mlpractical/mlp/data_providers.py

433 lines
19 KiB
Python
Raw Normal View History

2018-09-13 03:28:00 +02:00
# -*- coding: utf-8 -*-
"""Data providers.
This module provides classes for loading datasets and iterating over batches of
data points.
"""
import pickle
import gzip
import numpy as np
import os
from mlp import DEFAULT_SEED
class DataProvider(object):
"""Generic data provider."""
def __init__(self, inputs, targets, batch_size, max_num_batches=-1,
2024-10-14 11:51:43 +02:00
shuffle_order=True, rng=None, smooth_labels=False):
2018-09-13 03:28:00 +02:00
"""Create a new data provider object.
Args:
inputs (ndarray): Array of data input features of shape
(num_data, input_dim).
targets (ndarray): Array of data output targets of shape
(num_data, output_dim) or (num_data,) if output_dim == 1.
batch_size (int): Number of data points to include in each batch.
max_num_batches (int): Maximum number of batches to iterate over
in an epoch. If `max_num_batches * batch_size > num_data` then
only as many batches as the data can be split into will be
used. If set to -1 all of the data will be used.
shuffle_order (bool): Whether to randomly permute the order of
the data before each epoch.
rng (RandomState): A seeded random number generator.
2024-10-14 11:51:43 +02:00
smooth_labels (bool): turn on label smoothing
2018-09-13 03:28:00 +02:00
"""
self.inputs = inputs
self.targets = targets
2024-10-14 11:51:43 +02:00
if batch_size < 1:
raise ValueError('batch_size must be >= 1')
self._batch_size = batch_size
if max_num_batches == 0 or max_num_batches < -1:
raise ValueError('max_num_batches must be -1 or > 0')
self._max_num_batches = max_num_batches
self._update_num_batches()
self.shuffle_order = shuffle_order
self._current_order = np.arange(inputs.shape[0])
if rng is None:
rng = np.random.RandomState(DEFAULT_SEED)
self.rng = rng
self.smooth_labels = smooth_labels
self.new_epoch()
@property
def batch_size(self):
"""Number of data points to include in each batch."""
return self._batch_size
@batch_size.setter
def batch_size(self, value):
if value < 1:
raise ValueError('batch_size must be >= 1')
self._batch_size = value
self._update_num_batches()
@property
def max_num_batches(self):
"""Maximum number of batches to iterate over in an epoch."""
return self._max_num_batches
@max_num_batches.setter
def max_num_batches(self, value):
if value == 0 or value < -1:
raise ValueError('max_num_batches must be -1 or > 0')
self._max_num_batches = value
self._update_num_batches()
def _update_num_batches(self):
"""Updates number of batches to iterate over."""
2018-09-13 03:28:00 +02:00
# maximum possible number of batches is equal to number of whole times
# batch_size divides in to the number of data points which can be
# found using integer division
2024-10-14 11:51:43 +02:00
possible_num_batches = self.inputs.shape[0] // self.batch_size
2018-09-13 03:28:00 +02:00
if self.max_num_batches == -1:
self.num_batches = possible_num_batches
else:
self.num_batches = min(self.max_num_batches, possible_num_batches)
def __iter__(self):
"""Implements Python iterator interface.
This should return an object implementing a `next` method which steps
through a sequence returning one element at a time and raising
`StopIteration` when at the end of the sequence. Here the object
returned is the DataProvider itself.
"""
return self
2024-10-14 11:51:43 +02:00
def new_epoch(self):
"""Starts a new epoch (pass through data), possibly shuffling first."""
2018-09-13 03:28:00 +02:00
self._curr_batch = 0
if self.shuffle_order:
self.shuffle()
2024-09-20 20:09:17 +02:00
def __next__(self):
return self.next()
2024-10-14 11:51:43 +02:00
def reset(self):
"""Resets the provider to the initial state."""
inv_perm = np.argsort(self._current_order)
self._current_order = self._current_order[inv_perm]
self.inputs = self.inputs[inv_perm]
self.targets = self.targets[inv_perm]
self.new_epoch()
def shuffle(self):
"""Randomly shuffles order of data."""
perm = self.rng.permutation(self.inputs.shape[0])
self._current_order = self._current_order[perm]
self.inputs = self.inputs[perm]
self.targets = self.targets[perm]
2018-09-13 03:28:00 +02:00
def next(self):
"""Returns next data batch or raises `StopIteration` if at end."""
