mlpractical/arg_extractor.py

88 lines
4.0 KiB
Python
Raw Permalink Normal View History

2024-10-22 19:59:06 +02:00
import argparse
import json
import os
import sys
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def get_args():
"""
Returns a namedtuple with arguments extracted from the command line.
:return: A namedtuple with arguments
"""
parser = argparse.ArgumentParser(
description='Welcome to the MLP course\'s Pytorch training and inference helper script')
parser.add_argument('--batch_size', nargs="?", type=int, default=100, help='Batch_size for experiment')
parser.add_argument('--continue_from_epoch', nargs="?", type=int, default=-1, help='Batch_size for experiment')
parser.add_argument('--dataset_name', type=str, help='Dataset on which the system will train/eval our model')
parser.add_argument('--seed', nargs="?", type=int, default=7112018,
help='Seed to use for random number generator for experiment')
parser.add_argument('--image_num_channels', nargs="?", type=int, default=1,
help='The channel dimensionality of our image-data')
parser.add_argument('--image_height', nargs="?", type=int, default=28, help='Height of image data')
parser.add_argument('--image_width', nargs="?", type=int, default=28, help='Width of image data')
parser.add_argument('--dim_reduction_type', nargs="?", type=str, default='strided_convolution',
help='One of [strided_convolution, dilated_convolution, max_pooling, avg_pooling]')
parser.add_argument('--num_layers', nargs="?", type=int, default=4,
help='Number of convolutional layers in the network (excluding '
'dimensionality reduction layers)')
parser.add_argument('--num_filters', nargs="?", type=int, default=64,
help='Number of convolutional filters per convolutional layer in the network (excluding '
'dimensionality reduction layers)')
parser.add_argument('--num_epochs', nargs="?", type=int, default=100, help='The experiment\'s epoch budget')
parser.add_argument('--experiment_name', nargs="?", type=str, default="exp_1",
help='Experiment name - to be used for building the experiment folder')
parser.add_argument('--use_gpu', nargs="?", type=str2bool, default=False,
help='A flag indicating whether we will use GPU acceleration or not')
parser.add_argument('--weight_decay_coefficient', nargs="?", type=float, default=1e-05,
help='Weight decay to use for Adam')
parser.add_argument('--filepath_to_arguments_json_file', nargs="?", type=str, default=None,
help='')
args = parser.parse_args()
if args.filepath_to_arguments_json_file is not None:
args = extract_args_from_json(json_file_path=args.filepath_to_arguments_json_file, existing_args_dict=args)
arg_str = [(str(key), str(value)) for (key, value) in vars(args).items()]
print(arg_str)
import torch
if torch.cuda.is_available(): # checks whether a cuda gpu is available and whether the gpu flag is True
device = torch.cuda.current_device()
print("use {} GPU(s)".format(torch.cuda.device_count()), file=sys.stderr)
else:
print("use CPU", file=sys.stderr)
device = torch.device('cpu') # sets the device to be CPU
return args, device
class AttributeAccessibleDict(object):
def __init__(self, adict):
self.__dict__.update(adict)
def extract_args_from_json(json_file_path, existing_args_dict=None):
summary_filename = json_file_path
with open(summary_filename) as f:
arguments_dict = json.load(fp=f)
for key, value in vars(existing_args_dict).items():
if key not in arguments_dict:
arguments_dict[key] = value
arguments_dict = AttributeAccessibleDict(arguments_dict)
return arguments_dict