88 lines
2.9 KiB
Python
88 lines
2.9 KiB
Python
|
import unittest
|
||
|
import torch
|
||
|
from model_architectures import (
|
||
|
ConvolutionalProcessingBlockBN,
|
||
|
ConvolutionalDimensionalityReductionBlockBN,
|
||
|
ConvolutionalProcessingBlockBNRC,
|
||
|
)
|
||
|
|
||
|
|
||
|
class TestBatchNormalizationBlocks(unittest.TestCase):
|
||
|
def setUp(self):
|
||
|
# Common parameters
|
||
|
self.input_shape = (1, 3, 32, 32) # Batch size 1, 3 channels, 32x32 input
|
||
|
self.num_filters = 16
|
||
|
self.kernel_size = 3
|
||
|
self.padding = 1
|
||
|
self.bias = False
|
||
|
self.dilation = 1
|
||
|
self.reduction_factor = 2
|
||
|
|
||
|
def test_convolutional_processing_block(self):
|
||
|
# Create a ConvolutionalProcessingBlockBN instance
|
||
|
block = ConvolutionalProcessingBlockBN(
|
||
|
input_shape=self.input_shape,
|
||
|
num_filters=self.num_filters,
|
||
|
kernel_size=self.kernel_size,
|
||
|
padding=self.padding,
|
||
|
bias=self.bias,
|
||
|
dilation=self.dilation,
|
||
|
)
|
||
|
|
||
|
# Generate a random tensor matching the input shape
|
||
|
input_tensor = torch.randn(self.input_shape)
|
||
|
|
||
|
# Forward pass
|
||
|
try:
|
||
|
output = block(input_tensor)
|
||
|
self.assertIsNotNone(output, "Output should not be None.")
|
||
|
except Exception as e:
|
||
|
self.fail(f"ConvolutionalProcessingBlock raised an error: {e}")
|
||
|
|
||
|
def test_convolutional_processing_block_with_rc(self):
|
||
|
# Create a ConvolutionalProcessingBlockBNRC instance
|
||
|
block = ConvolutionalProcessingBlockBNRC(
|
||
|
input_shape=self.input_shape,
|
||
|
num_filters=self.num_filters,
|
||
|
kernel_size=self.kernel_size,
|
||
|
padding=self.padding,
|
||
|
bias=self.bias,
|
||
|
dilation=self.dilation,
|
||
|
)
|
||
|
|
||
|
# Generate a random tensor matching the input shape
|
||
|
input_tensor = torch.randn(self.input_shape)
|
||
|
|
||
|
# Forward pass
|
||
|
try:
|
||
|
output = block(input_tensor)
|
||
|
self.assertIsNotNone(output, "Output should not be None.")
|
||
|
except Exception as e:
|
||
|
self.fail(f"ConvolutionalProcessingBlock raised an error: {e}")
|
||
|
|
||
|
def test_convolutional_dimensionality_reduction_block(self):
|
||
|
# Create a ConvolutionalDimensionalityReductionBlockBN instance
|
||
|
block = ConvolutionalDimensionalityReductionBlockBN(
|
||
|
input_shape=self.input_shape,
|
||
|
num_filters=self.num_filters,
|
||
|
kernel_size=self.kernel_size,
|
||
|
padding=self.padding,
|
||
|
bias=self.bias,
|
||
|
dilation=self.dilation,
|
||
|
reduction_factor=self.reduction_factor,
|
||
|
)
|
||
|
|
||
|
# Generate a random tensor matching the input shape
|
||
|
input_tensor = torch.randn(self.input_shape)
|
||
|
|
||
|
# Forward pass
|
||
|
try:
|
||
|
output = block(input_tensor)
|
||
|
self.assertIsNotNone(output, "Output should not be None.")
|
||
|
except Exception as e:
|
||
|
self.fail(f"ConvolutionalDimensionalityReductionBlock raised an error: {e}")
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
unittest.main()
|