if self._curr_batch + 1 > self.num_batches:
2024-10-14 11:51:43 +02:00
# no more batches in current iteration through data set so start
# new epoch ready for another pass and indicate iteration is at end
self.new_epoch()
2018-09-13 03:28:00 +02:00
raise StopIteration()
# create an index slice corresponding to current batch number
batch_slice = slice(self._curr_batch * self.batch_size,
(self._curr_batch + 1) * self.batch_size)
inputs_batch = self.inputs[batch_slice]
targets_batch = self.targets[batch_slice]
self._curr_batch += 1
return inputs_batch, targets_batch
class MNISTDataProvider(DataProvider):
"""Data provider for MNIST handwritten digit images."""
def __init__(self, which_set='train', batch_size=100, max_num_batches=-1,
2024-10-14 11:51:43 +02:00
shuffle_order=True, rng=None, smooth_labels=False):
2018-09-13 03:28:00 +02:00
"""Create a new MNIST data provider object.
Args:
which_set: One of 'train', 'valid' or 'eval'. Determines which
portion of the MNIST data this object should provide.
batch_size (int): Number of data points to include in each batch.
max_num_batches (int): Maximum number of batches to iterate over
in an epoch. If `max_num_batches * batch_size > num_data` then
only as many batches as the data can be split into will be
used. If set to -1 all of the data will be used.
shuffle_order (bool): Whether to randomly permute the order of
the data before each epoch.
rng (RandomState): A seeded random number generator.
2024-10-14 11:51:43 +02:00
smooth_labels (bool): enable/disable label smoothing
2018-09-13 03:28:00 +02:00
"""
# check a valid which_set was provided
2024-10-14 11:51:43 +02:00
assert which_set in ['train', 'valid', 'test'], (
2018-09-13 03:28:00 +02:00
'Expected which_set to be either train, valid or eval. '
'Got {0}'.format(which_set)
)
self.which_set = which_set
self.num_classes = 10
# construct path to data using os.path.join to ensure the correct path
# separator for the current platform / OS is used
# MLP_DATA_DIR environment variable should point to the data directory
data_path = os.path.join(
os.environ['MLP_DATA_DIR'], 'mnist-{0}.npz'.format(which_set))
assert os.path.isfile(data_path), (
'Data file does not exist at expected path: ' + data_path
)
# load data from compressed numpy file
loaded = np.load(data_path)
inputs, targets = loaded['inputs'], loaded['targets']
inputs = inputs.astype(np.float32)
# pass the loaded data to the parent class __init__
super(MNISTDataProvider, self).__init__(
2024-10-14 11:51:43 +02:00
inputs, targets, batch_size, max_num_batches, shuffle_order, rng, smooth_labels)
2018-09-13 03:28:00 +02:00
2024-09-20 20:09:17 +02:00
def next(self):
"""Returns next data batch or raises `StopIteration` if at end."""
inputs_batch, targets_batch = super(MNISTDataProvider, self).next()
return inputs_batch, self.to_one_of_k(targets_batch)
2018-09-13 03:28:00 +02:00
def to_one_of_k(self, int_targets):
"""Converts integer coded class target to 1 of K coded targets.
Args:
int_targets (ndarray): Array of integer coded class targets (i.e.
where an integer from 0 to `num_classes` - 1 is used to
indicate which is the correct class). This should be of shape
(num_data,).
Returns:
Array of 1 of K coded targets i.e. an array of shape
(num_data, num_classes) where for each row all elements are equal
to zero except for the column corresponding to the correct class
which is equal to one.
"""
2024-09-20 20:09:17 +02:00
one_of_k_targets = np.zeros((int_targets.shape[0], self.num_classes))
one_of_k_targets[range(int_targets.shape[0]), int_targets] = 1
return one_of_k_targets
2018-09-13 03:28:00 +02:00
2024-10-14 11:51:43 +02:00
class EMNISTDataProvider(DataProvider):
"""Data provider for EMNIST handwritten digit images."""
def __init__(self, which_set='train', batch_size=100, max_num_batches=-1,
shuffle_order=True, rng=None, smooth_labels=False):
"""Create a new EMNIST data provider object.
