You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

231 lines
6.2 KiB
C

#include "ktypes.h"
#include "ecall.h"
#include "sched.h"
#include "csr.h"
#include "io.h"
// this type is only used here, therefore we don't need it in the ktypes header
typedef optional_int (*ecall_handler)(int*, struct process_control_block*);
ecall_handler ecall_table[ECALL_TABLE_LEN] = { 0 };
// ignore unused parameter errors only for these functions
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
optional_int ecall_handle_spawn_thread(int* args_ptr, struct process_control_block* pcb)
{
// args_ptr is a pointer to the pcb->regs field, starting at a0.
// args_ptr[0] is a0, args_ptr[1] is a1, etc.
void* entry = (void*) args_ptr[0]; // a0
void* args = (void*) args_ptr[1]; // a1
// create a new thread
optional_pcbptr pcb_or_err = create_new_thread(pcb, entry, args);
// if an error occured, pass it along to the process
if (has_error(pcb_or_err))
return (optional_int) { .error = pcb_or_err.error };
return (optional_int) { .value = pcb_or_err.value->pid };
}
optional_int ecall_handle_sleep(int* args, struct process_control_block* pcb)
{
// read len from a0
int len = args[0];
// only allow sleeping for positive intervals
if (len < 0) {
return (optional_int) { .error = EINVAL };
}
// if a positive interval is given, calculate the wakeup time
if (len > 0) {
pcb->asleep_until = read_time() + len;
pcb->status = PROC_WAIT_SLEEP;
}
return (optional_int) { .value = 0 };
}
optional_int ecall_handle_join(int* args, struct process_control_block* pcb)
{
int pid = args[0]; // read pid from processes a0 register
// find the referenced process
struct process_control_block* target = process_from_pid(pid);
if (target == NULL)
return (optional_int) { .error = ESRCH };
// if the process is dead, join can return immediately
if (target->status == PROC_DEAD)
return (optional_int) { .value = target->exit_code };
// mark the current process as waiting for the target process
pcb->status = PROC_WAIT_PROC;
pcb->waiting_for_process = target;
// check if a valid timeout was passed in register a1
int timeout = args[1];
if (timeout <= 0)
return (optional_int) { .value = 0 };
// set the asleep_until field
unsigned int len = (unsigned int) timeout;
pcb->asleep_until = read_time() + len;
// here we can return whatever value we want, as it is overwritten when
// the process is awoken again
return (optional_int) { .value = 0 };
}
optional_int ecall_handle_kill(int* args, struct process_control_block* pcb)
{
int pid = args[0];
struct process_control_block* target = process_from_pid(pid);
// return error if no process has that id
if (target == NULL)
return (optional_int) { .error = ESRCH };
// return success if the process is dead
if (target == PROC_DEAD)
return (optional_int) { .value = 1 };
// kill target by marking it dead
target->status = PROC_DEAD;
target->exit_code = -10; // set unique exit code
// call process destructor
destroy_process(pcb);
// return success
return (optional_int) { .value = 1 };
}
optional_int ecall_handle_exit(int* args, struct process_control_block* pcb)
{
pcb->status = PROC_DEAD;
pcb->exit_code = *args;
// print a message if debugging is enabled
if (DEBUGGING) {
char msg[34] = "process exited with code ";
itoa(pcb->pid, &msg[8], 10);
itoa(*args, &msg[28], 10);
dbgln(msg, 34);
}
// call process destructor
destroy_process(pcb);
return (optional_int) { .value = 0 };
}
#pragma GCC diagnostic pop
void trap_handle_ecall()
{
// save current clock so we don't waste too much process time
mark_ecall_entry();
// get the current process
struct process_control_block* pcb = get_current_process();
int *regs = pcb->regs;
int code = regs[REG_A0 + 7]; // syscall code is stored inside a7
// check if the code is too large/small or if the handler is zero
if (code < 0 || code > ECALL_TABLE_LEN || ecall_table[code] == NULL) {
regs[REG_A0] = ENOCODE;
} else {
// run the corresponding ecall handler
optional_int handler_result = ecall_table[code](&regs[REG_A0], pcb);
// populate registers with return value and error
regs[REG_A0] = handler_result.error;
regs[REG_A0 + 1] = handler_result.value;
}
// increment pc of this process to move past ecall instruction
pcb->pc += 4;
// try to reschedule
scheduler_try_return_to(pcb);
}
void trap_handle(int interrupt_bit, int code, int mtval)
{
if (interrupt_bit) {
switch (code) {
// timer interrupts
case 4:
case 5:
case 6:
case 7:
scheduler_run_next();
break;
default:
// any other interrupt is not supported currently
HALT(12);
break;
}
} else {
switch (code) {
// any known exception code:
case 0:
case 1:
case 2:
case 4:
case 5:
case 6:
case 7:
case 12:
case 13:
case 15:
handle_exception(code, mtval);
break;
// user or supervisor ecall
case 8:
case 9:
trap_handle_ecall();
break;
// unknown code
default:
HALT(13);
}
}
HALT(14);
__builtin_unreachable();
}
// this writes the function pointers to the ecall table
// it's called from the kernels init() function
void init_ecall_table()
{
ecall_table[ECALL_SPAWN] = ecall_handle_spawn_thread;
ecall_table[ECALL_SLEEP] = ecall_handle_sleep;
ecall_table[ECALL_JOIN] = ecall_handle_join;
ecall_table[ECALL_KILL] = ecall_handle_kill;
ecall_table[ECALL_EXIT] = ecall_handle_exit;
}
// this exception handler is crude and just kills off any process who
// causes an exception.
void handle_exception(int ecode, int mtval)
{
// kill off offending process
struct process_control_block* pcb = get_current_process();
pcb->status = PROC_DEAD;
pcb->exit_code = -99;
destroy_process(pcb);
// run the next process
scheduler_run_next();
}