126 lines
4.3 KiB
Python
126 lines
4.3 KiB
Python
|
|
||
|
# Machine Learning Practical (INFR11119),
|
||
|
# Pawel Swietojanski, University of Edinburgh
|
||
|
|
||
|
|
||
|
import numpy
|
||
|
import logging
|
||
|
from mlp.layers import Layer
|
||
|
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
"""
|
||
|
You have been given some very initial skeleton below. Feel free to build on top of it and/or
|
||
|
modify it according to your needs. Just notice, you can factor out the convolution code out of
|
||
|
the layer code, and just pass (possibly) different conv implementations for each of the stages
|
||
|
in the model where you are expected to apply the convolutional operator. This will allow you to
|
||
|
keep the layer implementation independent of conv operator implementation, and you can easily
|
||
|
swap it layer, for example, for more efficient implementation if you came up with one, etc.
|
||
|
"""
|
||
|
|
||
|
def my1_conv2d(image, kernels, strides=(1, 1)):
|
||
|
"""
|
||
|
Implements a 2d valid convolution of kernels with the image
|
||
|
Note: filer means the same as kernel and convolution (correlation) of those with the input space
|
||
|
produces feature maps (sometimes refereed to also as receptive fields). Also note, that
|
||
|
feature maps are synonyms here to channels, and as such num_inp_channels == num_inp_feat_maps
|
||
|
:param image: 4D tensor of sizes (batch_size, num_input_channels, img_shape_x, img_shape_y)
|
||
|
:param filters: 4D tensor of filters of size (num_inp_feat_maps, num_out_feat_maps, kernel_shape_x, kernel_shape_y)
|
||
|
:param strides: a tuple (stride_x, stride_y), specifying the shift of the kernels in x and y dimensions
|
||
|
:return: 4D tensor of size (batch_size, num_out_feature_maps, feature_map_shape_x, feature_map_shape_y)
|
||
|
"""
|
||
|
raise NotImplementedError('Write me!')
|
||
|
|
||
|
|
||
|
class ConvLinear(Layer):
|
||
|
def __init__(self,
|
||
|
num_inp_feat_maps,
|
||
|
num_out_feat_maps,
|
||
|
image_shape=(28, 28),
|
||
|
kernel_shape=(5, 5),
|
||
|
stride=(1, 1),
|
||
|
irange=0.2,
|
||
|
rng=None,
|
||
|
conv_fwd=my1_conv2d,
|
||
|
conv_bck=my1_conv2d,
|
||
|
conv_grad=my1_conv2d):
|
||
|
"""
|
||
|
|
||
|
:param num_inp_feat_maps: int, a number of input feature maps (channels)
|
||
|
:param num_out_feat_maps: int, a number of output feature maps (channels)
|
||
|
:param image_shape: tuple, a shape of the image
|
||
|
:param kernel_shape: tuple, a shape of the kernel
|
||
|
:param stride: tuple, shift of kernels in both dimensions
|
||
|
:param irange: float, initial range of the parameters
|
||
|
:param rng: RandomState object, random number generator
|
||
|
:param conv_fwd: handle to a convolution function used in fwd-prop
|
||
|
:param conv_bck: handle to a convolution function used in backward-prop
|
||
|
:param conv_grad: handle to a convolution function used in pgrads
|
||
|
:return:
|
||
|
"""
|
||
|
|
||
|
super(ConvLinear, self).__init__(rng=rng)
|
||
|
|
||
|
raise NotImplementedError()
|
||
|
|
||
|
def fprop(self, inputs):
|
||
|
raise NotImplementedError()
|
||
|
|
||
|
def bprop(self, h, igrads):
|
||
|
raise NotImplementedError()
|
||
|
|
||
|
def bprop_cost(self, h, igrads, cost):
|
||
|
raise NotImplementedError('ConvLinear.bprop_cost method not implemented')
|
||
|
|
||
|
def pgrads(self, inputs, deltas, l1_weight=0, l2_weight=0):
|
||
|
raise NotImplementedError()
|
||
|
|
||
|
def get_params(self):
|
||
|
raise NotImplementedError()
|
||
|
|
||
|
def set_params(self, params):
|
||
|
raise NotImplementedError()
|
||
|
|
||
|
def get_name(self):
|
||
|
return 'convlinear'
|
||
|
|
||
|
#you can derive here particular non-linear implementations:
|
||
|
#class ConvSigmoid(ConvLinear):
|
||
|
#...
|
||
|
|
||
|
|
||
|
class ConvMaxPool2D(Layer):
|
||
|
def __init__(self,
|
||
|
num_feat_maps,
|
||
|
conv_shape,
|
||
|
pool_shape=(2, 2),
|
||
|
pool_stride=(2, 2)):
|
||
|
"""
|
||
|
|
||
|
:param conv_shape: tuple, a shape of the lower convolutional feature maps output
|
||
|
:param pool_shape: tuple, a shape of pooling operator
|
||
|
:param pool_stride: tuple, a strides for pooling operator
|
||
|
:return:
|
||
|
"""
|
||
|
|
||
|
super(ConvMaxPool2D, self).__init__(rng=None)
|
||
|
raise NotImplementedError()
|
||
|
|
||
|
def fprop(self, inputs):
|
||
|
raise NotImplementedError()
|
||
|
|
||
|
def bprop(self, h, igrads):
|
||
|
raise NotImplementedError()
|
||
|
|
||
|
def get_params(self):
|
||
|
return []
|
||
|
|
||
|
def pgrads(self, inputs, deltas, **kwargs):
|
||
|
return []
|
||
|
|
||
|
def set_params(self, params):
|
||
|
pass
|
||
|
|
||
|
def get_name(self):
|
||
|
return 'convmaxpool2d'
|