Args:
which_set: One of 'train', 'valid' or 'eval'. Determines which
portion of the EMNIST data this object should provide.
batch_size (int): Number of data points to include in each batch.
max_num_batches (int): Maximum number of batches to iterate over
in an epoch. If `max_num_batches * batch_size > num_data` then
only as many batches as the data can be split into will be
used. If set to -1 all of the data will be used.
shuffle_order (bool): Whether to randomly permute the order of
the data before each epoch.
rng (RandomState): A seeded random number generator.
smooth_labels (bool): enable/disable label smoothing
"""
# check a valid which_set was provided
assert which_set in ['train', 'valid', 'test'], (
'Expected which_set to be either train, valid or eval. '
'Got {0}'.format(which_set)
)
self.which_set = which_set
self.num_classes = 47
# construct path to data using os.path.join to ensure the correct path
# separator for the current platform / OS is used
# MLP_DATA_DIR environment variable should point to the data directory
data_path = os.path.join(
os.environ['MLP_DATA_DIR'], 'emnist-{0}.npz'.format(which_set))
assert os.path.isfile(data_path), (
'Data file does not exist at expected path: ' + data_path
)
# load data from compressed numpy file
loaded = np.load(data_path)
print(loaded.keys())
inputs, targets = loaded['inputs'], loaded['targets']
inputs = inputs.astype(np.float32)
inputs = np.reshape(inputs, newshape=(-1, 28*28))
inputs = inputs / 255.0
# pass the loaded data to the parent class __init__
super(EMNISTDataProvider, self).__init__(
inputs, targets, batch_size, max_num_batches, shuffle_order, rng, smooth_labels)
def next(self):
"""Returns next data batch or raises `StopIteration` if at end."""
inputs_batch, targets_batch = super(EMNISTDataProvider, self).next()
if self.smooth_labels:
targets_batch_mat = self.label_smoothing(targets_batch)
else:
targets_batch_mat = self.to_one_of_k(targets_batch)
return inputs_batch, targets_batch_mat
def to_one_of_k(self, int_targets):
"""Converts integer coded class target to 1 of K coded targets.
Args:
int_targets (ndarray): Array of integer coded class targets (i.e.
where an integer from 0 to `num_classes` - 1 is used to
indicate which is the correct class). This should be of shape
(num_data,).
Returns:
Array of 1 of K coded targets i.e. an array of shape
(num_data, num_classes) where for each row all elements are equal
to zero except for the column corresponding to the correct class
which is equal to one.
"""
one_of_k_targets = np.zeros((int_targets.shape[0], self.num_classes))
one_of_k_targets[range(int_targets.shape[0]), int_targets] = 1
return one_of_k_targets
def label_smoothing(self, int_targets, alpha=0.1):
"""Converts integer coded class target to 1 of K coded targets with label smoothing.
Args:
int_targets (ndarray): Array of integer coded class targets (i.e.
where an integer from 0 to `num_classes` - 1 is used to
indicate which is the correct class). This should be of shape
(num_data,).
alpha (float): Smoothing factor.
Returns:
Array of 1 of K coded targets with label smoothing i.e. an array of shape
(num_data, num_classes)
"""
raise NotImplementedError
2018-09-13 03:28:00 +02:00
class MetOfficeDataProvider(DataProvider):
"""South Scotland Met Office weather data provider."""
def __init__(self, window_size, batch_size=10, max_num_batches=-1,
2024-09-20 20:09:17 +02:00
shuffle_order=True, rng=None):
"""Create a new Met Office data provider object.
2018-09-13 03:28:00 +02:00
Args:
window_size (int): Size of windows to split weather time series
2024-09-20 20:09:17 +02:00
data into. The constructed input features will be the first
`window_size - 1` entries in each window and the target outputs
the last entry in each window.
2018-09-13 03:28:00 +02:00
batch_size (int): Number of data points to include in each batch.
max_num_batches (int): Maximum number of batches to iterate over
in an epoch. If `max_num_batches * batch_size > num_data` then
only as many batches as the data can be split into will be
used. If set to -1 all of the data will be used.
shuffle_order (bool): Whether to randomly permute the order of
the data before each epoch.
rng (RandomState): A seeded random number generator.
