fix experiment_builder.py

This commit is contained in:
Anton Lydike 2024-11-18 11:26:52 +00:00
parent 58613aee35
commit 05e53aacaf

View File

@ -114,7 +114,7 @@ class ExperimentBuilder(nn.Module):
return total_num_params return total_num_params
def plot_func_def(self,all_grads, layers): def plot_func_def(self, all_grads, layers):
""" """
@ -148,19 +148,24 @@ class ExperimentBuilder(nn.Module):
""" """
Complete the code in the block below to collect absolute mean of the gradients for each layer in all_grads with the layer names in layers. Complete the code in the block below to collect absolute mean of the gradients for each layer in all_grads with the layer names in layers.
""" """
########################################
#TODO write your code here
######################################## for name, param in named_parameters:
# Check if the parameter requires gradient and has a gradient
if param.requires_grad and param.grad is not None:
try:
_, a, _, b, _ = name.split(".", 4)
except:
b, a = name.split(".", 1)
layers.append(f"{a}_{b}")
# Collect the mean of the absolute gradients
all_grads.append(param.grad.abs().mean().item())
plt = self.plot_func_def(all_grads, layers) plt = self.plot_func_def(all_grads, layers)
return plt return plt
def run_train_iter(self, x, y): def run_train_iter(self, x, y):
self.train() # sets model to training mode (in case batch normalization or other methods have different procedures for training and evaluation) self.train() # sets model to training mode (in case batch normalization or other methods have different procedures for training and evaluation)