mlpractical/mlp/optimisers.py

72 lines
2.8 KiB
Python
Raw Normal View History

# -*- coding: utf-8 -*-
"""Model optimisers."""
2016-09-19 08:31:31 +02:00
import time
import logging
from collections import OrderedDict
import numpy as np
2016-09-19 08:31:31 +02:00
logger = logging.getLogger(__name__)
class Optimiser(object):
2016-09-19 08:31:31 +02:00
def __init__(self, model, cost, learning_rule, train_dataset,
valid_dataset=None, data_monitors=None):
2016-09-19 08:31:31 +02:00
self.model = model
self.cost = cost
self.learning_rule = learning_rule
self.learning_rule.initialise(self.model.params)
self.train_dataset = train_dataset
self.valid_dataset = valid_dataset
self.data_monitors = OrderedDict([('cost', cost)])
if data_monitors is not None:
self.data_monitors.update(data_monitors)
2016-09-19 08:31:31 +02:00
def do_training_epoch(self):
for inputs_batch, targets_batch in self.train_dataset:
activations = self.model.fprop(inputs_batch)
grads_wrt_outputs = self.cost.grad(activations[-1], targets_batch)
grads_wrt_params = self.model.grads_wrt_params(
activations, grads_wrt_outputs)
self.learning_rule.update_params(grads_wrt_params)
def monitors(self, dataset, label):
data_mon_vals = OrderedDict([(key + label, 0.) for key
in self.data_monitors.keys()])
2016-09-19 08:31:31 +02:00
for inputs_batch, targets_batch in dataset:
activations = self.model.fprop(inputs_batch)
for key, data_monitor in self.data_monitors.items():
data_mon_vals[key + label] += data_monitor(
activations[-1], targets_batch)
for key, data_monitor in self.data_monitors.items():
data_mon_vals[key + label] /= dataset.num_batches
return data_mon_vals
2016-09-19 08:31:31 +02:00
def get_epoch_stats(self):
epoch_stats = OrderedDict()
epoch_stats.update(self.monitors(self.train_dataset, '(train)'))
if self.valid_dataset is not None:
epoch_stats.update(self.monitors(self.valid_dataset, '(valid)'))
2016-09-19 08:31:31 +02:00
epoch_stats['cost(param)'] = self.model.params_cost()
return epoch_stats
def log_stats(self, epoch, epoch_time, stats):
logger.info('Epoch {0}: {1:.1f}s to complete\n {2}'.format(
epoch, epoch_time,
', '.join(['{0}={1:.2e}'.format(k, v) for (k, v) in stats.items()])
2016-09-19 08:31:31 +02:00
))
def train(self, n_epochs, stats_interval=5):
run_stats = []
for epoch in range(1, n_epochs + 1):
2016-09-19 08:31:31 +02:00
start_time = time.clock()
self.do_training_epoch()
epoch_time = time.clock() - start_time
if epoch % stats_interval == 0:
stats = self.get_epoch_stats()
self.log_stats(epoch, epoch_time, stats)
run_stats.append(stats.values())
return np.array(run_stats), {k: i for i, k in enumerate(stats.keys())}