"""
data_path = os.path.join(
os.environ['MLP_DATA_DIR'], 'HadSSP_daily_qc.txt')
assert os.path.isfile(data_path), (
'Data file does not exist at expected path: ' + data_path
)
2024-09-20 20:09:17 +02:00
raw = np.loadtxt(data_path, skiprows=3, usecols=range(2, 32))
assert window_size > 1, 'window_size must be at least 2.'
self.window_size = window_size
# filter out all missing datapoints and flatten to a vector
filtered = raw[raw >= 0].flatten()
# normalise data to zero mean, unit standard deviation
mean = np.mean(filtered)
std = np.std(filtered)
normalised = (filtered - mean) / std
# create a view on to array corresponding to a rolling window
shape = (normalised.shape[-1] - self.window_size + 1, self.window_size)
strides = normalised.strides + (normalised.strides[-1],)
windowed = np.lib.stride_tricks.as_strided(
normalised, shape=shape, strides=strides)
# inputs are first (window_size - 1) entries in windows
inputs = windowed[:, :-1]
# targets are last entry in windows
targets = windowed[:, -1]
super(MetOfficeDataProvider, self).__init__(
inputs, targets, batch_size, max_num_batches, shuffle_order, rng)
class CCPPDataProvider(DataProvider):
def __init__(self, which_set='train', input_dims=None, batch_size=10,
max_num_batches=-1, shuffle_order=True, rng=None):
"""Create a new Combined Cycle Power Plant data provider object.
Args:
which_set: One of 'train' or 'valid'. Determines which portion of
data this object should provide.
input_dims: Which of the four input dimension to use. If `None` all
are used. If an iterable of integers are provided (consisting
of a subset of {0, 1, 2, 3}) then only the corresponding
input dimensions are included.
batch_size (int): Number of data points to include in each batch.
max_num_batches (int): Maximum number of batches to iterate over
in an epoch. If `max_num_batches * batch_size > num_data` then
only as many batches as the data can be split into will be
used. If set to -1 all of the data will be used.
shuffle_order (bool): Whether to randomly permute the order of
the data before each epoch.
rng (RandomState): A seeded random number generator.
"""
data_path = os.path.join(
os.environ['MLP_DATA_DIR'], 'ccpp_data.npz')
assert os.path.isfile(data_path), (
'Data file does not exist at expected path: ' + data_path
)
# check a valid which_set was provided
assert which_set in ['train', 'valid'], (
'Expected which_set to be either train or valid '
'Got {0}'.format(which_set)
)
# check input_dims are valid
if not input_dims is not None:
input_dims = set(input_dims)
assert input_dims.issubset({0, 1, 2, 3}), (
'input_dims should be a subset of {0, 1, 2, 3}'
)
loaded = np.load(data_path)
inputs = loaded[which_set + '_inputs']
if input_dims is not None:
inputs = inputs[:, input_dims]
targets = loaded[which_set + '_targets']
super(CCPPDataProvider, self).__init__(
inputs, targets, batch_size, max_num_batches, shuffle_order, rng)
2024-10-14 11:51:43 +02:00
class AugmentedMNISTDataProvider(MNISTDataProvider):
"""Data provider for MNIST dataset which randomly transforms images."""
def __init__(self, which_set='train', batch_size=100, max_num_batches=-1,
shuffle_order=True, rng=None, transformer=None):
"""Create a new augmented MNIST data provider object.
Args:
which_set: One of 'train', 'valid' or 'test'. Determines which
portion of the MNIST data this object should provide.
batch_size (int): Number of data points to include in each batch.
max_num_batches (int): Maximum number of batches to iterate over
in an epoch. If `max_num_batches * batch_size > num_data` then
only as many batches as the data can be split into will be
used. If set to -1 all of the data will be used.
shuffle_order (bool): Whether to randomly permute the order of
the data before each epoch.
rng (RandomState): A seeded random number generator.
transformer: Function which takes an `inputs` array of shape
(batch_size, input_dim) corresponding to a batch of input
images and a `rng` random number generator object (i.e. a
call signature `transformer(inputs, rng)`) and applies a
potentiall random set of transformations to some / all of the
input images as each new batch is returned when iterating over
the data provider.
"""
super(AugmentedMNISTDataProvider, self).__init__(
which_set, batch_size, max_num_batches, shuffle_order, rng)
self.transformer = transformer
def next(self):
"""Returns next data batch or raises `StopIteration` if at end."""
inputs_batch, targets_batch = super(
AugmentedMNISTDataProvider, self).next()
transformed_inputs_batch = self.transformer(inputs_batch, self.rng)
return transformed_inputs_batch, targets_batch