
networks, Glorot and Bengio (2010)
|
||||
"""
|
||||
|
||||
def __init__(self, gain=1., rng=None):
|
||||
"""Construct a normalised initilisation random initialiser object.
|
||||
|
||||
Args:
|
||||
gain: Multiplicative factor to scale initialised weights by.
|
||||
Recommended values is 1 for affine layers followed by
|
||||
logistic sigmoid layers (or another affine layer).
|
||||
rng (RandomState): Seeded random number generator.
|
||||
"""
|
||||
self.gain = gain
|
||||
if rng is None:
|
||||
rng = np.random.RandomState(DEFAULT_SEED)
|
||||
self.rng = rng
|
||||
|
||||
def __call__(self, shape):
|
||||
assert len(shape) == 2, (
|
||||
'Initialiser should only be used for two dimensional arrays'.)
|
||||
std = self.gain * (2. / (shape[0] + shape[1]))**0.5
|
||||
half_width = 3.**0.5 * std
|
||||
return self.rng.uniform(low=-half_width, high=half_width, size=shape)
|
||||
|
||||
|
||||
class GlorotNormalInit(object):
|
||||
"""Glorot and Bengio (2010) random normal weights initialiser.
|
||||
|
||||
Initialises an two-dimensional parameter array using the 'normalized
|
||||
initialisation' scheme suggested in [1] which attempts to maintain a
|
||||
roughly constant variance in the activations and backpropagated gradients
|
||||
of a multi-layer model consisting of interleaved affine and logistic
|
||||
sigmoidal transformation layers.
|
||||
|
||||
Weights are sampled from a zero-mean normal distribution with standard
|
||||
deviation `sqrt(2 / (input_dim * output_dim))` where `input_dim` and
|
||||
`output_dim` are the input and output dimensions of the weight matrix
|
||||
respectively.
|
||||
|
||||
References:
|
||||
[1]: Understanding the difficulty of training deep feedforward neural
|
||||
networks, Glorot and Bengio (2010)
|
||||
"""
|
||||
|
||||
def __init__(self, gain=1., rng=None):
|
||||
"""Construct a normalised initilisation random initialiser object.
|
||||
|
||||
Args:
|
||||
gain: Multiplicative factor to scale initialised weights by.
|
||||
Recommended values is 1 for affine layers followed by
|
||||
logistic sigmoid layers (or another affine layer).
|
||||
rng (RandomState): Seeded random number generator.
|
||||
"""
|
||||
self.gain = gain
|
||||
if rng is None:
|
||||
rng = np.random.RandomState(DEFAULT_SEED)
|
||||
self.rng = rng
|
||||
|
||||
def __call__(self, shape):
|
||||
std = self.gain * (2. / (shape[0] + shape[1]))**0.5
|
||||
return self.rng.normal(loc=0., scale=std, size=shape)
|
||||
|
Loading…
Reference in New Issue
Block a user